
Chun-Hong Kuo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/781878/publications.pdf Version: 2024-02-01

CHUN-HONG KUO

#	Article	IF	CITATIONS
1	Surface Plasmonic Effects of Metallic Nanoparticles on the Performance of Polymer Bulk Heterojunction Solar Cells. ACS Nano, 2011, 5, 959-967.	14.6	959
2	Optimized Metal–Organic-Framework Nanospheres for Drug Delivery: Evaluation of Small-Molecule Encapsulation. ACS Nano, 2014, 8, 2812-2819.	14.6	716
3	Yolk–Shell Nanocrystal@ZIF-8 Nanostructures for Gas-Phase Heterogeneous Catalysis with Selectivity Control. Journal of the American Chemical Society, 2012, 134, 14345-14348.	13.7	608
4	Seedâ€Mediated Synthesis of Monodispersed Cu ₂ O Nanocubes with Five Different Size Ranges from 40 to 420 nm. Advanced Functional Materials, 2007, 17, 3773-3780.	14.9	340
5	Morphologically controlled synthesis of Cu2O nanocrystals and their properties. Nano Today, 2010, 5, 106-116.	11.9	301
6	Fabrication of Truncated Rhombic Dodecahedral Cu ₂ O Nanocages and Nanoframes by Particle Aggregation and Acidic Etching. Journal of the American Chemical Society, 2008, 130, 12815-12820.	13.7	286
7	Seed-Mediated Synthesis of Gold Nanocrystals with Systematic Shape Evolution from Cubic to Trisoctahedral and Rhombic Dodecahedral Structures. Langmuir, 2010, 26, 12307-12313.	3.5	286
8	Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles. Applied Physics Letters, 2009, 95, .	3.3	272
9	Au Nanocrystal-Directed Growth of Auâ^'Cu ₂ O Coreâ^'Shell Heterostructures with Precise Morphological Control. Journal of the American Chemical Society, 2009, 131, 17871-17878.	13.7	237
10	Facet-Dependent and Au Nanocrystal-Enhanced Electrical and Photocatalytic Properties of Auâ^'Cu ₂ O Coreâ^'Shell Heterostructures. Journal of the American Chemical Society, 2011, 133, 1052-1057.	13.7	237
11	Facile Synthesis of Cu ₂ 0 Nanocrystals with Systematic Shape Evolution from Cubic to Octahedral Structures. Journal of Physical Chemistry C, 2008, 112, 18355-18360.	3.1	222
12	Synthesis of Branched Gold Nanocrystals by a Seeding Growth Approach. Langmuir, 2005, 21, 2012-2016.	3.5	200
13	Thermal Aqueous Solution Approach for the Synthesis of Triangular and Hexagonal Gold Nanoplates with Three Different Size Ranges. Inorganic Chemistry, 2006, 45, 808-813.	4.0	178
14	Hydrothermal Synthesis of Monodispersed Octahedral Gold Nanocrystals with Five Different Size Ranges and Their Self-Assembled Structures. Chemistry of Materials, 2008, 20, 7570-7574.	6.7	159
15	Synthesis of Highly Faceted Pentagonal- and Hexagonal-Shaped Gold Nanoparticles with Controlled Sizes by Sodium Dodecyl Sulfate. Langmuir, 2004, 20, 7820-7824.	3.5	137
16	Cu ₂ O Nanocrystalâ€Templated Growth of Cu ₂ S Nanocages with Encapsulated Au Nanoparticles and Inâ€Situ Transmission Xâ€ray Microscopy Study. Advanced Functional Materials, 2011, 21, 792-797.	14.9	134
17	Nanoscale-Phase-Separated Pd–Rh Boxes Synthesized via Metal Migration: An Archetype for Studying Lattice Strain and Composition Effects in Electrocatalysis. Journal of the American Chemical Society, 2013, 135, 14691-14700.	13.7	113
18	The Effect of Lattice Strain on the Catalytic Properties of Pd Nanocrystals. ChemSusChem, 2013, 6, 1993-2000.	6.8	105

#	Article	IF	CITATIONS
19	Iodide-Mediated Control of Rhodium Epitaxial Growth on Well-Defined Noble Metal Nanocrystals: Synthesis, Characterization, and Structure-Dependent Catalytic Properties. Journal of the American Chemical Society, 2012, 134, 18417-18426.	13.7	95
20	Formation of hollow and mesoporous structures in single-crystalline microcrystals of metal–organic frameworks via double-solvent mediated overgrowth. Nanoscale, 2015, 7, 19408-19412.	5.6	77
21	Spiny Rhombic Dodecahedral CuPt Nanoframes with Enhanced Catalytic Performance Synthesized from Cu Nanocube Templates. Chemistry of Materials, 2017, 29, 5681-5692.	6.7	77
22	Mesoporous Nickel Ferrites with Spinel Structure Prepared by an Aerosol Spray Pyrolysis Method for Photocatalytic Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2014, 2, 2588-2594.	6.7	75
23	Turning the Halide Switch in the Synthesis of Au–Pd Alloy and Core–Shell Nanoicosahedra with Terraced Shells: Performance in Electrochemical and Plasmon-Enhanced Catalysis. Nano Letters, 2016, 16, 5514-5520.	9.1	65
24	Electrochemically Induced Surface Metal Migration in Well-Defined Core–Shell Nanoparticles and Its General Influence on Electrocatalytic Reactions. ACS Nano, 2014, 8, 9368-9378.	14.6	54
25	Size-Dependent Sulfur Poisoning of Silica-Supported Monodisperse Pt Nanoparticle Hydrogenation Catalysts. ACS Catalysis, 2012, 2, 2626-2629.	11.2	35
26	Sub-1â€ ⁻ nm PtSn ultrathin sheet as an extraordinary electrocatalyst for methanol and ethanol oxidation reactions. Journal of Colloid and Interface Science, 2019, 545, 54-62.	9.4	28
27	Aqueous Synthesis of Concave Rh Nanotetrahedra with Defect-Rich Surfaces: Insights into Growth-, Defect-, and Plasmon-Enhanced Catalytic Energy Conversion. Chemistry of Materials, 2018, 30, 4448-4458.	6.7	24
28	Strainâ€Enhanced Metallic Intermixing in Shapeâ€Controlled Multilayered Core–Shell Nanostructures: Toward Shaped Intermetallics. Angewandte Chemie - International Edition, 2020, 59, 10574-10580.	13.8	22
29	A new solution route for the synthesis of CuFeO2 and Mg-doped CuFeO2 as catalysts for dye degradation and CO2 conversion. Journal of Alloys and Compounds, 2021, 854, 157235.	5.5	20
30	Fabrication of Bimetallic Au–Pd–Au Nanobricks as an Archetype of Robust Nanoplasmonic Sensors. Chemistry of Materials, 2018, 30, 204-213.	6.7	17
31	Growth of Coreâ^'Shell Gaâ^'GaN Nanostructures via a Conventional Reflux Method and the Formation of Hollow GaN Spheres. Journal of Physical Chemistry C, 2009, 113, 3625-3630.	3.1	16
32	Investigating lattice strain impact on the alloyed surface of small Au@PdPt core–shell nanoparticles. Nanoscale, 2020, 12, 8687-8692.	5.6	16
33	New 2,3-diphenylquinoxaline containing organic D-A-Ï€-A dyes with nickel oxide photocathode prepared by surfactant-mediated synthesis for high performance p-type dye-sensitized solar cells. Dyes and Pigments, 2019, 163, 761-774.	3.7	15
34	Recent Advances in Bimetallic Cuâ€Based Nanocrystals for Electrocatalytic CO ₂ Conversion. Chemistry - an Asian Journal, 2021, 16, 2168-2184.	3.3	15
35	Enhanced Production of Formic Acid in Electrochemical CO ₂ Reduction over Pd-Doped BiOCl Nanosheets. ACS Applied Materials & Interfaces, 2021, 13, 58799-58808.	8.0	12
36	NiCo2O4/graphene quantum dots (GQDs) for use in efficient electrochemical energy devices: An electrochemical and X-ray absorption spectroscopic investigation. Catalysis Today, 2020, 348, 290-298.	4.4	11

Снил-Нолс Кио

#	Article	IF	CITATIONS
37	Ultrathin Octahedral CuPt Nanocages Obtained by Facet Transformation from Rhombic Dodecahedral Core–Shell Nanocrystals. ACS Sustainable Chemistry and Engineering, 2020, 8, 10544-10553.	6.7	10
38	Insights into Electrocatalytic Oxygen Evolution over Hierarchical FeCo ₂ S ₄ Nanospheres. ACS Sustainable Chemistry and Engineering, 2022, 10, 431-440.	6.7	10
39	Probing the acoustic vibrations of complex-shaped metal nanoparticles with four-wave mixing. Optics Express, 2016, 24, 23747.	3.4	9
40	Flexible and free-standing polyvinyl alcohol-reduced graphene oxide-Cu2O/CuO thin films for electrochemical reduction of carbon dioxide. Journal of Applied Electrochemistry, 2020, 50, 979-991.	2.9	9
41	Insights into Transformation of Icosahedral PdRu Nanocrystals into Lattice-Expanded Nanoframes with Strain Enhancement in Electrochemical Redox Reactions. Chemistry of Materials, 2022, 34, 2282-2291.	6.7	8
42	Electronic structures associated with enhanced photocatalytic activity in nanogap-engineered g-C3N4/Ag@SiO2 hybrid nanostructures. Applied Surface Science, 2020, 514, 145907.	6.1	7
43	Enhancement of NH ₃ Production in Electrochemical N ₂ Reduction by the Cu-Rich Inner Surfaces of Beveled CuAu Nanoboxes. ACS Applied Materials & Interfaces, 2021, 13, 51839-51848.	8.0	7
44	Au-BINOL Hybrid Nanocatalysts: Insights into the Structure-Based Enhancement of Catalytic and Photocatalytic Performance. Industrial & Engineering Chemistry Research, 2019, 58, 5479-5489.	3.7	4
45	AuPd Nanoicosahedra: Atomic-Level Surface Modulation for Optimization of Electrocatalytic and Photocatalytic Energy Conversion. ACS Applied Energy Materials, 2021, 4, 2652-2662.	5.1	4
46	Structure of a seeded palladium nanoparticle and its dynamics during the hydride phase transformation. Communications Chemistry, 2021, 4, .	4.5	4
47	Investigating metalâ€enhanced fluorescence effect on fluorescein by gold nanotriangles and nanocubes using timeâ€resolved fluorescence spectroscopy. Journal of the Chinese Chemical Society, 2022, 69, 82-93.	1.4	3
48	Polyglutamine-Specific Gold Nanoparticle Complex Alleviates Mutant Huntingtin-Induced Toxicity. ACS Applied Materials & Interfaces, 2021, 13, 60894-60906.	8.0	3
49	Serial Morphological Transformations of Au Nanocrystals via Post-Synthetic Galvanic Dissolution and Recursive Growth. Journal of Physical Chemistry C, 2015, 119, 29006-29014.	3.1	2
50	Formation of a pâ€n heterojunction photocatalyst by the interfacing of graphitic carbon nitride and delafossite <scp>CuGaO₂</scp> . Journal of the Chinese Chemical Society, 2022, 69, 1042-1050.	1.4	2
51	Interface-Controlled Synthesis of Au-BINOL Hybrid Nanostructures and Mechanism Study. Langmuir, 2018, 34, 13697-13704.	3.5	1
52	Fabrication of truncated rhombic dodecahedral Cu <inf>2</inf> O nanocages and nanoframes. , 2010, , .		0
53	Plasmonic-enhanced polymer photovoltaic devices incorporating Au nanoparticles. , 2010, , .		0
54	Structural Characterization of Bimetallic Nanocrystal Electrocatalysts. Microscopy and Microanalysis, 2016, 22, 1286-1287.	0.4	0

#	Article	IF	CITATIONS
55	Tailoring Heterogeneous Catalysts at the Atomic Level: In Memoriam, Prof. Chia-Kuang (Frank) Tsung. ACS Applied Materials & Interfaces, 2021, , .	8.0	0