Rod A Wing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/781751/publications.pdf Version: 2024-02-01

ROD A WINC

#	Article	IF	CITATIONS
1	Rice domestication. Current Biology, 2022, 32, R20-R24.	3.9	14
2	Genome assembly of the JD17 soybean provides a new reference genome for comparative genomics. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	7
3	Long-read genome sequencing of bread wheat facilitates disease resistance gene cloning. Nature Genetics, 2022, 54, 227-231.	21.4	63
4	Gene fusion as an important mechanism to generate new genes in the genus Oryza. Genome Biology, 2022, 23, .	8.8	7
5	A chromosomeâ€scale assembly of allotetraploid <i>Brassica juncea</i> (AABB) elucidates comparative architecture of the A and B genomes. Plant Biotechnology Journal, 2021, 19, 602-614.	8.3	62
6	Evolution and diversification of reproductive phased small interfering RNAs in Oryza species. New Phytologist, 2021, 229, 2970-2983.	7.3	12
7	Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. Nature, 2021, 590, 438-444.	27.8	144
8	A route to de novo domestication of wild allotetraploid rice. Cell, 2021, 184, 1156-1170.e14.	28.9	259
9	The chromosomeâ€scale reference genome of safflower (<i>Carthamus tinctorius</i>) provides insights into linoleic acid and flavonoid biosynthesis. Plant Biotechnology Journal, 2021, 19, 1725-1742.	8.3	60
10	Starch Synthesis-Related Genes (SSRG) Evolution in the Genus Oryza. Plants, 2021, 10, 1057.	3.5	0
11	Two gap-free reference genomes and a global view of the centromere architecture in rice. Molecular Plant, 2021, 14, 1757-1767.	8.3	133
12	Potential of Platinum Standard Reference Genomes to Exploit Natural Variation in the Wild Relatives of Rice. Frontiers in Plant Science, 2020, 11, 579980.	3.6	15
13	A genome assembly and the somatic genetic and epigenetic mutation rate in a wild long-lived perennial Populus trichocarpa. Genome Biology, 2020, 21, 259.	8.8	68
14	Initial data release and announcement of the 10,000 Fish Genomes Project (Fish10K). GigaScience, 2020, 9, .	6.4	47
15	Evolution and diversity of the wild rice Oryza officinalis complex, across continents genome types, and ploidy levels. Genome Biology and Evolution, 2020, 12, 413-428.	2.5	17
16	Evolutionary Dynamics of Abundant 7-bp Satellites in the Genome of <i>Drosophila virilis</i> . Molecular Biology and Evolution, 2020, 37, 1362-1375.	8.9	23
17	A platinum standard pan-genome resource that represents the population structure of Asian rice. Scientific Data, 2020, 7, 113.	5.3	86
18	Mitochondrial plastid DNA can cause DNA barcoding paradox in plants. Scientific Reports, 2020, 10, 6112.	3.3	30

#	Article	IF	CITATIONS
19	Genome-wide association mapping of date palm fruit traits. Nature Communications, 2019, 10, 4680.	12.8	75
20	Functional screening of genes from a halophyte wild rice relative Porteresia coarctata in Arabidopsis model identifies candidate genes involved in salt tolerance. Current Plant Biology, 2019, 18, 100107.	4.7	14
21	Structural variants in 3000 rice genomes. Genome Research, 2019, 29, 870-880.	5.5	112
22	The Genomics of <i>Oryza</i> Species Provides Insights into Rice Domestication and Heterosis. Annual Review of Plant Biology, 2019, 70, 639-665.	18.7	80
23	Rapid evolution of protein diversity by de novo origination in Oryza. Nature Ecology and Evolution, 2019, 3, 679-690.	7.8	121
24	Genome sequence of the model rice variety KitaakeX. BMC Genomics, 2019, 20, 905.	2.8	59
25	Progress in single-access information systems for wheat and rice crop improvement. Briefings in Bioinformatics, 2019, 20, 565-571.	6.5	4
26	Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature, 2018, 557, 43-49.	27.8	1,091
27	Genome and evolution of the shadeâ€requiring medicinal herb <i>Panax ginseng</i> . Plant Biotechnology Journal, 2018, 16, 1904-1917.	8.3	136
28	Genotyping by sequencing of rice interspecific backcross inbred lines identifies QTLs for grain weight and grain length. Euphytica, 2018, 214, 1.	1.2	29
29	Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza. Nature Genetics, 2018, 50, 285-296.	21.4	413
30	Comparison of <i>Oryza sativa</i> and <i>Oryza brachyantha</i> Genomes Reveals Selection-Driven Gene Escape from the Centromeric Regions. Plant Cell, 2018, 30, 1729-1744.	6.6	22
31	Genetic control of seed shattering during African rice domestication. Nature Plants, 2018, 4, 331-337.	9.3	55
32	The rice genome revolution: from an ancient grain to Green Super Rice. Nature Reviews Genetics, 2018, 19, 505-517.	16.3	251
33	The rice paradox: Multiple origins but single domestication in Asian rice. Molecular Biology and Evolution, 2017, 34, msx049.	8.9	178
34	Aflatoxin-free transgenic maize using host-induced gene silencing. Science Advances, 2017, 3, e1602382.	10.3	88
35	Evolutionary analysis of the SUB1 locus across the Oryza genomes. Rice, 2017, 10, 4.	4.0	25
36	A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication. Nature Plants, 2017, 3, 17064.	9.3	133

#	Article	IF	CITATIONS
37	Young inversion with multiple linked QTLs under selection in a hybrid zone. Nature Ecology and Evolution, 2017, 1, 119.	7.8	94
38	The asparagus genome sheds light on the origin and evolution of a young Y chromosome. Nature Communications, 2017, 8, 1279.	12.8	240
39	Genetic variation for domestication-related traits revealed in a cultivated rice, Nipponbare (Oryza) Tj ETQq1 1 0.	784314 rg 2.1	gBT ₅ Overlock
40	Extensive gene tree discordance and hemiplasy shaped the genomes of North American columnar cacti. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12003-12008.	7.1	90
41	Sequencing of Australian wild rice genomes reveals ancestral relationships with domesticated rice. Plant Biotechnology Journal, 2017, 15, 765-774.	8.3	51
42	Rice SNP-seek database update: new SNPs, indels, and queries. Nucleic Acids Research, 2017, 45, D1075-D1081.	14.5	290
43	DNA methylation changes facilitated evolution of genes derived from Mutator-like transposable elements. Genome Biology, 2016, 17, 92.	8.8	14
44	The Dark Side of the Genome: Revealing the Native Transposable Element/Repeat Content of Eukaryotic Genomes. Molecular Plant, 2016, 9, 1664-1666.	8.3	4
45	Genome puzzle master (GPM): an integrated pipeline for building and editing pseudomolecules from fragmented sequences. Bioinformatics, 2016, 32, 3058-3064.	4.1	22
46	Extensive sequence divergence between the reference genomes of two elite <i>indica</i> rice varieties Zhenshan 97 and Minghui 63. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5163-71.	7.1	211
47	DNA transposon activity is associated with increased mutation rates in genes of rice and other grasses. Nature Communications, 2016, 7, 12790.	12.8	51
48	The Cardamine hirsuta genome offers insight into the evolution of morphological diversity. Nature Plants, 2016, 2, 16167.	9.3	90
49	Tracing ancestor rice of Suriname Maroons back to its African origin. Nature Plants, 2016, 2, 16149.	9.3	31
50	Building two indica rice reference genomes with PacBio long-read and Illumina paired-end sequencing data. Scientific Data, 2016, 3, 160076.	5.3	34
51	The impact and origin of copy number variations in the Oryza species. BMC Genomics, 2016, 17, 261.	2.8	30
52	Development and validation of cross-transferable and polymorphic DNA markers for detecting alien genome introgression in Oryza sativa from Oryza brachyantha. Molecular Genetics and Genomics, 2016, 291, 1783-1794.	2.1	10
53	Evolution of plant genome architecture. Genome Biology, 2016, 17, 37.	8.8	331
54	Genome and Comparative Transcriptomics of African Wild Rice Oryza longistaminata Provide Insights into Molecular Mechanism of Rhizomatousness and Self-Incompatibility. Molecular Plant, 2015, 8, 1683-1686.	8.3	49

#	Article	IF	CITATIONS
55	Complete chloroplast and ribosomal sequences for 30 accessions elucidate evolution of Oryza AA genome species. Scientific Reports, 2015, 5, 15655.	3.3	169
56	Red clover (Trifolium pratense L.) draft genome provides a platform for trait improvement. Scientific Reports, 2015, 5, 17394.	3.3	136
57	Recurrent sequence exchange between homeologous grass chromosomes. Plant Journal, 2015, 84, 747-759.	5.7	5
58	Transposons play an important role in the evolution and diversification of centromeres among closely related species. Frontiers in Plant Science, 2015, 6, 216.	3.6	51
59	Exceptional reduction of the plastid genome of saguaro cactus (<i>Carnegiea gigantea</i>): Loss of the <i>ndh</i> gene suite and inverted repeat. American Journal of Botany, 2015, 102, 1115-1127.	1.7	137
60	Sequencing of 15Â622 geneâ€bearing BAC s clarifies the geneâ€dense regions of the barley genome. Plant Journal, 2015, 84, 216-227.	5.7	36
61	Harvesting rice's dispensable genome. Genome Biology, 2015, 16, 217.	8.8	6
62	RiTE database: a resource database for genus-wide rice genomics and evolutionary biology. BMC Genomics, 2015, 16, 538.	2.8	86
63	Fifteen Million Years of Evolution in the Oryza Genus Shows Extensive Gene Family Expansion. Molecular Plant, 2014, 7, 642-656.	8.3	54
64	Making a living while starving in the dark: metagenomic insights into the energy dynamics of a carbonate cave. ISME Journal, 2014, 8, 478-491.	9.8	114
65	Comparative <scp>BAC</scp> â€based physical mapping of <i><scp>O</scp>ryza sativa</i> ssp. <i>indica</i> var. 93–11 and evaluation of the two rice reference sequence assemblies. Plant Journal, 2014, 77, 795-805.	5.7	16
66	Disentangling Methodological and Biological Sources of Gene Tree Discordance on Oryza (Poaceae) Chromosome 3. Systematic Biology, 2014, 63, 645-659.	5.6	43
67	Endogenous florendoviruses are major components of plant genomes and hallmarks of virus evolution. Nature Communications, 2014, 5, 5269.	12.8	99
68	The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication. Nature Genetics, 2014, 46, 982-988.	21.4	342
69	Global Genomic Diversity of Oryza sativa Varieties Revealed by Comparative Physical Mapping. Genetics, 2014, 196, 937-949.	2.9	10
70	A reference genome for common bean and genome-wide analysis of dual domestications. Nature Genetics, 2014, 46, 707-713.	21.4	1,159
71	Profiling Bacterial Diversity and Taxonomic Composition on Speleothem Surfaces in Kartchner Caverns, AZ. Microbial Ecology, 2013, 65, 371-383.	2.8	78
72	Ginger and turmeric expressed sequence tags identify signature genes for rhizome identity and development and the biosynthesis of curcuminoids, gingerols and terpenoids. BMC Plant Biology, 2013, 13, 27.	3.6	61

#	Article	IF	CITATIONS
73	The Wild Relative of Rice: Genomes and Genomics. , 2013, , 9-25.		94
74	The <i>Amborella</i> Genome and the Evolution of Flowering Plants. Science, 2013, 342, 1241089.	12.6	743
75	Assembly and Validation of the Genome of the Nonmodel Basal Angiosperm <i>Amborella</i> . Science, 2013, 342, 1516-1517.	12.6	89
76	Genome studies and molecular genetics: understanding the functional genome based on the rice model. Current Opinion in Plant Biology, 2013, 16, 129-132.	7.1	13
77	The International Oryza Map Alignment Project: development of a genus-wide comparative genomics platform to help solve the 9 billion-people question. Current Opinion in Plant Biology, 2013, 16, 147-156.	7.1	126
78	Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution. Nature Communications, 2013, 4, 1595.	12.8	190
79	BAC Library Development and Clone Characterization for Dormancy-Responsive DREB4A, DAM, and FT from Leafy Spurge (Euphorbia esula) Identifies Differential Splicing and Conserved Promoter Motifs. Weed Science, 2013, 61, 303-309.	1.5	11
80	BAC-end sequences analysis provides first insights into coffee (Coffea canephora P.) genome composition and evolution. Plant Molecular Biology, 2013, 83, 177-189.	3.9	15
81	High Occurrence of Functional New Chimeric Genes in Survey of Rice Chromosome 3 Short Arm Genome Sequences. Genome Biology and Evolution, 2013, 5, 1038-1048.	2.5	11
82	Genomic Resources for Gene Discovery, Functional Genome Annotation, and Evolutionary Studies of Maize and Its Close Relatives. Genetics, 2013, 195, 723-737.	2.9	15
83	Evolution of a Complex Locus for Terpene Biosynthesis in <i>Solanum</i> Â Â. Plant Cell, 2013, 25, 2022-2036.	6.6	132
84	Grain Quality. , 2013, , 237-254.		8
85	The Reference Genome of the Halophytic Plant Eutrema salsugineum. Frontiers in Plant Science, 2013, 4, 46.	3.6	198
86	Oil palm genome sequence reveals divergence of interfertile species in Old and New worlds. Nature, 2013, 500, 335-339.	27.8	468
87	Aluminum tolerance in maize is associated with higher <i>MATE1</i> gene copy number. Proceedings of the United States of America, 2013, 110, 5241-5246.	7.1	265
88	Dynamic Intra-Japonica Subspecies Variation and Resource Application. Molecular Plant, 2012, 5, 218-230.	8.3	23
89	Ortholog Alleles at Xa3/Xa26 Locus Confer Conserved Race-Specific Resistance against Xanthomonas oryzae in Rice. Molecular Plant, 2012, 5, 281-290.	8.3	37
90	A physical, genetic and functional sequence assembly of the barley genome. Nature, 2012, 491, 711-716.	27.8	1,416

#	Article	IF	CITATIONS
91	A BAC library of the SP80-3280 sugarcane variety (saccharum sp.) and its inferred microsynteny with the sorghum genome. BMC Research Notes, 2012, 5, 185.	1.4	47
92	The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 2012, 485, 635-641.	27.8	2,860
93	Life at the hyperarid margin: novel bacterial diversity in arid soils of the Atacama Desert, Chile. Extremophiles, 2012, 16, 553-566.	2.3	182
94	Integration of the Draft Sequence and Physical Map as a Framework for Genomic Research in Soybean (<i>Glycine max</i> (L.) Merr.) and Wild Soybean (<i>Glycine soja</i> Sieb. and Zucc.). G3: Genes, Genomes, Genetics, 2012, 2, 321-329.	1.8	9
95	Comparative Sequence Analysis of the Ghd7 Orthologous Regions Revealed Movement of Ghd7 in the Grass Genomes. PLoS ONE, 2012, 7, e50236.	2.5	14
96	LysM-Type Mycorrhizal Receptor Recruited for Rhizobium Symbiosis in Nonlegume <i>Parasponia</i> . Science, 2011, 331, 909-912.	12.6	273
97	A physical map for the Amborella trichopoda genome sheds light on the evolution of angiosperm genome structure. Genome Biology, 2011, 12, R48.	9.6	28
98	The genome of Theobroma cacao. Nature Genetics, 2011, 43, 101-108.	21.4	656
99	Molecular and Cytological Characterization of Centromeric Retrotransposons in a Wild Relative of Rice, Oryza granulata. Tropical Plant Biology, 2011, 4, 217-227.	1.9	1
100	Gene-based SSR markers for common bean (Phaseolus vulgaris L.) derived from root and leaf tissue ESTs: an integration of the BMc series. BMC Plant Biology, 2011, 11, 50.	3.6	79
101	Advancing Eucalyptus genomics: identification and sequencing of lignin biosynthesis genes from deep-coverage BAC libraries. BMC Genomics, 2011, 12, 137.	2.8	46
102	Exceptional lability of a genomic complex in rice and its close relatives revealed by interspecific and intraspecific comparison and population analysis. BMC Genomics, 2011, 12, 142.	2.8	14
103	Long-Range and Targeted Ectopic Recombination between the Two Homeologous Chromosomes 11 and 12 in Oryza Species. Molecular Biology and Evolution, 2011, 28, 3139-3150.	8.9	23
104	The 19 Genomes of Drosophila: A BAC Library Resource for Genus-Wide and Genome-Scale Comparative Evolutionary Research. Genetics, 2011, 187, 1023-1030.	2.9	22
105	Conservation and Purifying Selection of Transcribed Genes Located in a Rice Centromere. Plant Cell, 2011, 23, 2821-2830.	6.6	22
106	Construction, Characterization, and Preliminary BAC-End Sequence Analysis of a Bacterial Artificial Chromosome Library of the Tea Plant (<i>Camellia sinensis</i>). Journal of Biomedicine and Biotechnology, 2011, 2011, 1-8.	3.0	11
107	Phylogenomic Analysis of BAC-end Sequence Libraries in <1>Oryza (Poaceae). Systematic Botany, 2010, 35, 512-523.	0.5	8
108	Genomic structure and evolution of the Pi2/9 locus in wild rice species. Theoretical and Applied Genetics, 2010, 121, 295-309.	3.6	25

#	Article	IF	CITATIONS
109	Australian Oryza: Utility and Conservation. Rice, 2010, 3, 235-241.	4.0	57
110	Assessing the Extent of Substitution Rate Variation of Retrotransposon Long Terminal Repeat Sequences in Oryza sativa and Oryza glaberrima. Rice, 2010, 3, 242-250.	4.0	5
111	The Future of Rice Genomics: Sequencing the Collective Oryza Genome. Rice, 2010, 3, 89-97.	4.0	21
112	Dynamic Oryza Genomes: Repetitive DNA Sequences as Genome Modeling Agents. Rice, 2010, 3, 251-269.	4.0	15
113	A draft physical map of a D-genome cotton species (Gossypium raimondii). BMC Genomics, 2010, 11, 395.	2.8	48
114	Genome sequence of the palaeopolyploid soybean. Nature, 2010, 463, 178-183.	27.8	3,854
115	Spatio-temporal patterns of genome evolution in allotetraploid species of the genus Oryza. Plant Journal, 2010, 63, 430-442.	5.7	48
116	Rice structural variation: a comparative analysis of structural variation between rice and three of its closest relatives in the genus Oryza. Plant Journal, 2010, 63, 990-1003.	5.7	47
117	Orthologous Comparisons of the Hd1 Region across Genera Reveal Hd1 Gene Lability within Diploid Oryza Species and Disruptions to Microsynteny in Sorghum. Molecular Biology and Evolution, 2010, 27, 2487-2506.	8.9	31
118	Extensive Gene Conversion Drives the Concerted Evolution of Paralogous Copies of the SRY Gene in European Rabbits. Molecular Biology and Evolution, 2010, 27, 2437-2440.	8.9	26
119	The Oryza BAC resource: a genus-wide and genome scale tool for exploring rice genome evolution and leveraging useful genetic diversity from wild relatives. Breeding Science, 2010, 60, 536-543.	1.9	34
120	An Integrated Physical, Genetic and Cytogenetic Map of Brachypodium distachyon, a Model System for Grass Research. PLoS ONE, 2010, 5, e13461.	2.5	45
121	The Physical and Genetic Framework of the Maize B73 Genome. PLoS Genetics, 2009, 5, e1000715.	3.5	95
122	Detailed Analysis of a Contiguous 22-Mb Region of the Maize Genome. PLoS Genetics, 2009, 5, e1000728.	3.5	39
123	<i>Hamiltonella defensa</i> , genome evolution of protective bacterial endosymbiont from pathogenic ancestors. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9063-9068.	7.1	214
124	Dynamic Evolution of <i>Oryza</i> Genomes Is Revealed by Comparative Genomic Analysis of a Genus-Wide Vertical Data Set. Plant Cell, 2009, 20, 3191-3209.	6.6	128
125	Comparative sequence analysis of <i>MONOCULM1</i> -orthologous regions in 14 <i>Oryza</i> genomes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2071-2076.	7.1	119
126	Species Trees from Highly Incongruent Gene Trees in Rice. Systematic Biology, 2009, 58, 489-500.	5.6	98

#	Article	IF	CITATIONS
127	De Novo Next Generation Sequencing of Plant Genomes. Rice, 2009, 2, 35-43.	4.0	59
128	A lineageâ€ s pecific centromere retrotransposon in <i>Oryza brachyantha</i> . Plant Journal, 2009, 60, 820-831.	5.7	41
129	Human gut microbiota in obesity and after gastric bypass. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2365-2370.	7.1	1,641
130	Comparative sequence analysis of the SALT OVERLY SENSITIVE1 orthologous region in Thellungiella halophila and Arabidopsis thaliana. Genomics, 2009, 94, 196-203.	2.9	17
131	The B73 Maize Genome: Complexity, Diversity, and Dynamics. Science, 2009, 326, 1112-1115.	12.6	3,612
132	A Single Molecule Scaffold for the Maize Genome. PLoS Genetics, 2009, 5, e1000711.	3.5	122
133	Evidence of multiple horizontal transfers of the long terminal repeat retrotransposon <i>RIRE1</i> within the genus <i>Oryza</i> . Plant Journal, 2008, 53, 950-959.	5.7	70
134	Rapid and Differential Proliferation of the Ty3-Gypsy LTR Retrotransposon Atlantys in the Genus Oryza. Rice, 2008, 1, 85-99.	4.0	7
135	The Promoter Signatures in Rice LEA Genes Can Be Used to Build a Co-expressing LEA Gene Network. Rice, 2008, 1, 177-187.	4.0	14
136	BAC-end Sequence Analysis and a Draft Physical Map of the Common Bean (Phaseolus vulgaris L.) Genome. Tropical Plant Biology, 2008, 1, 40-48.	1.9	70
137	Methylation-sensitive linking libraries enhance gene-enriched sequencing of complex genomes and map DNA methylation domains. BMC Genomics, 2008, 9, 621.	2.8	11
138	A fruitful outcome to the papaya genome project. Genome Biology, 2008, 9, 227.	9.6	9
139	The Amborella genome: an evolutionary reference for plant biology. Genome Biology, 2008, 9, 402.	9.6	67
140	Construction, alignment and analysis of 12 framework physical maps that represent the 10 genome types of the genus Oryza. Genome Biology, 2008, 9, R45.	9.6	82
141	Microsatellite discovery from BAC end sequences and genetic mapping to anchor the soybean physical and genetic maps. Genome, 2008, 51, 294-302.	2.0	50
142	Diploid/Polyploid Syntenic Shuttle Mapping and Haplotype-Specific Chromosome Walking Toward a Rust Resistance Gene (<i>Bru1</i>) in Highly Polyploid Sugarcane (2 <i>n</i> â^¼ 12 <i>x</i> â^¼ 115). Genetics, 2008, 180, 649-660.	2.9	110
143	A Phylogenetic Analysis of Indel Dynamics in the Cotton Genus. Molecular Biology and Evolution, 2008, 25, 1415-1428.	8.9	57
144	The Subtelomere of Oryza sativa Chromosome 3 Short Arm as a Hot Bed of New Gene Origination in Rice. Molecular Plant, 2008, 1, 839-850.	8.3	36

Rod A Wing

#	Article	IF	CITATIONS
145	A Versatile Transposon-Based Activation Tag Vector System for Functional Genomics in Cereals and Other Monocot Plants. Plant Physiology, 2008, 146, 189-199.	4.8	64
146	Construction of an <i>Amaranthus hypochondriacus</i> Bacterial Artificial Chromosome Library and Genomic Sequencing of Herbicide Target Genes. Crop Science, 2008, 48, S-85.	1.8	23
147	Evolutionary History and Positional Shift of a Rice Centromere. Genetics, 2007, 177, 1217-1220.	2.9	29
148	The Rice Annotation Project Database (RAP-DB): 2008 update. Nucleic Acids Research, 2007, 36, D1028-D1033.	14.5	295
149	Physical and Genetic Structure of the Maize Genome Reflects Its Complex Evolutionary History. PLoS Genetics, 2007, 3, e123.	3.5	270
150	Comparative Physical Mapping Between Oryza sativa (AA Genome Type) and O. punctata (BB Genome) Tj ETQq() 0.0 ₇ gBT	/Oygrlock 10
151	Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana. Genome Research, 2007, 17, 175-183.	5.5	218
152	Magnaporthe grisea Infection Triggers RNA Variation and Antisense Transcript Expression in Rice. Plant Physiology, 2007, 144, 524-533.	4.8	29
153	Efficacy of clone fingerprinting methodologies. Genomics, 2007, 89, 160-165.	2.9	21
154	Rice Genome Sequence: The Foundation for Understanding the Genetic Systems. , 2007, , 5-20.		3
155	The Oryza Map Alignment Project (OMAP): A New Resource for Comparative Genome Studies within Oryza. , 2007, , 395-409.		9
156	Changes in Regulation of a Transcription Factor Lead to Autogamy in Cultivated Tomatoes. Science, 2007, 318, 643-645.	12.6	141
157	Evolution of genes and genomes on the Drosophila phylogeny. Nature, 2007, 450, 203-218.	27.8	1,886
158	Microcolinearity and genome evolution in the AdhA region of diploid and polyploid cotton (Gossypium). Plant Journal, 2007, 50, 995-1006.	5.7	89
159	Evolutionary dynamics of an ancient retrotransposon family provides insights into evolution of genome size in the genus <i>Oryza</i> . Plant Journal, 2007, 52, 342-351.	5.7	99
160	Transposable element distribution, abundance and role in genome size variation in the genus Oryza. BMC Evolutionary Biology, 2007, 7, 152.	3.2	115
161	Plant centromere organization: a dynamic structure with conserved functions. Trends in Genetics, 2007, 23, 134-139.	6.7	133
162	Development of a BAC library for yellow-poplar (Liriodendron tulipifera) and the identification of genes associated with flower development and lignin biosynthesis. Tree Genetics and Genomes, 2007, 3, 215-225.	1.6	25

#	Article	IF	CITATIONS
163	The barley ERF-type transcription factor HvRAF confers enhanced pathogen resistance and salt tolerance in Arabidopsis. Planta, 2007, 225, 575-588.	3.2	115
164	RL-SAGE and microarray analysis of the rice transcriptome after Rhizoctonia solani infection. Molecular Genetics and Genomics, 2007, 278, 421-431.	2.1	50
165	Differential lineage-specific amplification of transposable elements is responsible for genome size variation in <i>Gossypium</i> . Genome Research, 2006, 16, 1252-1261.	5.5	378
166	Utilization of a zebra finch BAC library to determine the structure of an avian androgen receptor genomic region. Genomics, 2006, 87, 181-190.	2.9	25
167	Two highly representative rice BAC libraries of japonica cv Tainung 67 suitable for rice structural and functional genomic research. Plant Science, 2006, 170, 889-896.	3.6	0
168	A bacterial artificial chromosome library for Biomphalaria glabrata, intermediate snail host of Schistosoma mansoni. Memorias Do Instituto Oswaldo Cruz, 2006, 101, 167-177.	1.6	36
169	Single Nucleotide Polymorphisms and Insertion–Deletions for Genetic Markers and Anchoring the Maize Fingerprint Contig Physical Map. Crop Science, 2006, 46, 12-21.	1.8	51
170	MGOS: A Resource for Studying Magnaporthe grisea and Oryza sativa Interactions. Molecular Plant-Microbe Interactions, 2006, 19, 1055-1061.	2.6	24
171	New Resources for Marine Genomics: Bacterial Artificial Chromosome Libraries for the Eastern and Pacific Oysters (Crassostrea virginica and C. gigas). Marine Biotechnology, 2006, 8, 521-533.	2.4	53
172	Construction of a nurse shark (Ginglymostoma cirratum) bacterial artificial chromosome (BAC) library and a preliminary genome survey. BMC Genomics, 2006, 7, 106.	2.8	27
173	Integration of hybridization-based markers (overgos) into physical maps for comparative and evolutionary explorations in the genus Oryza and in Sorghum. BMC Genomics, 2006, 7, 199.	2.8	12
174	Deep and comparative analysis of the mycelium and appressorium transcriptomes of Magnaporthe grisea using MPSS, RL-SAGE, and oligoarray methods. BMC Genomics, 2006, 7, 310.	2.8	60
175	Genomic and Genetic Characterization of Rice Cen3 Reveals Extensive Transcription and Evolutionary Implications of a Complex Centromere. Plant Cell, 2006, 18, 2123-2133.	6.6	95
176	A global assembly of cotton ESTs. Genome Research, 2006, 16, 441-450.	5.5	138
177	Uneven chromosome contraction and expansion in the maize genome. Genome Research, 2006, 16, 1241-1251.	5.5	105
178	Doubling genome size without polyploidization: Dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Research, 2006, 16, 1262-1269.	5.5	522
179	Efficient insertional mutagenesis in rice using the maize <i>En</i> /i>/spm elements. Plant Journal, 2005, 44, 879-892.	5.7	100
180	The map-based sequence of the rice genome. Nature, 2005, 436, 793-800.	27.8	3,365

#	Article	IF	CITATIONS
181	Construction of a bacterial artificial chromosome library from the spikemoss Selaginella moellendorffii: a new resource for plant comparative genomics. BMC Plant Biology, 2005, 5, 10.	3.6	53
182	Random sheared fosmid library as a new genomic tool to accelerate complete finishing of rice (Oryza) Tj ETQqO euchromatic portions of the genome. Theoretical and Applied Genetics, 2005, 111, 1596-1607.	0 0 rgBT /(3.6	Overlock 10 T 36
183	Candidate gene database and transcript map for peach, a model species for fruit trees. Theoretical and Applied Genetics, 2005, 110, 1419-1428.	3.6	71
184	Toward closing rice telomere gaps: mapping and sequence characterization of rice subtelomere regions. Theoretical and Applied Genetics, 2005, 111, 467-478.	3.6	21
185	In-depth sequence analysis of the tomato chromosome 12 centromeric region: identification of a large CAA block and characterization of pericentromere retrotranposons. Chromosoma, 2005, 114, 103-117.	2.2	52
186	The Oryza Map Alignment Project: The Golden Path to Unlocking the Genetic Potential of Wild Rice Species. Plant Molecular Biology, 2005, 59, 53-62.	3.9	143
187	The sequence of rice chromosomes 11 and 12, rich in disease resistance genes and recent gene duplications. BMC Biology, 2005, 3, 20.	3.8	158
188	Sequence, annotation, and analysis of synteny between rice chromosome 3 and diverged grass species. Genome Research, 2005, 15, 1284-1291.	5.5	73
189	Structure and Architecture of the Maize Genome. Plant Physiology, 2005, 139, 1612-1624.	4.8	159
190	Large-Scale Identification of Expressed Sequence Tags Involved in Rice and Rice Blast Fungus Interaction. Plant Physiology, 2005, 138, 105-115.	4.8	96
191	Sorghum Expressed Sequence Tags Identify Signature Genes for Drought, Pathogenesis, and Skotomorphogenesis from a Milestone Set of 16,801 Unique Transcripts. Plant Physiology, 2005, 139, 869-884.	4.8	66
192	Comparative physical mapping links conservation of microsynteny to chromosome structure and recombination in grasses. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13206-13211.	7.1	141
193	The Oryza bacterial artificial chromosome library resource: Construction and analysis of 12 deep-coverage large-insert BAC libraries that represent the 10 genome types of the genus Oryza. Genome Research, 2005, 16, 140-147.	5.5	197
194	Whole-Genome Validation of High-Information-Content Fingerprinting. Plant Physiology, 2005, 139, 27-38.	4.8	86
195	Comparative Population Genetics of the Panicoid Grasses: Sequence Polymorphism, Linkage Disequilibrium and Selection in a Diverse Sample of Sorghum bicolor. Genetics, 2004, 167, 471-483.	2.9	106
196	A 3347-Locus Genetic Recombination Map of Sequence-Tagged Sites Reveals Features of Genome Organization, Transmission and Evolution of Cotton (Gossypium). Genetics, 2004, 166, 389-417.	2.9	331
197	Incongruent Patterns of Local and Global Genome Size Evolution in Cotton. Genome Research, 2004, 14, 1474-1482.	5.5	80
198	Structural features of the rice chromosome 4 centromere. Nucleic Acids Research, 2004, 32, 2023-2030.	14.5	95

#	Article	IF	CITATIONS
199	A New Resource for Cereal Genomics: 22K Barley GeneChip Comes of Age. Plant Physiology, 2004, 134, 960-968.	4.8	287
200	The <i>Ashbya gossypii</i> Genome as a Tool for Mapping the Ancient <i>Saccharomyces cerevisiae</i> Genome. Science, 2004, 304, 304-307.	12.6	599
201	Anchoring 9,371 Maize Expressed Sequence Tagged Unigenes to the Bacterial Artificial Chromosome Contig Map by Two-Dimensional Overgo Hybridization. Plant Physiology, 2004, 134, 1317-1326.	4.8	94
202	Sequence analysis of the long arm of rice chromosome 11 for rice?wheat synteny. Functional and Integrative Genomics, 2004, 4, 102-117.	3.5	44
203	Functional genomics of cell elongation in developing cotton fibers. Plant Molecular Biology, 2004, 54, 911-929.	3.9	237
204	Bacterial artificial chromosome (BAC) library resource for positional cloning of pest and disease resistance genes in cassava (Manihot esculenta Crantz). Plant Molecular Biology, 2004, 56, 555-561.	3.9	19
205	Localization of jointless-2 gene in the centromeric region of tomato chromosome 12 based on high resolution genetic and physical mapping. Theoretical and Applied Genetics, 2004, 108, 190-196.	3.6	71
206	Sequence composition and genome organization of maize. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14349-14354.	7.1	290
207	BAC end sequences and a physical map reveal transposable element content and clustering patterns in the genome of Magnaporthe grisea. Fungal Genetics and Biology, 2004, 41, 657-666.	2.1	27
208	Genetic Conservation of Genomic Resources. , 2004, , 1-5.		1
209	Whole Genome Sequencing: Methodology and Progress in Cereals. , 2004, , 385-423.		0
210	Construction and utility of 10-kb libraries for efficient clone-gap closure for rice genome sequencing. Theoretical and Applied Genetics, 2003, 107, 652-660.	3.6	18
211	Rate Variation Among Nuclear Genes and the Age of Polyploidy in Gossypium. Molecular Biology and Evolution, 2003, 20, 633-643.	8.9	325
212	Comparison of peach and <i>Arabidopsis</i> genomic sequences: fragmentary conservation of gene neighborhoods. Genome, 2003, 46, 268-276.	2.0	30
213	In-Depth View of Structure, Activity, and Evolution of Rice Chromosome 10. Science, 2003, 300, 1566-1569.	12.6	245
214	An Improved Method for Plant BAC Library Construction. , 2003, 236, 3-20.		100
215	Mapping Sequence to Rice FPC. , 2003, , 59-79.		2
216	A Fine Physical Map of the Rice Chromosome 4. Genome Research, 2002, 12, 817-823.	5.5	64

#	Article	IF	CITATIONS
217	MagnaportheDB: a federated solution for integrating physical and genetic map data with BAC end derived sequences for the rice blast fungus Magnaporthe grisea. Nucleic Acids Research, 2002, 30, 121-124.	14.5	38
218	Genetic, Physical, and Informatics Resources for Maize. On the Road to an Integrated Map. Plant Physiology, 2002, 130, 1598-1605.	4.8	106
219	Genome Dynamics and Evolution of the <i>Mla</i> (Powdery Mildew) Resistance Locus in Barley[W]. Plant Cell, 2002, 14, 1903-1917.	6.6	229
220	Access to the Maize Genome: An Integrated Physical and Genetic Map: Table I Plant Physiology, 2002, 128, 9-12.	4.8	91
221	An Integrated Physical and Genetic Map of the Rice Genome. Plant Cell, 2002, 14, 537-545.	6.6	422
222	A Draft Sequence of the Rice Genome (<i>Oryza sativa</i> L. ssp. <i>japonica</i>). Science, 2002, 296, 92-100.	12.6	2,866
223	Construction of BAC libraries from two apomictic grasses to study the microcolinearity of their apospory-specific genomic regions. Theoretical and Applied Genetics, 2002, 104, 804-812.	3.6	41
224	Resolution of fluorescence in-situ hybridization mapping on rice mitotic prometaphase chromosomes, meiotic pachytene chromosomes and extended DNA fibers. Chromosome Research, 2002, 10, 379-387.	2.2	84
225	<i>Dasheng</i> : A Recently Amplified Nonautonomous Long Terminal Repeat Element That Is a Major Component of Pericentromeric Regions in Rice. Genetics, 2002, 161, 1293-1305.	2.9	73
226	Access to the Maize Genome: An Integrated Physical and Genetic Map. Plant Physiology, 2002, 128, 9-12.	4.8	57
227	Pulsedâ€Field Gel Electrophoresis for Longâ€Range Restriction Mapping. Current Protocols in Human Genetics, 2001, 31, Unit5.1.	3.5	1
228	Melon bacterial artificial chromosome (BAC) library construction using improved methods and identification of clones linked to the locus conferring resistance to melon Fusarium wilt (<i>Fom</i> 2). Genome, 2001, 44, 154-162.	2.0	92
229	Complete Nucleotide Sequence and Organization of the Atrazine Catabolic Plasmid pADP-1 from Pseudomonas sp . Strain ADP. Journal of Bacteriology, 2001, 183, 5684-5697.	2.2	324
230	Evaluation of genetic variation in the daylily (Hemerocallis spp.) using AFLP markers. Theoretical and Applied Genetics, 2001, 102, 489-496.	3.6	61
231	Title is missing!. Molecular Breeding, 2001, 8, 255-261.	2.1	45
232	Sequence and Analysis of the Tomato <i>JOINTLESS</i> Locus. Plant Physiology, 2001, 126, 1331-1340.	4.8	36
233	Construction of a 1.2-Mb contig including the citrus tristeza virus resistance gene locus using a bacterial artificial chromosome library of <i>Poncirus trifoliata</i> (L.) Raf Genome, 2001, 44, 382-393.	2.0	36
234	Toward Integration of Comparative Genetic, Physical, Diversity, and Cytomolecular Maps for Grasses and Grains, Using the Sorghum Genome as a Foundation. Plant Physiology, 2001, 125, 1325-1341.	4.8	81

#	Article	IF	CITATIONS
235	A Marker-Dense Physical Map of the Bradyrhizobium japonicum Genome. Genome Research, 2001, 11, 1434-1440.	5.5	11
236	Toward a Cytological Characterization of the Rice Genome. Genome Research, 2001, 11, 2133-2141.	5.5	182
237	A Framework for Sequencing the Rice Genome. Novartis Foundation Symposium, 2001, 236, 13-27.	1.1	2
238	High-Resolution Pachytene Chromosome Mapping of Bacterial Artificial Chromosomes Anchored by Genetic Markers Reveals the Centromere Location and the Distribution of Genetic Recombination Along Chromosome 10 of Rice. Genetics, 2001, 157, 1749-1757.	2.9	144
239	Melon bacterial artificial chromosome (BAC) library construction using improved methods and identification of clones linked to the locus conferring resistance to melon Fusarium wilt (<i>Fom</i> 2). Genome, 2001, 44, 154-162.	2.0	66
240	Construction of a 1.2-Mb contig including the citrus tristeza virus resistance gene locus using a bacterial artificial chromosome library of <i>Poncirus trifoliata</i> (L.) Raf Genome, 2001, 44, 382-393.	2.0	26
241	JOINTLESS is a MADS-box gene controlling tomato flower abscissionzone development. Nature, 2000, 406, 910-913.	27.8	314
242	Genetic mapping of jointless-2 to tomato chromosome 12 using RFLP and RAPD markers. Theoretical and Applied Genetics, 2000, 100, 1183-1189.	3.6	21
243	A bacterial artificial chromosome library for barley (Hordeum vulgare L.) and the identification of clones containing putative resistance genes. Theoretical and Applied Genetics, 2000, 101, 1093-1099.	3.6	187
244	A new approach for the identification and cloning of genes: the pBACwich system using Cre/lox site-specific recombination. Nucleic Acids Research, 2000, 28, 19e-19.	14.5	35
245	Rice Transposable Elements: A Survey of 73,000 Sequence-Tagged-Connectors. Genome Research, 2000, 10, 982-990.	5.5	187
246	The Construction of Bacterial Artificial Chromosome (BAC) Libraries. , 2000, , 1-28.		12
247	Physical Map and Gene Survey of the <i>Ochrobactrum anthropi</i> Genome Using Bacterial Artificial Chromosome Contigs. Microbial & Comparative Genomics, 1999, 4, 203-217.	0.4	7
248	A bacterial artificial chromosome library for soybean PI 437654 and identification of clones associated with cyst nematode resistance. Plant Molecular Biology, 1999, 41, 25-32.	3.9	65
249	A bacterial artificial chromosome library for sugarcane. Theoretical and Applied Genetics, 1999, 99, 419-424.	3.6	100
250	The Mla (Powdery Mildew) Resistance Cluster Is Associated With Three NBS-LRR Gene Families and Suppressed Recombination Within a 240-kb DNA Interval on Chromosome 5S (1HS) of Barley. Genetics, 1999, 153, 1929-1948.	2.9	242
251	Gene expression induced by physical impedance in maize roots. Plant Molecular Biology, 1998, 37, 921-930.	3.9	14
252	Cloning and characterization of a centromere-specific repetitive DNA element from Sorghum bicolor. Theoretical and Applied Genetics, 1998, 96, 832-839.	3.6	59

#	Article	IF	CITATIONS
253	Brief communication. Tetraploid nature of Sorghum bicolor (L.) Moench. Journal of Heredity, 1998, 89, 188-190.	2.4	36
254	Physical Mapping of the liguleless Linkage Group in Sorghum bicolor Using Rice RFLP-Selected Sorghum BACs. Genetics, 1998, 148, 1983-1992.	2.9	51
255	Microcolinearity in <i>sh2</i> -homologous regions of the maize, rice, and sorghum genomes. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 3431-3435.	7.1	231
256	FISH of a maize sh2-selected sorghum BAC to chromosomes of Sorghum bicolor. Genome, 1997, 40, 475-478.	2.0	33
257	A Large-Insert (130 kbp) Bacterial Artificial Chromosome Library of the Rice Blast FungusMagnaporthe grisea:Genome Analysis, Contig Assembly, and Gene Cloning. Fungal Genetics and Biology, 1997, 21, 337-347.	2.1	58
258	A rapid procedure for the isolation of <i>C</i> _O <i>t</i> -1 DNA from plants. Genome, 1997, 40, 138-142.	2.0	219
259	Physical mapping of the rice genome with BACs. , 1997, 35, 115-127.		55
260	Physical mapping of the rice genome with BACs. , 1997, , 115-127.		27
261	A conserved repetitive DNA element located in the centromeres of cereal chromosomes. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 14210-14213.	7.1	195
262	Gene identification in a complex chromosomal continuum by local genomic crossâ€referencing. Plant Journal, 1996, 10, 1163-1168.	5.7	63
263	Comparative gene expression in sexual and apomictic ovaries of Pennisetum ciliare (L.) Link Plant Molecular Biology, 1996, 32, 1085-1092.	3.9	56
264	Construction and characterization of two rice bacterial artificial chromosome libraries from the parents of a permanent recombinant inbred mapping population. Molecular Breeding, 1996, 2, 11.	2.1	134
265	Preparation of megabase-size DNA from plant nuclei. Plant Journal, 1995, 7, 175-184.	5.7	287
266	Isolation of megabase-size DNA from sorghum and applications for physical mapping and bacterial and yeast artificial chromosome library construction. Plant Molecular Biology Reporter, 1995, 13, 82-94.	1.8	15
267	Construction and characterization of a bacterial artificial chromosome library ofArabidopsis thaliana. Plant Molecular Biology Reporter, 1995, 13, 124-128.	1.8	97
268	Construction and Characterization of a Bovine Bacterial Artificial Chromosome Library. Genomics, 1995, 29, 413-425.	2.9	193
269	Fluorescent in situ hybridization of a bacterial artificial chromosome. Genome, 1995, 38, 646-651.	2.0	107
270	Cloning and characterization of the majority of repetitive DNA in cotton (<i>Gossypium</i> L.). Genome, 1995, 38, 1177-1188.	2.0	28

1

#	Article	IF	CITATIONS
271	Construction and characterization of bacterial artificial chromosome library of <i>Sorghum bicolor </i> . Nucleic Acids Research, 1994, 22, 4922-4931.	14.5	389
272	A detailed RFLP map of Sorghum bicolor x S. propinquum, suitable for high-density mapping, suggests ancestral duplication of Sorghum chromosomes or chromosomal segments. Theoretical and Applied Genetics, 1994, 87, 925-933.	3.6	224
273	Map-based cloning in crop plants: tomato as a model system II. Isolation and characterization of a set of overlapping yeast artificial chromosomes encompassing the jointless locus. Molecular Genetics and Genomics, 1994, 244, 613-621.	2.4	32
274	Map-based cloning in crop plants. Tomato as a model system: I. Genetic and physical mapping of jointless. Molecular Genetics and Genomics, 1994, 242, 681-688.	2.4	60
275	A simple method for isolation of megabase DNA from cotton. Plant Molecular Biology Reporter, 1994, 12, 110-115.	1.8	8
276	Genome mapping in plants. Current Opinion in Biotechnology, 1993, 4, 142-147.	6.6	41
277	An improved method of plant megabase DNA isolation in agarose microbeads suitable for physical mapping and YAC cloning. Plant Journal, 1993, 4, 893-898.	5.7	41
278	PCR amplification from single seeds, facilitating DNA marker-assisted breeding. Nucleic Acids Research, 1993, 21, 2527-2527.	14.5	13
279	Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations. Nucleic Acids Research, 1991, 19, 6553-6568.	14.5	381
280	Promoter analysis of genes that are coordinately expressed during pollen development reveals pollen-specific enhancer sequences and shared regulatory elements Genes and Development, 1991, 5, 496-507.	5.9	282
281	Molecular and genetic characterization of two pollen-expressed genes that have sequence similarity to pectate lyases of the plant pathogen Erwinia. Plant Molecular Biology, 1990, 14, 17-28.	3.9	167
282	Isolation and expression of an anther-specific gene from tomato. Molecular Genetics and Genomics, 1989, 217, 240-245.	2.4	270
283	Integrative transformation of the yeast Yarrowia lipolytica. Current Genetics, 1985, 10, 39-48.	1.7	113

284 Construction and Application of Genomic DNA Libraries. , 0, , .

17