Robert C Hider

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7817864/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemistry and biology of siderophores. Natural Product Reports, 2010, 27, 637.	10.3	1,330
2	Identification of an Intestinal Heme Transporter. Cell, 2005, 122, 789-801.	28.9	628
3	Evaluating the Toxicity of Airborne Particulate Matter and Nanoparticles by Measuring Oxidative Stress Potential—A Workshop Report and Consensus Statement. Inhalation Toxicology, 2008, 20, 75-99.	1.6	482
4	The Pseudomonas aeruginosa 4-Quinolone Signal Molecules HHQ and PQS Play Multifunctional Roles in Quorum Sensing and Iron Entrapment. Chemistry and Biology, 2007, 14, 87-96.	6.0	445
5	Nicotianamine Chelates Both FellI and Fell. Implications for Metal Transport in Plants1. Plant Physiology, 1999, 119, 1107-1114.	4.8	443
6	The crucial role of metal ions in neurodegeneration: the basis for a promising therapeutic strategy. British Journal of Pharmacology, 2005, 146, 1041-1059.	5.4	352
7	Metal chelation of polyphenols. Methods in Enzymology, 2001, 335, 190-203.	1.0	314
8	Feruloyl-CoA 6'-Hydroxylase1-Dependent Coumarins Mediate Iron Acquisition from Alkaline Substrates in Arabidopsis. Plant Physiology, 2014, 164, 160-172.	4.8	281
9	Design, Synthesis, Physicochemical Properties, and Evaluation of Novel Iron Chelators with Fluorescent Sensors. Journal of Medicinal Chemistry, 2004, 47, 6349-6362.	6.4	269
10	Design of clinically useful iron(III)-selective chelators. Medicinal Research Reviews, 2002, 22, 26-64.	10.5	251
11	Design of iron chelators with therapeutic application. Coordination Chemistry Reviews, 2002, 232, 151-171.	18.8	251
12	Siderophore mediated absorption of iron. , 1984, , 25-87.		217
13	Synthesis, physicochemical properties, and biological evaluation of N-substituted 2-alkyl-3-hydroxy-4(1H)-pyridinones: orally active iron chelators with clinical potential. Journal of Medicinal Chemistry, 1993, 36, 2448-2458.	6.4	211
14	Glutathione: a key component of the cytoplasmic labile iron pool. BioMetals, 2011, 24, 1179-1187.	4.1	206
15	Iron(iii) citrate speciation in aqueous solution. Dalton Transactions, 2009, , 8616.	3.3	198
16	Metals ions and neurodegeneration. BioMetals, 2007, 20, 639-654.	4.1	186
17	Iron Promotes the Toxicity of Amyloid β Peptide by Impeding Its Ordered Aggregation. Journal of Biological Chemistry, 2011, 286, 4248-4256.	3.4	182
18	Results of the first international round robin for the quantification of urinary and plasma hepcidin assays: need for standardization. Haematologica, 2009, 94, 1748-1752.	3.5	161

#	Article	IF	CITATIONS
19	Fenton chemistry and oxidative stress mediate the toxicity of the βâ€amyloid peptide in a <i>Drosophila</i> model of Alzheimer's disease. European Journal of Neuroscience, 2009, 29, 1335-1347.	2.6	159
20	The Relationship of Intracellular Iron Chelation to the Inhibition and Regeneration of Human Ribonucleotide Reductase. Journal of Biological Chemistry, 1996, 271, 20291-20299.	3.4	153
21	Novel Diterpenoid Acetylcholinesterase Inhibitors fromSalvia miltiorhiza. Planta Medica, 2004, 70, 201-204.	1.3	152
22	Quantification of Non-Transferrin-Bound Iron in the Presence of Unsaturated Transferrin. Analytical Biochemistry, 1999, 273, 212-220.	2.4	150
23	Iron speciation in the cytosol: an overview. Dalton Transactions, 2013, 42, 3220-3229.	3.3	141
24	A direct method for quantification of non-transferrin-bound iron. Analytical Biochemistry, 1990, 186, 320-323.	2.4	136
25	Nature of non-transferrin-bound iron: studies on iron citrate complexes and thalassemic sera. Journal of Biological Inorganic Chemistry, 2007, 13, 57-74.	2.6	134
26	Hydroxylated Phytosiderophore Species Possess an Enhanced Chelate Stability and Affinity for Iron(III). Plant Physiology, 2000, 124, 1149-1158.	4.8	130
27	Design of iron chelators with therapeutic application. Dalton Transactions, 2012, 41, 6371.	3.3	128
28	Efficient bifunctional gallium-68 chelators for positron emission tomography: tris(hydroxypyridinone) ligands. Chemical Communications, 2011, 47, 7068.	4.1	125
29	Nature of nontransferrinâ€bound iron. European Journal of Clinical Investigation, 2002, 32, 50-54.	3.4	119
30	Novel 3-hydroxy-2(1H)-pyridinones. Synthesis, iron(III)-chelating properties and biological activity. Journal of Medicinal Chemistry, 1990, 33, 1749-1755.	6.4	112
31	Aceruloplasminemia: new clinical, pathophysiological and therapeutic insights. Journal of Hepatology, 2002, 36, 851-856.	3.7	111
32	Targeting the Lysosome: Fluorescent Iron(III) Chelators To Selectively Monitor Endosomal/Lysosomal Labile Iron Pools. Journal of Medicinal Chemistry, 2008, 51, 4539-4552.	6.4	111
33	Synthesis, Physicochemical Properties, and Evaluation ofN-Substituted-2-alkyl-3-hydroxy-4(1H)-pyridinonesâ€. Journal of Medicinal Chemistry, 1998, 41, 3347-3359.	6.4	104
34	Determination of non-transferrin-bound iron in genetic hemochromatosis using a new HPLC-based method. Journal of Hepatology, 2000, 32, 727-733.	3.7	103
35	Monitoring long-term efficacy of iron chelation therapy by deferiprone and desferrioxamine in patients with β-thalassaemia major: application of SQUID biomagnetic liver susceptometry. British Journal of Haematology, 2003, 121, 938-948.	2.5	100
36	Eltrombopag: a powerful chelator of cellular or extracellular iron(III) alone or combined with a second chelator. Blood, 2017, 130, 1923-1933.	1.4	98

#	Article	IF	CITATIONS
37	The Role of Deferiprone in Iron Chelation. New England Journal of Medicine, 2018, 379, 2140-2150.	27.0	96
38	The competition between enterobactin and glutathione for iron. Inorganica Chimica Acta, 1982, 66, 13-18.	2.4	95
39	Determination of the pKa value of the hydroxyl group in the α-hydroxycarboxylates citrate, malate and lactate by 13C NMR: implications for metal coordination in biological systems. BioMetals, 2009, 22, 771-778.	4.1	94
40	Membrane Radiolabelling of Exosomes for Comparative Biodistribution Analysis in Immunocompetent and Immunodeficient Mice - A Novel and Universal Approach. Theranostics, 2019, 9, 1666-1682.	10.0	94
41	Results of an international round robin for the quantification of serum non-transferrin-bound iron: Need for defining standardization and a clinically relevant isoform. Analytical Biochemistry, 2005, 341, 241-250.	2.4	93
42	Cardioprotective effects of Cu(II)ATSM in human vascular smooth muscle cells and cardiomyocytes mediated by Nrf2 and DJ-1. Scientific Reports, 2016, 6, 7.	3.3	93
43	Synthesis, Physicochemical Characterization, and Biological Evaluation of 2-(1â€~-Hydroxyalkyl)-3-hydroxypyridin-4-ones: Novel Iron Chelators with Enhanced pFe3+Valuesâ€. Journal of Medicinal Chemistry, 1999, 42, 4814-4823.	6.4	92
44	Iron Binding Dendrimers:Â A Novel Approach for the Treatment of Haemochromatosis. Journal of Medicinal Chemistry, 2006, 49, 4171-4182.	6.4	91
45	Targeted redox inhibition of protein phosphatase 1 by Nox4 regulates <scp>elF</scp> 2αâ€mediated stress signaling. EMBO Journal, 2016, 35, 319-334.	7.8	91
46	Improved antioxidant and anti-tyrosinase activity of polysaccharide from Sargassum fusiforme by degradation. International Journal of Biological Macromolecules, 2016, 92, 715-722.	7.5	88
47	Fenton Chemistry and Iron Chelation under Physiologically Relevant Conditions:Â Electrochemistry and Kinetics. Chemical Research in Toxicology, 2006, 19, 1263-1269.	3.3	87
48	Synthesis, Physicochemical Properties, and Biological Evaluation of Hydroxypyranones and Hydroxypyridinones:Â Novel Bidentate Ligands for Cell-Labeling. Journal of Medicinal Chemistry, 1996, 39, 3659-3670.	6.4	82
49	Model compounds for microbial iron-transport compounds. Part 1. Solution chemistry and MA¶ssbauer study of iron(II) and iron(III) complexes from phenolic and catecholic systems. Journal of the Chemical Society Dalton Transactions, 1981, , 609-622.	1.1	81
50	⁶⁸ Ga-THP-PSMA: A PET Imaging Agent for Prostate Cancer Offering Rapid, Room-Temperature, 1-Step Kit-Based Radiolabeling. Journal of Nuclear Medicine, 2017, 58, 1270-1277.	5.0	75
51	The potential application of iron chelators for the treatment of neurodegenerative diseases. Metallomics, 2011, 3, 239.	2.4	74
52	Second international round robin for the quantification of serum non-transferrin-bound iron and labile plasma iron in patients with iron-overload disorders. Haematologica, 2016, 101, 38-45.	3.5	74
53	Emerging Understanding of the Advantage of Small Molecules such as Hydroxypyridinones in the Treatment of Iron Overload. Current Medicinal Chemistry, 2003, 10, 1051-1064.	2.4	73
54	Neuroprotective actions of deferiprone in cultured cortical neurones and SHSYâ€5Y cells. Journal of Neurochemistry, 2008, 105, 2466-2476.	3.9	72

#	Article	IF	CITATIONS
55	Haem and folate transport by proton-coupled folate transporter/haem carrier protein 1 (SLC46A1). British Journal of Nutrition, 2009, 101, 1150-1156.	2.3	72
56	Current Status of the Measurement of Blood Hepcidin Levels in Chronic Kidney Disease. Clinical Journal of the American Society of Nephrology: CJASN, 2010, 5, 1681-1689.	4.5	72
57	Tripodal tris(hydroxypyridinone) ligands for immunoconjugate PET imaging with ⁸⁹ Zr ⁴⁺ : comparison with desferrioxamine-B. Dalton Transactions, 2015, 44, 4884-4900.	3.3	72
58	Brain iron in the ferrocene-loaded rat: Its chelation and influence on dopamine metabolism. Biochemical Pharmacology, 1995, 49, 1821-1826.	4.4	71
59	Investigation into the correlation between the structure of hydroxypyridinones and blood–brain barrier permeability. Biochemical Pharmacology, 1999, 57, 1305-1310.	4.4	69
60	Design, Synthesis, and Evaluation of Novel 2-Substituted 3-Hydroxypyridin-4-ones:Â Structureâ``Activity Investigation of Metalloenzyme Inhibition by Iron Chelators§. Journal of Medicinal Chemistry, 2002, 45, 631-639.	6.4	67
61	Iron chelators can protect against oxidative stress through ferryl heme reduction. Free Radical Biology and Medicine, 2008, 44, 264-273.	2.9	66
62	Preparation, antioxidant and antimicrobial evaluation of hydroxamated degraded polysaccharides from Enteromorpha prolifera. Food Chemistry, 2017, 237, 481-487.	8.2	65
63	Novel hydroxypyridinone derivatives containing an oxime ether moiety: Synthesis, inhibition on mushroom tyrosinase and application in anti-browning of fresh-cut apples. Food Chemistry, 2018, 242, 174-181.	8.2	65
64	Influence of non-enzymatic post-translation modifications on the ability of human serum albumin to bind iron. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 1449-1458.	2.3	64
65	Effects of piperine analogues on stimulation of melanocyte proliferation and melanocyte differentiation. Bioorganic and Medicinal Chemistry, 2004, 12, 1905-1920.	3.0	63
66	Chelation and determination of labile iron in primary hepatocytes by pyridinone fluorescent probes. Biochemical Journal, 2006, 395, 49-55.	3.7	63
67	Iron chelation as a potential therapy for neurodegenerative disease. Biochemical Society Transactions, 2008, 36, 1304-1308.	3.4	63
68	The Environment of the Lipoxygenase Iron Binding Site Explored with Novel Hydroxypyridinone Iron Chelators. Journal of Biological Chemistry, 1996, 271, 7965-7972.	3.4	62
69	Mechanisms for the shuttling of plasma non-transferrin-bound iron (NTBI) onto deferoxamine by deferiprone. Translational Research, 2010, 156, 55-67.	5.0	59
70	Tyrosine as a redox-active center in electron transfer to ferryl heme in globins. Free Radical Biology and Medicine, 2008, 44, 274-283.	2.9	58
71	The Design of Orally Active Iron Chelators. Annals of the New York Academy of Sciences, 2005, 1054, 141-154.	3.8	57
72	In vitro inhibition of bacterial growth by iron chelators. FEMS Microbiology Letters, 2011, 314, 107-111.	1.8	54

#	Article	IF	CITATIONS
73	Synthesis of 2-amido-3-hydroxypyridin-4(1H)-ones: novel iron chelators with enhanced pFe3+ values. Bioorganic and Medicinal Chemistry, 2001, 9, 563-573.	3.0	53
74	Hydroxypyridinone Journey into Metal Chelation. Chemical Reviews, 2018, 118, 7657-7701.	47.7	52
75	Oral ferrous sulphate leads to a marked increase in proâ€oxidant nontransferrinâ€bound iron. European Journal of Clinical Investigation, 2004, 34, 782-784.	3.4	51
76	A community-developed open-source computational ecosystem for big neuro data. Nature Methods, 2018, 15, 846-847.	19.0	51
77	Genetic epidemiology of induced CYP3A4 activity. Pharmacogenetics and Genomics, 2011, 21, 642-651.	1.5	50
78	Quantitation of hepcidin in serum using ultraâ€highâ€pressure liquid chromatography and a linear ion trap mass spectrometer. Rapid Communications in Mass Spectrometry, 2010, 24, 1251-1259.	1.5	49
79	Design and Synthesis of Hydroxypyridinone- <scp>l</scp> -phenylalanine Conjugates as Potential Tyrosinase Inhibitors. Journal of Agricultural and Food Chemistry, 2013, 61, 6597-6603.	5.2	49
80	Iron: Effect of Overload and Deficiency. Metal Ions in Life Sciences, 2013, 13, 229-294.	2.8	48
81	Hydroxypyridinone Chelators: From Iron Scavenging to Radiopharmaceuticals for PET Imaging with Gallium-68. International Journal of Molecular Sciences, 2017, 18, 116.	4.1	47
82	Model compounds for microbial iron-transport compounds. Part IV. Further solution chemistry and Mössbauer studies on iron(II) and iron(III) catechol complexes. Inorganica Chimica Acta, 1983, 80, 51-56.	2.4	46
83	Design of clinically useful macromolecular iron chelators. Journal of Pharmacy and Pharmacology, 2011, 63, 893-903.	2.4	46
84	Basic 3-hydroxypyridin-4-ones: Potential antimalarial agents. European Journal of Medicinal Chemistry, 2008, 43, 1035-1047.	5.5	45
85	Synthesis, physical–chemical characterisation and biological evaluation of novel 2-amido-3-hydroxypyridin-4(1H)-ones: Iron chelators with the potential for treating Alzheimer's disease. Bioorganic and Medicinal Chemistry, 2011, 19, 1285-1297.	3.0	45
86	Comparative Radical Scavenging Ability of Bidentate Iron(III) Chelators. Biochemical Pharmacology, 1998, 55, 1327-1332.	4.4	44
87	Iron Deficiency Impairs Intra-Hepatic Lymphocyte Mediated Immune Response. PLoS ONE, 2015, 10, e0136106.	2.5	44
88	Serum Iron Curves Can Be Used to Estimate Dietary Iron Bioavailability in Humans. Journal of Nutrition, 2006, 136, 1910-1914.	2.9	43
89	Synthesis of double-clickable functionalised graphene oxide for biological applications. Chemical Communications, 2015, 51, 14981-14984.	4.1	43
90	Design and synthesis of novel hydroxypyridinone derivatives as potential tyrosinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3103-3108.	2.2	43

#	Article	IF	CITATIONS
91	Relevant activities of extracts and constituents of animals used in traditional Chinese medicine for central nervous system effects associated with Alzheimer's disease. Journal of Pharmacy and Pharmacology, 2010, 58, 989-996.	2.4	42
92	Non-Transferrin-Bound Iron (NTBI) Uptake by T Lymphocytes: Evidence for the Selective Acquisition of Oligomeric Ferric Citrate Species. PLoS ONE, 2013, 8, e79870.	2.5	42
93	Novel Hyaluronic Acid Conjugates for Dual Nuclear Imaging and Therapy in CD44-Expressing Tumors in Mice <i>In Vivo</i> . Nanotheranostics, 2017, 1, 59-79.	5.2	42
94	Quantification of hepcidin using matrixâ€assisted laser desorption/ionization timeâ€ofâ€flight mass spectrometry. Rapid Communications in Mass Spectrometry, 2009, 23, 1531-1542.	1.5	41
95	Domain preference in iron removal from human transferrin by the bacterial siderophores aerobactin and enterochelin. FEBS Journal, 1988, 178, 477-481.	0.2	40
96	Identification of a new hexadentate iron chelator capable of restricting the intramacrophagic growth of Mycobacterium avium. Microbes and Infection, 2010, 12, 287-294.	1.9	40
97	Quantitation of hepcidin in human urine by liquid chromatography–mass spectrometry. Analytical Biochemistry, 2009, 384, 245-253.	2.4	39
98	Potential protection from toxicity by oral iron chelators. Toxicology Letters, 1995, 82-83, 961-967.	0.8	38
99	Chromatographic Method for the Determination of Non-Transferrin-Bound Iron Suitable for Use on the Plasma and Bronchoalveolar Lavage Fluid of Preterm Babies. Clinical Science, 1996, 91, 633-638.	4.3	38
100	The labile iron pool of hepatocytes in chronic and acute iron overload and chelator-induced iron deprivation. Journal of Hepatology, 2002, 36, 39-46.	3.7	38
101	Design and characterisation of novel hexadentate 3-hydroxypyridin-4-one ligands. Tetrahedron Letters, 2005, 46, 1333-1336.	1.4	38
102	Amides from Piper nigrum L. with dissimilar effects on melanocyte proliferation in-vitro. Journal of Pharmacy and Pharmacology, 2010, 59, 529-536.	2.4	38
103	Fluorescent 3-hydroxy-4-pyridinone hexadentate iron chelators: intracellular distribution and the relevance to antimycobacterial properties. Journal of Biological Inorganic Chemistry, 2010, 15, 861-877.	2.6	38
104	Hexadentate 3-hydroxypyridin-4-ones with high iron(III) affinity: Design, synthesis and inhibition on methicillin resistant Staphylococcus aureus and Pseudomonas strains. European Journal of Medicinal Chemistry, 2015, 94, 8-21.	5.5	38
105	Synthesis and Iron(III)-Chelating Properties of Novel 3-Hydroxypyridin-4-one Hexadentate Ligand-Containing Copolymers. Biomacromolecules, 2008, 9, 1372-1380.	5.4	37
106	Monitoring intracellular labile iron pools: A novel fluorescent iron(iii) sensor as a potential non-invasive diagnosis tool. Journal of Pharmaceutical Sciences, 2009, 98, 2212-2226.	3.3	37
107	Incorporation of 2,3â€Diaminopropionic Acid into Linear Cationic Amphipathic Peptides Produces pHâ€Sensitive Vectors. ChemBioChem, 2010, 11, 1266-1272.	2.6	36
108	Iron mobilization from transferrin by therapeutic iron chelating agents. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 282-290.	2.4	36

#	Article	IF	CITATIONS
109	Tryptic mapping of human chorionic gonadotropin by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 1995, 9, 1021-1026.	1.5	35
110	Synthesis, physico-chemical and iron(III)-chelating properties of novel hexadentate 3-hydroxy-2(1H)pyridinone ligands. Tetrahedron, 1999, 55, 1129-1142.	1.9	35
111	Solvent-Free Click-Mechanochemistry for the Preparation of Cancer Cell Targeting Graphene Oxide. ACS Applied Materials & Interfaces, 2015, 7, 18920-18923.	8.0	35
112	Structural Analysis of Cytochrome P450 105N1 Involved in the Biosynthesis of the Zincophore, Coelibactin. International Journal of Molecular Sciences, 2012, 13, 8500-8513.	4.1	34
113	Synthesis, physico-chemical properties, and antimicrobial evaluation of a new series of iron(III) hexadentate chelators. Medicinal Chemistry Research, 2013, 22, 2351-2359.	2.4	34
114	Diminishing biofilm resistance to antimicrobial nanomaterials through electrolyte screening of electrostatic interactions. Colloids and Surfaces B: Biointerfaces, 2019, 173, 392-399.	5.0	34
115	Lessons from Preclinical and Clinical Studies with 1,2-Diethyl-3-Hydroxypyridin-4-One, CP94 and Related Compounds. Advances in Experimental Medicine and Biology, 1994, 356, 361-370.	1.6	34
116	Dissociation of a ferric maltol complex and its subsequent metabolism during absorption across the small intestine of the rat. British Journal of Pharmacology, 1991, 102, 723-729.	5.4	33
117	Flow cytometric assessment of hydroxypyridinone iron chelators on in vitro growth of drug-resistant malaria. , 1997, 27, 84-91.		33
118	Structure-Function Investigation of the Interaction of 1- and 2-Substituted 3-Hydroxypyridin-4-ones with 5-Lipoxygenase and Ribonucleotide Reductase. Journal of Biological Chemistry, 2001, 276, 48814-48822.	3.4	33
119	The Fenton Activity of Iron(III) in the Presence of Deferiprone. Journal of Pharmaceutical Sciences, 2008, 97, 1454-1467.	3.3	33
120	The importance of reductive mechanisms for intestinal uptake of iron from ferric maltol and ferric nitrilotriacetic acid (NTA). Journal of Pharmacy and Pharmacology, 2011, 42, 279-282.	2.4	33
121	A Novel Inhibitor Against Mushroom Tyrosinase with a Double Action Mode and Its Application in Controlling the Browning of Potato. Food and Bioprocess Technology, 2017, 10, 2146-2155.	4.7	33
122	Synthesis, iron(III)-binding affinity and in vitro evaluation of 3-hydroxypyridin-4-one hexadentate ligands as potential antimicrobial agents. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 6376-6380.	2.2	32
123	Copper(II) binding properties of hepcidin. Journal of Biological Inorganic Chemistry, 2016, 21, 329-338.	2.6	32
124	Characteristics of iron(III) uptake by isolated fragments of rat small intestine in the presence of the hydroxypyrones, maltol and ethyl maltol. Biochemical Pharmacology, 1988, 37, 2051-2057.	4.4	31
125	L-(6,7-dimethoxy-4-coumaryl) alanine: an intrinsic probe for the labelling of peptides. Tetrahedron Letters, 1997, 38, 7449-7452.	1.4	31
126	Amidoâ€3â€hydroxypyridinâ€4â€ones as Iron(III) Ligands. Chemistry - A European Journal, 2010, 16, 6374-6381.	3.3	31

#	Article	IF	CITATIONS
127	Organic Solvent-Free, One-Step Engineering of Graphene-Based Magnetic-Responsive Hybrids Using Design of Experiment-Driven Mechanochemistry. ACS Applied Materials & Interfaces, 2015, 7, 14176-14181.	8.0	31
128	Siderophore iron-release mechanisms. Journal of the American Chemical Society, 1984, 106, 6983-6987.	13.7	30
129	Synthesis, physicochemical properties and biological evaluation of ester prodrugs of 3-hydroxypyridin-4-ones: design of orally active chelators with clinical potential. European Journal of Medicinal Chemistry, 1999, 34, 475-485.	5.5	30
130	Chelator-facilitated removal of iron from transferrin: relevance to combined chelation therapy. Biochemical Journal, 2008, 409, 439-447.	3.7	30
131	Systematic comparison of the mono-, dimethyl- and trimethyl 3-hydroxy-4(1H)-pyridones – Attempted optimization of the orally active iron chelator, deferiprone. European Journal of Medicinal Chemistry, 2016, 115, 132-140.	5.5	30
132	Structure–stability relationships of 3-hydroxypyridin-4-one complexes. Journal of the Chemical Society Dalton Transactions, 1992, , 3265-3271.	1.1	29
133	The design and properties of 3-hydroxypyridin-4-one iron chelators with high pFe3+ values. Transfusion Science, 2000, 23, 201-209.	0.6	29
134	Iron requirements based upon iron absorption tests are poorly predicted by haematological indices in patients with inactive inflammatory bowel disease. British Journal of Nutrition, 2012, 107, 1806-1811.	2.3	29
135	Edible Antimicrobial Coating Incorporating a Polymeric Iron Chelator and Its Application in the Preservation of Surimi Product. Food and Bioprocess Technology, 2016, 9, 1031-1039.	4.7	29
136	Hydroxypyridinone and 5-Aminolaevulinic Acid Conjugates for Photodynamic Therapy. Journal of Medicinal Chemistry, 2017, 60, 3498-3510.	6.4	28
137	Intravenous iron preparations transiently generate non-transferrin-bound iron from two proposed pathways. Haematologica, 2021, 106, 2885-2896.	3.5	28
138	Design and Synthesis of Fluorinated Iron Chelators for Metabolic Study and Brain Uptake. Journal of Medicinal Chemistry, 2012, 55, 2185-2195.	6.4	27
139	A novel method for non-transferrin-bound iron quantification by chelatable fluorescent beads based on flow cytometry. Biochemical Journal, 2014, 463, 351-362.	3.7	27
140	<i>In vitro</i> antimicrobial activity of hydroxypyridinone hexadentate-based dendrimeric chelators alone and in combination with norfloxacin. FEMS Microbiology Letters, 2014, 355, 124-130.	1.8	27
141	Design, Synthesis, and Antimicrobial Evaluation of Hexadentate Hydroxypyridinones with High Iron(<scp>III</scp>) Affinity. Chemical Biology and Drug Design, 2014, 84, 659-668.	3.2	27
142	Antimicrobial and antioxidant effects of a hydroxypyridinone derivative containing an oxime ether moiety and its application in shrimp preservation. Food Control, 2019, 95, 157-164.	5.5	25
143	The Efficacy of Iron Chelators for Removing Iron from Specific Brain Regions and the Pituitary—Ironing out the Brain. Pharmaceuticals, 2019, 12, 138.	3.8	25
144	Design and synthesis of novel stilbene-hydroxypyridinone hybrids as tyrosinase inhibitors and their application in the anti-browning of freshly-cut apples. Food Chemistry, 2022, 385, 132730.	8.2	25

#	Article	IF	CITATIONS
145	Protoporphyria Induced by the Orally Active Iron Chelator 1,2-diethyl-3-hydroxypyridin-4-one in C57BL/10ScSn Mice. Blood, 1997, 89, 1045-1051.	1.4	24
146	Novel synthetic approach to 2-(1′-hydroxyalkyl)- and 2-amido-3-hydroxypyridin-4-ones. Tetrahedron, 2001, 57, 3479-3486.	1.9	24
147	Design, synthesis and biological evaluation of l-dopa amide derivatives as potential prodrugs for the treatment of Parkinson's disease. European Journal of Medicinal Chemistry, 2010, 45, 4035-4042.	5.5	24
148	Conjugation to 4-aminoquinoline improves the anti-trypanosomal activity of Deferiprone-type iron chelators. Bioorganic and Medicinal Chemistry, 2013, 21, 805-813.	3.0	24
149	Novel 3-hydroxypyridin-4-one hexadentate ligand-based polymeric iron chelator: synthesis, characterization and antimicrobial evaluation. MedChemComm, 2015, 6, 1620-1625.	3.4	24
150	Tuning the properties of tris(hydroxypyridinone) ligands: efficient ⁶⁸ Ga chelators for PET imaging. Dalton Transactions, 2019, 48, 4299-4313.	3.3	24
151	Novel orally active iron chelators (3-hydroxypyridin-4-ones) enhance the biliary excretion of plasma non-transferrin-bound iron in rats. Journal of Hepatology, 1997, 27, 176-184.	3.7	23
152	Speciation of Fe(III)-chelate complexes by electrospray ionization ion trap and laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry. Rapid Communications in Mass Spectrometry, 2002, 16, 1556-1561.	1.5	23
153	The Treatment of Malaria with Iron Chelators. Journal of Pharmacy and Pharmacology, 2011, 49, 59-64.	2.4	23
154	Novel Multifunctional Hydroxypyridinone Derivatives as Potential Shrimp Preservatives. Food and Bioprocess Technology, 2016, 9, 1079-1088.	4.7	23
155	Dual selective iron chelating probes with a potential to monitor mitochondrial labile iron pools. Chemical Communications, 2016, 52, 784-787.	4.1	23
156	In vivo iron mobilisation evaluation of hydroxypyridinones in 59Fe-ferritin-loaded rat model. Biochemical Pharmacology, 1999, 57, 559-566.	4.4	22
157	Structure–activity investigation of the inhibition of 3-hydroxypyridin-4-ones on mammalian tyrosine hydroxylase. Biochemical Pharmacology, 2001, 61, 285-290.	4.4	22
158	Synthesis, Physicochemical Properties and Biological Evaluation of Aromatic Ester Prodrugs of 1-(2â€~-Hydroxyethyl)-2-ethyl-3-hydroxypyridin-4-one (CP102): Orally Active Iron Chelators with Clinical Potential. Journal of Pharmacy and Pharmacology, 2010, 51, 555-564.	2.4	22
159	Induction of hypoxia inducible factor (HIF-1α) in rat kidneys by iron chelation with the hydroxypyridinone, CP94. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2011, 1809, 262-268.	1.9	22
160	Iron in biology. Metallomics, 2017, 9, 1467-1469.	2.4	22
161	Synthesis and Antiviral Evaluation of Cyclic and Acyclic 2-Methyl-3-hydroxy-4-pyridinone Nucleoside Derivatives. Journal of Medicinal Chemistry, 2006, 49, 43-50.	6.4	21
162	Design, synthesis and properties of novel iron(III)-specific fluorescent probes. Journal of Pharmacy and Pharmacology, 2010, 56, 529-536.	2.4	21

#	Article	IF	CITATIONS
163	Proteinâ€Coronaâ€byâ€Design in 2D: A Reliable Platform to Decode Bio–Nano Interactions for the Nextâ€Generation Qualityâ€byâ€Design Nanomedicines. Advanced Materials, 2018, 30, e1802732.	21.0	21
164	Oral iron chelators – development and application. Best Practice and Research in Clinical Haematology, 2002, 15, 369-384.	1.7	20
165	Novel iron-specific fluorescent probes. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 3450-3452.	2.2	20
166	High affinity iron(III) scavenging by a novel hexadentate 3-hydroxypyridin-4-one-based dendrimer: Synthesis and characterization. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 5007-5011.	2.2	20
167	UV Irradiation Affects Melanocyte Stimulatory Activity and Protein Binding of Piperine. Photochemistry and Photobiology, 2006, 82, 1541-1548.	2.5	20
168	A Powerful Mitochondria-Targeted Iron Chelator Affords High Photoprotection against Solar Ultraviolet A Radiation. Journal of Investigative Dermatology, 2016, 136, 1692-1700.	0.7	20
169	CN128: A New Orally Active Hydroxypyridinone Iron Chelator. Journal of Medicinal Chemistry, 2020, 63, 4215-4226.	6.4	20
170	The Role of GSH in Intracellular Iron Trafficking. International Journal of Molecular Sciences, 2021, 22, 1278.	4.1	20
171	Competition or complementation: the ironâ€chelating abilities of nicotianamine and phytosiderophores. New Phytologist, 2004, 164, 204-208.	7.3	19
172	A novel fluorescence method for determination of pFe ³ ⁺ . Analyst, The, 2013, 138, 96-99.	3.5	19
173	3â€Hydroxypyridinoneâ€ <scp>l</scp> â€phenylalanine conjugates with antimicrobial and tyrosinase inhibitory activities as potential shrimp preservatives. International Journal of Food Science and Technology, 2014, 49, 797-803.	2.7	19
174	Characterisation of a novel oral iron chelator: 1-(N-Acetyl-6-Aminohexyl)-3-Hydroxy-2-Methylpyridin-4-one. Journal of Pharmacy and Pharmacology, 2015, 67, 703-713.	2.4	19
175	Competition between iron(III)-selective chelators and zinc-finger domains for zinc(II). Biochemical Pharmacology, 1999, 57, 1031-1035.	4.4	18
176	Glucosylated Deferiprone and Its Brain Uptake: Implications for Developing Glucosylated Hydroxypyridinone Analogues Intended to Cross the Bloodâ^'Brain Barrier. Journal of Medicinal Chemistry, 2010, 53, 5886-5889.	6.4	18
177	Residual erythropoiesis protects against myocardial hemosiderosis in transfusion-dependent thalassemia by lowering labile plasma iron via transient generation of apotransferrin. Haematologica, 2017, 102, 1640-1649.	3.5	18
178	Prediction of Absolute Hydroxyl p <i>K</i> _a Values for 3-Hydroxypyridin-4-ones. Journal of Physical Chemistry Letters, 2012, 3, 2980-2985.	4.6	17
179	Deferitazole, a new orally active iron chelator. Dalton Transactions, 2015, 44, 5197-5204.	3.3	17
180	Clinical and methodological factors affecting non-transferrin-bound iron values using a novel fluorescent bead assay. Translational Research, 2016, 177, 19-30.e5.	5.0	17

#	Article	IF	CITATIONS
181	Iron mobilization, cytoprotection, and inhibition of cell proliferation in normal and transformed rat hepatocyte cultures by the hydroxypyridinone CP411, compared to CP20: a biological and physicochemical study. Biochemical Pharmacology, 2004, 67, 1479-1487.	4.4	16
182	The selective quantification of iron by hexadentate fluorescent probes. Bioorganic and Medicinal Chemistry, 2009, 17, 8093-8101.	3.0	16
183	The role of mitochondrial labile iron in Friedreich's ataxia skin fibroblasts sensitivity to ultraviolet A. Metallomics, 2019, 11, 656-665.	2.4	16
184	Oral iron chelators – development and application. Best Practice and Research in Clinical Haematology, 2002, 15, 369-384.	1.7	16
185	The Brain Observatory Storage Service and Database (BossDB): A Cloud-Native Approach for Petascale Neuroscience Discovery. Frontiers in Neuroinformatics, 2022, 16, 828787.	2.5	16
186	Determination of the Labile Iron Pool of Human Lymphocytes using the Fluorescent Probe, CP655. Analytical Chemistry Insights, 2007, 2, 117739010700200.	2.7	15
187	Charge States of Deferasirox–Ferric Iron Complexes. American Journal of Kidney Diseases, 2010, 55, 614-615.	1.9	15
188	Prediction of 3-hydroxypyridin-4-one (HPO) hydroxyl pKa values. Dalton Transactions, 2012, 41, 6549.	3.3	15
189	Synthesis and in-vitro antimicrobial evaluation of a high-affinity iron chelator in combination with chloramphenicol. Journal of Pharmacy and Pharmacology, 2013, 65, 512-520.	2.4	15
190	Design of novel fluorescent mitochondria-targeted peptides with iron-selective sensing activity. Biochemical Journal, 2015, 469, 357-366.	3.7	15
191	Design, synthesis and biological evaluation of 5-aminolaevulinic acid/3-hydroxypyridinone conjugates as potential photodynamic therapeutical agents. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 558-561.	2.2	15
192	Design of Bifunctional Dendritic 5-Aminolevulinic Acid and Hydroxypyridinone Conjugates for Photodynamic Therapy. Bioconjugate Chemistry, 2018, 29, 3411-3428.	3.6	15
193	Synthesis and iron chelating properties of hydroxypyridinone and hydroxypyranone hexadentate ligands. Dalton Transactions, 2019, 48, 3459-3466.	3.3	15
194	Synthesis and physicochemical assessment of novel 2-substituted 3-hydroxypyridin-4-ones, novel iron chelators. Journal of Pharmacy and Pharmacology, 2010, 54, 349-364.	2.4	14
195	Ga(III) complexes—The effect of metal coordination on potential systemic absorption after topical exposure. Toxicology Letters, 2011, 202, 155-160.	0.8	14
196	Synthesis and characterizations of pyridazine-based iron chelators. Dalton Transactions, 2014, 43, 17120-17128.	3.3	14
197	Mode of iron(<scp>iii</scp>) chelation by hexadentate hydroxypyridinones. Chemical Communications, 2015, 51, 5614-5617.	4.1	14
198	The interaction of pyridoxal isonicotinoyl hydrazone (PIH) and salicylaldehyde isonicotinoyl hydrazone (SIH) with iron. Journal of Inorganic Biochemistry, 2018, 180, 194-203.	3.5	14

#	Article	IF	CITATIONS
199	Effectiveness of the Iron Chelator CN128 in Mitigating the Formation of Dopamine Oxidation Products Associated with the Progression of Parkinson's Disease. ACS Chemical Neuroscience, 2020, 11, 3646-3657.	3.5	14
200	Synthesis and Properties of (6,7-Dimethoxy-4-coumaryl)alanine: A Fluorescent Peptide Label. Analytical Biochemistry, 1999, 270, 15-23.	2.4	13
201	Structural characterization of chelator-terminated dendrimers and their synthetic intermediates by mass spectrometry. Journal of Mass Spectrometry, 2005, 40, 1203-1214.	1.6	13
202	Post-prandial iron absorption in humans: Comparison between HFE genotypes and iron deficiency anaemia. Clinical Nutrition, 2008, 27, 258-263.	5.0	13
203	Design and synthesis of fluorine-substituted 3-hydroxypyridin-4-ones. Tetrahedron Letters, 2010, 51, 5230-5233.	1.4	13
204	Design, Synthesis and Evaluation of N-Basic Substituted 3-Hydroxypyridin-4-ones: Orally Active Iron Chelators with Lysosomotrophic Potential. Journal of Pharmacy and Pharmacology, 2010, 52, 263-272.	2.4	13
205	Prediction of 3-hydroxypyridin-4-one (HPO) log K1 values for Fe(iii). Dalton Transactions, 2012, 41, 10784.	3.3	13
206	Recent Developments Centered on Orally Active Iron Chelators. Thalassemia Reports, 2014, 4, 2261.	0.5	13
207	Synthesis, iron binding and antimicrobial properties of hexadentate 3-hydroxypyridinones-terminated dendrimers. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2504-2512.	2.2	13
208	Spectrophotometric competition study between molybdate and Fe(III) hydroxide onN,N?-bis(2,3-dihydroxybenzoyl)-l-lysine, a naturally occurring siderophore synthesized byAzotobacter vinelandii. BioMetals, 1996, 9, 245-248.	4.1	12
209	Iron(III)-selective dendritic chelators. Tetrahedron Letters, 2004, 45, 9393-9396.	1.4	12
210	Design and synthesis of 5-aminolaevulinic acid/3-hydroxypyridinone conjugates for photodynamic therapy: enhancement of protoporphyrin IX production and photo-toxicity in tumor cells. MedChemComm, 2016, 7, 1190-1196.	3.4	12
211	A poly(vinyl alcohol) nanoparticle platform for kinetic studies of inhaled particles. Inhalation Toxicology, 2009, 21, 631-640.	1.6	11
212	The effect of <scp><i>Banisteriopsis caapi</i></scp> (<scp><i>B.Âcaapi</i></scp>) on the motor deficits in the MPTPâ€ŧreated common marmoset model of Parkinson's disease. Phytotherapy Research, 2018, 32, 678-687.	5.8	11
213	Ion-Pairing with Spermine Targets Theophylline To the Lungs via the Polyamine Transport System. Molecular Pharmaceutics, 2018, 15, 861-870.	4.6	11
214	A Simple Metal-Free Cyclization for the Synthesis of 4-Methylene-3-Substituted Quinazolinone and Quinazolinthione Derivatives: Experiment and Theory. Frontiers in Chemistry, 2019, 7, 584.	3.6	11
215	Functionality study of chalcone-hydroxypyridinone hybrids as tyrosinase inhibitors and influence on anti-tyrosinase activity. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 1562-1567.	5.2	11
216	Glutathione and the intracellular labile heme pool. BioMetals, 2021, 34, 221-228.	4.1	11

#	Article	IF	CITATIONS
217	RELEASE OF REDOX-ACTIVE IRON BY MUSCLE CRUSH TRAUMA. Shock, 2010, 33, 513-518.	2.1	11
218	Synthesis and antiviral evaluation of 3-hydroxy-2-methylpyridin-4-one dideoxynucleoside derivatives. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 4371-4374.	2.2	10
219	Design, synthesis and biological evaluation of peptide derivatives of l-dopa as anti-parkinsonian agents. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5279-5282.	2.2	10
220	Hydrolytic and Metabolic Characteristics of the Esters of1-(3'-Hydroxypropyl)-2-methyl-3-hydroxypyridin-4-one (CP41), Potentially Useful Iron Chelators. Basic and Clinical Pharmacology and Toxicology, 2000, 86, 228-233.	0.0	10
221	3-Hydroxy-2-(5-hydroxypentyl)-4H-chromen-4-one:  A Bidentate or Tridentate Iron(III) Ligand?. Journal of Medicinal Chemistry, 2006, 49, 3028-3031.	6.4	9
222	Macromolecular iron-chelators via RAFT-polymerization for the inhibition of methicillin-resistant Staphylococcus aureus growth. Polymer, 2016, 87, 64-72.	3.8	9
223	Soft, adhesive (+) alpha tocopherol phosphate planar bilayers that control oral biofilm growth through a substantive antimicrobial effect. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2307-2316.	3.3	9
224	Enzymatic characteristics of polyphenoloxidase from shrimp (Penaeus vannamei) and its inhibition by a novel hydroxypyridinone derivative. Food Science and Biotechnology, 2019, 28, 1047-1055.	2.6	9
225	PH Indicator Titration: A Novel Fast PKA Determination Method. Journal of Pharmaceutical Sciences, 2007, 96, 2777-2783.	3.3	8
226	The binding of aluminum to mugineic acid and related compounds as studied by potentiometric titration. BioMetals, 2011, 24, 723-727.	4.1	8
227	Cytotoxicity of Fenugreek Sprout and Seed Extracts and Their Bioactive Constituents on MCF-7 Breast Cancer Cells. Nutrients, 2022, 14, 784.	4.1	8
228	Gradient ion-pair high-performance liquid chromatographic method for analysis of 3-hydroxypyridin-4-one iron chelators. Biomedical Applications, 1999, 730, 135-139.	1.7	7
229	6-Alkoxymethyl-3-hydroxy-4H-pyranones: potential ligands for cell-labelling with indium. European Journal of Nuclear Medicine and Molecular Imaging, 1999, 26, 1400-1406.	6.4	7
230	Iron-chelating and anti-lipid peroxidation properties of 1-(N-acetyl-6-aminohexyl)-3-hydroxy-2-methylpyridin-4-one (CM1) in long-term iron loading β-thalassemic mice. Asian Pacific Journal of Tropical Biomedicine, 2014, 4, 663-668.	1.2	7
231	Synthesis, characterisation and quantum chemical studies of a new series of iron chelatable fluorescent sensors. Molecular Physics, 2019, 117, 661-671.	1.7	7
232	Characterization of two siderophores produced by Bacillus megaterium: A preliminary investigation into their potential as therapeutic agents. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129670.	2.4	7
233	Iron Chelator Chemistry. Advances in Experimental Medicine and Biology, 2002, 509, 141-166.	1.6	7
234	The synthesis and properties of mitochondrial targeted iron chelators. BioMetals, 2023, 36, 321-337.	4.1	7

#	Article	IF	CITATIONS
235	Synthesis and structure of the <i>N</i> â€alkylâ€2,6â€dimethylâ€4â€oxopyridineâ€3â€carboxylic acids. Journal of Heterocyclic Chemistry, 1993, 30, 723-737.	2.6	6
236	Functional Characterization of Fluorescent Hepcidin. Bioconjugate Chemistry, 2013, 24, 1527-1532.	3.6	6
237	pFe ³⁺ determination of multidentate ligands by a fluorescence assay. Analyst, The, 2015, 140, 3603-3606.	3.5	6
238	Synthesis and characterization of novel iron-specific bicyclic fluorescent probes. Sensors and Actuators B: Chemical, 2015, 213, 12-19.	7.8	6
239	Using Salt Counterions to Modify β ₂ -Agonist Behavior <i>in Vivo</i> . Molecular Pharmaceutics, 2016, 13, 3439-3448.	4.6	6
240	Bismuth(III) interactions with Desulfovibrio desulfuricans: inhibition of cell energetics and nanocrystal formation of Bi2S3 and Bi0. BioMetals, 2019, 32, 803-811.	4.1	6
241	MALDI mass spectrometric determination of dendritic iron chelation stoichiometries and conditional affinity constants. Journal of Mass Spectrometry, 2008, 43, 617-622.	1.6	5
242	SPD602 Is a Selective Iron Chelator Which Is Able To Mobilise The Non-Transferrin-Bound Iron Pool. Blood, 2013, 122, 1673-1673.	1.4	5
243	Determination of the labile iron pool of human lymphocytes using the fluorescent probe, CP655. Analytical Chemistry Insights, 2007, 2, 61-7.	2.7	5
244	UV Irradiation Affects Melanocyte Stimulatory Activity and Protein Binding of Piperine. Photochemistry and Photobiology, 2006, 82, 1541.	2.5	4
245	5-Hydroxypyran-4-one derivatives as potential therapeutic iron-chelating agents. ChemistrySelect, 2016, 1, 297-300.	1.5	4
246	Bismuth(III) deferiprone effectively inhibits growth of Desulfovibrio desulfuricans ATCC 27774. BioMetals, 2016, 29, 311-319.	4.1	4
247	Synthesis and iron coordination properties of schizokinen and its imide derivative. Dalton Transactions, 2019, 48, 17395-17401.	3.3	4
248	Synthesis of polymers containing 3-hydroxypyridin-4-one bidentate ligands for treatment of iron overload. Research in Pharmaceutical Sciences, 2015, 10, 364-77.	1.8	4
249	Antioxidant and antiâ€ŧyrosinase activity of a novel stilbene analogue as an antiâ€browning agent. Journal of the Science of Food and Agriculture, 2022, 102, 3817-3825.	3.5	4
250	An Integrated Toolkit for Extensible and Reproducible Neuroscience. , 2021, 2021, 2413-2418.		4
251	Siderophores. , 2004, , 1278-1290.		3
252	Synthesis of 5-benzyloxy-1,4-dihydro-6-methyl-4-oxopyridine-3-carbaldehyde by aerobic oxidation of the 5-dimethylaminomethyl analogue: optimisation of the reaction conditions. Tetrahedron Letters, 2010, 51, 1415-1418.	1.4	3

#	Article	IF	CITATIONS
253	Coordination chemistry of a bis(3-hydroxypyran-4-one) with iron and copper. Journal of Coordination Chemistry, 2013, 66, 2957-2969.	2.2	3
254	The Synthesis of 5-Functional 3-Hydroxypyridin-4-ones and Their Impact on the Chelating Properties of the Ligands. Chemistry Letters, 2015, 44, 515-517.	1.3	3
255	Design and synthesis of novel pegylated iron chelators with decreased metabolic rate. Future Medicinal Chemistry, 2015, 7, 2439-2449.	2.3	3
256	Iron and zinc sensing in cells and the body. Metallomics, 2015, 7, 200-201.	2.4	3
257	Novel synthetic approach to fluoro- and amido-disubstituted 3-hydroxypyridin-4-ones. Journal of Fluorine Chemistry, 2015, 173, 29-34.	1.7	3
258	Synthesis and characterization of methyl substituted 3-hydroxypyridin-4-ones and their complexes with iron(III). Canadian Journal of Chemistry, 2018, 96, 293-298.	1.1	3
259	Dipeptide inhibitors of the prostate specific membrane antigen (PSMA): A comparison of urea and thiourea derivatives. Bioorganic and Medicinal Chemistry Letters, 2021, 42, 128044.	2.2	3
260	Computer-aided modelling of the structures and metal-ion affinities of chelating agents. Biochemical Society Transactions, 1988, 16, 835-836.	3.4	2
261	Targeting macrophages and their recruitment in the oral cavity using swellable (+) alpha tocopheryl phosphate nanostructures. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 21, 102010.	3.3	2
262	HPO iron chelator, CP655, causes the G1/S phase cell cycle block via p21 upregulation. Immunity, Inflammation and Disease, 2020, 8, 568-583.	2.7	2
263	Disease Specific Modulation of Serum Hepcidin: Impact of GDF-15 and Iron Metabolism Markers in Thalassemia Major, Thalassemia Intermedia and Sickle Cell Disease: A Univariate and Multivariate Analysis Blood, 2008, 112, 3850-3850.	1.4	2
264	A Novel Stilbene Analogue: Antioxidant Activity and Application in Controlling the Quality and Bacterial Growth of Shrimp Refrigerated at 4ºC. Journal of Aquatic Food Product Technology, 2022, 31, 214-225.	1.4	2
265	Overview Anti-infectives: The treatment of malaria with iron chelators. Expert Opinion on Therapeutic Patents, 1994, 4, 931-940.	5.0	1
266	Purity of commercial morin products and their spectrophotometric characterisation Bunseki Kagaku, 2002, 51, 979-982.	0.2	1
267	The Properties of Therapeutically Useful Iron Chelators. , 2012, , 567-590.		1
268	Basic Principles of Metal Chelation and Chelator Design. 2-Oxoglutarate-Dependent Oxygenases, 2016, , 24-55.	0.8	1
269	Management of iron overload in anaemia. Journal of Pharmacy and Pharmacology, 2011, 50, 24-24.	2.4	0
270	Solid-Phase Synthesis and In-Silico Analysis of Iron-Binding Catecholato Chelators. International Journal of Molecular Sciences, 2020, 21, 7498.	4.1	0

#	Article	IF	CITATIONS
271	Response to Cabantchik and Hershko commentary "Plasma nontransferrin bound iron–nontransferrin bound iron revisited: Implications for systemic iron overload and in iv iron supplementationâ€: American Journal of Hematology, 2022, 97, .	4.1	0