Fernán G Agù¼ero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7818348/publications.pdf

Version: 2024-02-01

257450 254184 1,974 51 24 43 citations g-index h-index papers 57 57 57 2860 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genomic-scale prioritization of drug targets: the TDR Targets database. Nature Reviews Drug Discovery, 2008, 7, 900-907.	46.4	282
2	Whole-Genome Analyses of Speciation Events in Pathogenic Brucellae. Infection and Immunity, 2005, 73, 8353-8361.	2.2	179
3	Identification of Attractive Drug Targets in Neglected-Disease Pathogens Using an In Silico Approach. PLoS Neglected Tropical Diseases, 2010, 4, e804.	3.0	141
4	TDR Targets: a chemogenomics resource for neglected diseases. Nucleic Acids Research, 2012, 40, D1118-D1127.	14.5	109
5	Metacaspases of Trypanosoma cruzi: Possible candidates for programmed cell death mediators. Molecular and Biochemical Parasitology, 2006, 145, 18-28.	1.1	91
6	Chagas Disease Diagnostic Applications. Advances in Parasitology, 2017, 97, 1-45.	3.2	87
7	Towards High-throughput Immunomics for Infectious Diseases: Use of Next-generation Peptide Microarrays for Rapid Discovery and Mapping of Antigenic Determinants. Molecular and Cellular Proteomics, 2015, 14, 1871-1884.	3.8	80
8	Galectin-8 Induces Apoptosis in the CD4highCD8high Thymocyte Subpopulation. Glycobiology, 2007, 17, 1404-1412.	2.5	70
9	A Simple Strain Typing Assay for Trypanosoma cruzi: Discrimination of Major Evolutionary Lineages from a Single Amplification Product. PLoS Neglected Tropical Diseases, 2012, 6, e1777.	3.0	64
10	Molecular diversity of the <i>Trypanosoma cruzi </i> TcSMUG family of mucin genes and proteins. Biochemical Journal, 2011, 438, 303-313.	3.7	55
11	Characterization of a lysosomal serine carboxypeptidase from Trypanosoma cruzi. Molecular and Biochemical Parasitology, 2003, 131, 11-23.	1.1	51
12	Genomic analysis of Campylobacter fetus subspecies: identification of candidate virulence determinants and diagnostic assay targets. BMC Microbiology, 2009, 9, 86.	3.3	51
13	A Random Sequencing Approach for the Analysis of the Trypanosoma cruzi Genome: General Structure, Large Gene and Repetitive DNA Families, and Gene Discovery. Genome Research, 2000, 10, 1996-2005.	5.5	49
14	Two metallocarboxypeptidases from the protozoan Trypanosoma cruzi belong to the M32 family, found so far only in prokaryotes. Biochemical Journal, 2007, 401, 399-410.	3.7	44
15	Gene Discovery through Genomic Sequencing of Brucella abortus. Infection and Immunity, 2001, 69, 865-868.	2.2	41
16	A Multilayer Network Approach for Guiding Drug Repositioning in Neglected Diseases. PLoS Neglected Tropical Diseases, 2016, 10, e0004300.	3.0	38
17	Diagnostic Peptide Discovery: Prioritization of Pathogen Diagnostic Markers Using Multiple Features. PLoS ONE, 2012, 7, e50748.	2.5	36
18	Genome-wide analysis of 3′-untranslated regions supports the existence of post-transcriptional regulons controlling gene expression in trypanosomes. PeerJ, 2013, 1, e118.	2.0	34

#	Article	IF	CITATIONS
19	Gene expression analysis in the hippocampal formation of tree shrews chronically treated with cortisol. Journal of Neuroscience Research, 2004, 78, 702-710.	2.9	33
20	Differential accumulation of mutations localized in particular domains of the mucin genes expressed in the vertebrate host stage of Trypanosoma cruzi. Molecular and Biochemical Parasitology, 2004, 133, 81-91.	1.1	32
21	Next-generation ELISA diagnostic assay for Chagas Disease based on the combination of short peptidic epitopes. PLoS Neglected Tropical Diseases, 2017, 11, e0005972.	3.0	31
22	Novel scaffolds for inhibition of Cruzipain identified from high-throughput screening of anti-kinetoplastid chemical boxes. Scientific Reports, 2017, 7, 12073.	3.3	27
23	TDR Targets 6: driving drug discovery for human pathogens through intensive chemogenomic data integration. Nucleic Acids Research, 2020, 48, D992-D1005.	14.5	26
24	Mapping Antigenic Motifs in the Trypomastigote Small Surface Antigen from Trypanosoma cruzi. Vaccine Journal, 2015, 22, 304-312.	3.1	25
25	The Calcineurin A homologue from Trypanosoma cruzi lacks two important regulatory domains. Acta Tropica, 2007, 101, 80-89.	2.0	24
26	TcTASV: A Novel Protein Family in Trypanosoma cruzi Identified from a Subtractive Trypomastigote cDNA Library. PLoS Neglected Tropical Diseases, 2010, 4, e841.	3.0	24
27	Neglected Tropical Diseases in the Post-Genomic Era. Trends in Genetics, 2015, 31, 539-555.	6.7	24
28	High-resolution profiling of linear B-cell epitopes from mucin-associated surface proteins (MASPs) of Trypanosoma cruzi during human infections. PLoS Neglected Tropical Diseases, 2017, 11, e0005986.	3.0	21
29	Gene Discovery in the Freshwater Fish Parasite Trypanosoma carassii : Identification of trans -Sialidase-Like and Mucin-Like Genes. Infection and Immunity, 2002, 70, 7140-7144.	2.2	19
30	TcruziDB: an integrated, post-genomics community resource for Trypanosoma cruzi. Nucleic Acids Research, 2006, 34, D428-D431.	14.5	19
31	Genetic Profiling of the Isoprenoid and Sterol Biosynthesis Pathway Genes of Trypanosoma cruzi. PLoS ONE, 2014, 9, e96762.	2.5	19
32	TcSNP: a database of genetic variation in Trypanosoma cruzi. Nucleic Acids Research, 2009, 37, D544-D549.	14.5	18
33	Generation and analysis of expressed sequence tags from Trypanosoma cruzi trypomastigote and amastigote cDNA libraries. Molecular and Biochemical Parasitology, 2004, 136, 221-225.	1.1	16
34	A genomic scale map of genetic diversity in Trypanosoma cruzi. BMC Genomics, 2012, 13, 736.	2.8	16
35	Purification, cloning, and expression of the mitochondrial malate dehydrogenase (mMDH) from protoscolices of Echinococcus granulosus. Molecular and Biochemical Parasitology, 2004, 137, 207-214.	1.1	10
36	FastqCleaner: an interactive Bioconductor application for quality-control, filtering and trimming of FASTQ files. BMC Bioinformatics, 2019, 20, 361.	2.6	10

#	Article	IF	CITATIONS
37	Molecular and antigenic characterization of Trypanosoma cruzi TolT proteins. PLoS Neglected Tropical Diseases, 2019, 13, e0007245.	3.0	9
38	A Genome-Wide Analysis of Genetic Diversity in Trypanosoma cruzi Intergenic Regions. PLoS Neglected Tropical Diseases, 2014, 8, e2839.	3.0	8
39	Characterization of Toxoplasma gondii subtelomeric-like regions: identification of a long-range compositional bias that is also associated with gene-poor regions. BMC Genomics, 2014, 15, 21.	2.8	8
40	Serological Approaches for Trypanosoma cruzi Strain Typing. Trends in Parasitology, 2021, 37, 214-225.	3.3	7
41	Purification and partial characterization of the cytosolic malate dehydrogenase from protoscolices of Echinococcus granulosus. Molecular and Biochemical Parasitology, 1995, 72, 247-251.	1.1	6
42	APRANK: Computational Prioritization of Antigenic Proteins and Peptides From Complete Pathogen Proteomes. Frontiers in Immunology, 2021, 12, 702552.	4.8	6
43	A Random Sequencing Approach for the Analysis of the <i>Trypanosoma cruzi</i> Genome: General Structure, Large Gene and Repetitive DNA Families, and Gene Discovery. Genome Research, 2000, 10, 1996-2005.	5.5	5
44	Characterization of ADAT2/3 molecules in <i>Trypanosoma cruzi</i> and regulation of mucin gene expression by tRNA editing. Biochemical Journal, 2022, 479, 561-580.	3.7	4
45	Potent and selective inhibitors for M32 metallocarboxypeptidases identified from high-throughput screening of anti-kinetoplastid chemical boxes. PLoS Neglected Tropical Diseases, 2019, 13, e0007560.	3.0	3
46	A computational pipeline for diagnostic biomarker discovery in the human pathogen Trypanosoma cruzi. BMC Bioinformatics, 2010, 11 , .	2.6	2
47	Designing and implementing chemoinformatic approaches in TDR Targets Database: linking genes to chemical compounds in tropical disease causing pathogens. BMC Bioinformatics, 2010, 11, .	2.6	1
48	Screening and Identification of Metacaspase Inhibitors: Evaluation of Inhibition Mechanism and Trypanocidal Activity. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	1
49	A report on the "International Society for Computational Biology - Latin America (ISCB-LA)― Bioinformatics Conference 2016. EMBnet Journal, 2017, 23, 883.	0.6	1
50	A report on the "International Society for Computational Biology - Latin America (ISCB-LA)― Bioinformatics Conference 2016. EMBnet Journal, 2016, 22, 883.	0.6	0
51	Biological features of TcM: A new Trypanosoma cruzi isolate from Argentina classified into TcV lineage. Current Research in Microbial Sciences, 2022, 3, 100152.	2.3	0