
Michael Shapira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7818652/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>miR-71</i> mediates age-dependent opposing contributions of the stress-activated kinase KGB-1 in <i>Caenorhabditis elegans</i> . Genetics, 2021, 218, .	2.9	5
2	CeMbio - The <i>Caenorhabditis elegans</i> Microbiome Resource. G3: Genes, Genomes, Genetics, 2020, 10, 3025-3039.	1.8	96
3	Interactions with a Complex Microbiota Mediate a Trade-Off between the Host Development Rate and Heat Stress Resistance. Microorganisms, 2020, 8, 1781.	3.6	9
4	TGFβ/BMP immune signaling affects abundance and function of C. elegans gut commensals. Nature Communications, 2019, 10, 604.	12.8	64
5	Integration of Stress Signaling in Caenorhabditis elegans Through Cell-Nonautonomous Contributions of the JNK Homolog KGB-1. Genetics, 2018, 210, 1317-1328.	2.9	8
6	Host–microbiota interactions in Caenorhabditis elegans and their significance. Current Opinion in Microbiology, 2017, 38, 142-147.	5.1	35
7	Adaptation from Within or from Without: A Reply to Rodrigo et al Trends in Ecology and Evolution, 2017, 32, 85.	8.7	2
8	FOS-1 functions as a transcriptional activator downstream of the C. elegans JNK homolog KGB-1. Cellular Signalling, 2017, 30, 1-8.	3.6	16
9	Caenorhabditis elegans as a Model for Microbiome Research. Frontiers in Microbiology, 2017, 8, 485.	3.5	177
10	Host-Specific Functional Significance of Caenorhabditis Gut Commensals. Frontiers in Microbiology, 2016, 7, 1622.	3.5	79
11	The nematode Caenorhabditis elegans survives subfreezing temperatures in an isochoric system. Biochemical and Biophysical Research Communications, 2016, 477, 401-405.	2.1	24
12	Gut Microbiotas and Host Evolution: Scaling Up Symbiosis. Trends in Ecology and Evolution, 2016, 31, 539-549.	8.7	308
13	Assembly of the <i>Caenorhabditis elegans</i> gut microbiota from diverse soil microbial environments. ISME Journal, 2016, 10, 1998-2009.	9.8	296
14	GATA transcription factors as tissue-specific master regulators for induced responses. Worm, 2015, 4, e1118607.	1.0	32
15	The Developmental Intestinal Regulator ELT-2 Controls p38-Dependent Immune Responses in Adult C. elegans. PLoS Genetics, 2015, 11, e1005265.	3.5	48
16	Automated Separation of C. elegans Variably Colonized by a Bacterial Pathogen. Journal of Visualized Experiments, 2014, , .	0.3	0
17	Association with Soil Bacteria Enhances p38-Dependent Infection Resistance in Caenorhabditis elegans. Infection and Immunity, 2013, 81, 514-520.	2.2	121
18	An ageâ€dependent reversal in the protective capacities of JNK signaling shortens <i>Caenorhabditis elegans</i> lifespan. Aging Cell, 2012, 11, 659-667.	6.7	41

MICHAEL SHAPIRA

#	Article	IF	CITATIONS
19	Dissociation of Immune Responses from Pathogen Colonization Supports Pattern Recognition in C. elegans. PLoS ONE, 2012, 7, e35400.	2.5	21
20	Genetic and molecular analysis of nematode-microbe interactions. Cellular Microbiology, 2011, 13, 497-507.	2.1	48
21	Genetic Analysis of Caenorhabditis elegans Innate Immunity. , 2008, 415, 429-442.		33
22	A conserved role for a GATA transcription factor in regulating epithelial innate immune responses. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14086-14091.	7.1	259
23	Disruption of Yeast Forkhead-associated Cell Cycle Transcription by Oxidative Stress. Molecular Biology of the Cell, 2004, 15, 5659-5669.	2.1	71
24	Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nature Genetics, 2003, 34, 166-176.	21.4	1,543
25	Stress Effects on Immunity in Vertebrates and Invertebrates. , 0, , 207-227.		1
26	Host Preference of Beneficial Commensals in a Microbially-Diverse Environment. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	11