
Phillip G Popovich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7817461/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Central nervous system injury–induced immune suppression. Neurosurgical Focus, 2022, 52, E10.	1.0	12
2	Thoracic VGluT2 ⁺ Spinal Interneurons Regulate Structural and Functional Plasticity of Sympathetic Networks after High-Level Spinal Cord Injury. Journal of Neuroscience, 2022, 42, 3659-3675.	1.7	9
3	Wolframin is a novel regulator of tau pathology and neurodegeneration. Acta Neuropathologica, 2022, 143, 547-569.	3.9	22
4	Microglia maintain the normal structure and function of the hippocampal astrocyte network. Glia, 2022, 70, 1359-1379.	2.5	29
5	Genetic deletion of the glucocorticoid receptor in Cx3cr1+ myeloid cells is neuroprotective and improves motor recovery after spinal cord injury. Experimental Neurology, 2022, 355, 114114.	2.0	4
6	Immune dysfunction after spinal cord injury – A review of autonomic and neuroendocrine mechanisms. Current Opinion in Pharmacology, 2022, 64, 102230.	1.7	13
7	Spinal cord injury and the gut microbiota. , 2022, , 435-444.		0
8	Spinal Cord Injury Impairs Lung Immunity in Mice. Journal of Immunology, 2022, 209, 157-170.	0.4	4
9	Microglia coordinate cellular interactions during spinal cord repair in mice. Nature Communications, 2022, 13, .	5.8	61
10	The neuroanatomical–functional paradox in spinal cord injury. Nature Reviews Neurology, 2021, 17, 53-62.	4.9	82
11	Acute post-injury blockade of α2Î-1 calcium channel subunits prevents pathological autonomic plasticity after spinal cord injury. Cell Reports, 2021, 34, 108667.	2.9	23
12	Acute Dose-Dependent Neuroprotective Effects of Poly(pro-17β-estradiol) in a Mouse Model of Spinal Contusion Injury. ACS Chemical Neuroscience, 2021, 12, 959-965.	1.7	2
13	Spinal Cord Injury Changes the Structure and Functional Potential of Gut Bacterial and Viral Communities. MSystems, 2021, 6, .	1.7	28
14	Neuroimmunological therapies for treating spinal cord injury: Evidence and future perspectives. Experimental Neurology, 2021, 341, 113704.	2.0	42
15	Liver inflammation at the time of spinal cord injury enhances intraspinal pathology, liver injury, metabolic syndrome and locomotor deficits. Experimental Neurology, 2021, 342, 113725.	2.0	12
16	The spinal cord-gut-immune axis as a master regulator of health and neurological function after spinal cord injury. Experimental Neurology, 2020, 323, 113085.	2.0	46
17	Serial Systemic Injections of Endotoxin (LPS) Elicit Neuroprotective Spinal Cord Microglia through IL-1-Dependent Cross Talk with Endothelial Cells. Journal of Neuroscience, 2020, 40, 9103-9120.	1.7	23
18	Microglia-organized scar-free spinal cord repair in neonatal mice. Nature, 2020, 587, 613-618.	13.7	197

#	Article	IF	CITATIONS
19	Spinal cord injury causes chronic bone marrow failure. Nature Communications, 2020, 11, 3702.	5.8	34
20	TGFβ3 is neuroprotective and alleviates the neurotoxic response induced by aligned poly-l-lactic acid fibers on naÃ⁻ve and activated primary astrocytes. Acta Biomaterialia, 2020, 117, 273-282.	4.1	24
21	Fecal transplant prevents gut dysbiosis and anxiety-like behaviour after spinal cord injury in rats. PLoS ONE, 2020, 15, e0226128.	1.1	77
22	Cell-Type-Specific Interleukin 1 Receptor 1 Signaling in the Brain Regulates Distinct Neuroimmune Activities. Immunity, 2019, 50, 317-333.e6.	6.6	116
23	Docosahexaenoic acid reduces microglia phagocytic activity via miR-124 and induces neuroprotection in rodent models of spinal cord contusion injury. Human Molecular Genetics, 2019, 28, 2427-2448.	1.4	27
24	Human immune cells infiltrate the spinal cord and impair recovery after spinal cord injury in humanized mice. Scientific Reports, 2019, 9, 19105.	1.6	12
25	The Application of Omics Technologies to Study Axon Regeneration and CNS Repair. F1000Research, 2019, 8, 311.	0.8	11
26	Emerging targets for reprograming the immune response to promote repair and recovery of function after spinal cord injury. Current Opinion in Neurology, 2018, 31, 334-344.	1.8	51
27	MicroRNAs: Roles in Regulating Neuroinflammation. Neuroscientist, 2018, 24, 221-245.	2.6	184
28	Induction of innervation by encapsulated adipocytes with engineered vitamin A metabolism. Translational Research, 2018, 192, 1-14.	2.2	10
29	Gut Microbiota Are Disease-Modifying Factors After Traumatic Spinal Cord Injury. Neurotherapeutics, 2018, 15, 60-67.	2.1	91
30	High mobility group box-1 (HMGB1) is increased in injured mouse spinal cord and can elicit neurotoxic inflammation. Brain, Behavior, and Immunity, 2018, 72, 22-33.	2.0	45
31	Traumatic brain injuryâ€induced neuronal damage in the somatosensory cortex causes formation of rodâ€shaped microglia that promote astrogliosis and persistent neuroinflammation. Clia, 2018, 66, 2719-2736.	2.5	105
32	The spleen as a neuroimmune interface after spinal cord injury. Journal of Neuroimmunology, 2018, 321, 1-11.	1.1	53
33	MiR-155 deletion reduces ischemia-induced paralysis in an aortic aneurysm repair mouse model: Utility of immunohistochemistry and histopathology in understanding etiology of spinal cord paralysis. Annals of Diagnostic Pathology, 2018, 36, 12-20.	0.6	22
34	Eliciting inflammation enables successful rehabilitative training in chronic spinal cord injury. Brain, 2018, 141, 1946-1962.	3.7	74
35	Deletion of the Fractalkine Receptor, CX3CR1, Improves Endogenous Repair, Axon Sprouting, and Synaptogenesis after Spinal Cord Injury in Mice. Journal of Neuroscience, 2017, 37, 3568-3587.	1.7	66
36	E6020, a synthetic TLR4 agonist, accelerates myelin debris clearance, Schwann cell infiltration, and remyelination in the rat spinal cord. Glia, 2017, 65, 883-899.	2.5	58

#	Article	IF	CITATIONS
37	Intraspinal TLR4 activation promotes iron storage but does not protect neurons or oligodendrocytes from progressive iron-mediated damage. Experimental Neurology, 2017, 298, 42-56.	2.0	24
38	Spinal Cord Injury Suppresses Cutaneous Inflammation: Implications for Peripheral Wound Healing. Journal of Neurotrauma, 2017, 34, 1149-1155.	1.7	16
39	Developing a data sharing community for spinal cord injury research. Experimental Neurology, 2017, 295, 135-143.	2.0	48
40	Stress Increases Peripheral Axon Growth and Regeneration through Glucocorticoid Receptor-Dependent Transcriptional Programs. ENeuro, 2017, 4, ENEURO.0246-17.2017.	0.9	27
41	Control of the Inflammatory Macrophage Transcriptional Signature by miR-155. PLoS ONE, 2016, 11, e0159724.	1.1	117
42	RegenBase: a knowledge base of spinal cord injury biology for translational research. Database: the Journal of Biological Databases and Curation, 2016, 2016, baw040.	1.4	14
43	Silencing spinal interneurons inhibits immune suppressive autonomic reflexes caused by spinal cord injury. Nature Neuroscience, 2016, 19, 784-787.	7.1	86
44	A silver lining of neuroinflammation: Beneficial effects on myelination. Experimental Neurology, 2016, 283, 550-559.	2.0	38
45	miR-155 Deletion in Mice Overcomes Neuron-Intrinsic and Neuron-Extrinsic Barriers to Spinal Cord Repair. Journal of Neuroscience, 2016, 36, 8516-8532.	1.7	77
46	miR-155 Deletion in Female Mice Prevents Diet-Induced Obesity. Scientific Reports, 2016, 6, 22862.	1.6	83
47	Gut dysbiosis impairs recovery after spinal cord injury. Journal of Experimental Medicine, 2016, 213, 2603-2620.	4.2	236
48	TLR4 Deficiency Impairs Oligodendrocyte Formation in the Injured Spinal Cord. Journal of Neuroscience, 2016, 36, 6352-6364.	1.7	62
49	Cognitive deficits develop 1 month after diffuse brain injury and are exaggerated by microglia-associated reactivity to peripheral immune challenge. Brain, Behavior, and Immunity, 2016, 54, 95-109.	2.0	113
50	MicroRNA-155 deletion reduces anxiety- and depressive-like behaviors in mice. Psychoneuroendocrinology, 2016, 63, 362-369.	1.3	50
51	Novel Markers to Delineate Murine M1 and M2 Macrophages. PLoS ONE, 2015, 10, e0145342.	1.1	788
52	Galectin-1 in injured rat spinal cord: Implications for macrophage phagocytosis and neural repair. Molecular and Cellular Neurosciences, 2015, 64, 84-94.	1.0	27
53	Toll-Like Receptors and Dectin-1, a C-Type Lectin Receptor, Trigger Divergent Functions in CNS Macrophages. Journal of Neuroscience, 2015, 35, 9966-9976.	1.7	73
54	Traumatic spinal cord injury in mice with human immune systems. Experimental Neurology, 2015, 271, 432-444.	2.0	13

#	Article	IF	CITATIONS
55	Stress exacerbates neuron loss and microglia proliferation in a rat model of excitotoxic lower motor neuron injury. Brain, Behavior, and Immunity, 2015, 49, 246-254.	2.0	7
56	Central Nervous System Regenerative Failure: Role of Oligodendrocytes, Astrocytes, and Microglia. Cold Spring Harbor Perspectives in Biology, 2015, 7, a020602.	2.3	258
57	Spinal Cord Injury Causes Chronic Liver Pathology in Rats. Journal of Neurotrauma, 2015, 32, 159-169.	1.7	60
58	Development of a Database for Translational Spinal Cord Injury Research. Journal of Neurotrauma, 2014, 31, 1789-1799.	1.7	100
59	Neuroimmunology of traumatic spinal cord injury: A brief history and overview. Experimental Neurology, 2014, 258, 1-4.	2.0	33
60	Glucocorticoids and macrophage migration inhibitory factor (MIF) are neuroendocrine modulators of inflammation and neuropathic pain after spinal cord injury. Seminars in Immunology, 2014, 26, 409-414.	2.7	46
61	IL-4 Signaling Drives a Unique Arginase+/IL-1Â+ Microglia Phenotype and Recruits Macrophages to the Inflammatory CNS: Consequences of Age-Related Deficits in IL-4RA after Traumatic Spinal Cord Injury. Journal of Neuroscience, 2014, 34, 8904-8917.	1.7	172
62	The paradox of chronic neuroinflammation, systemic immune suppression, autoimmunity after traumatic chronic spinal cord injury. Experimental Neurology, 2014, 258, 121-129.	2.0	204
63	Pattern recognition receptors and central nervous system repair. Experimental Neurology, 2014, 258, 5-16.	2.0	357
64	Independent evaluation of the anatomical and behavioral effects of Taxol in rat models of spinal cord injury. Experimental Neurology, 2014, 261, 97-108.	2.0	48
65	Extracellular matrix regulation of inflammation in the healthy and injured spinal cord. Experimental Neurology, 2014, 258, 24-34.	2.0	176
66	Minimum Information about a Spinal Cord Injury Experiment: A Proposed Reporting Standard for Spinal Cord Injury Experiments. Journal of Neurotrauma, 2014, 31, 1354-1361.	1.7	74
67	Microglia Induce Motor Neuron Death via the Classical NF-κB Pathway in Amyotrophic Lateral Sclerosis. Neuron, 2014, 81, 1009-1023.	3.8	527
68	Immune Activation Promotes Depression 1 Month After Diffuse Brain Injury: A Role for Primed Microglia. Biological Psychiatry, 2014, 76, 575-584.	0.7	209
69	Autonomic Dysreflexia Causes Chronic Immune Suppression after Spinal Cord Injury. Journal of Neuroscience, 2013, 33, 12970-12981.	1.7	134
70	PPAR Agonists as Therapeutics for CNS Trauma and Neurological Diseases. ASN Neuro, 2013, 5, AN20130030.	1.5	73
71	Macrophage Migration Inhibitory Factor Potentiates Autoimmune-Mediated Neuroinflammation. Journal of Immunology, 2013, 191, 1043-1054.	0.4	85
72	Effects of gabapentin on muscle spasticity and both induced as well as spontaneous autonomic dysreflexia after complete spinal cord injury. Frontiers in Physiology, 2012, 3, 329.	1.3	44

#	Article	IF	CITATIONS
73	Ferritin Stimulates Oligodendrocyte Genesis in the Adult Spinal Cord and Can Be Transferred from Macrophages to NG2 Cells <i>In Vivo</i> . Journal of Neuroscience, 2012, 32, 5374-5384.	1.7	78
74	p53 Regulates the Neuronal Intrinsic and Extrinsic Responses Affecting the Recovery of Motor Function following Spinal Cord Injury. Journal of Neuroscience, 2012, 32, 13956-13970.	1.7	47
75	Controversies on the role of inflammationin the injured spinal cord. , 2012, , 272-279.		2
76	Achieving CNS axon regeneration by manipulating convergent neuro-immune signaling. Cell and Tissue Research, 2012, 349, 201-213.	1.5	42
77	Independent evaluation of the effects of glibenclamide on reducing progressive hemorrhagic necrosis after cervical spinal cord injury. Experimental Neurology, 2012, 233, 615-622.	2.0	58
78	Replication and reproducibility in spinal cord injury research. Experimental Neurology, 2012, 233, 597-605.	2.0	157
79	System xcâ^' regulates microglia and macrophage glutamate excitotoxicity in vivo. Experimental Neurology, 2012, 233, 333-341.	2.0	54
80	A reassessment of a classic neuroprotective combination therapy for spinal cord injured rats: LPS/pregnenolone/indomethacin. Experimental Neurology, 2012, 233, 677-685.	2.0	31
81	Spinal cord injury with unilateral versus bilateral primary hemorrhage — Effects of glibenclamide. Experimental Neurology, 2012, 233, 829-835.	2.0	47
82	Macrophage migration inhibitory factor (MIF) is essential for inflammatory and neuropathic pain and enhances pain in response to stress. Experimental Neurology, 2012, 236, 351-362.	2.0	56
83	Cellular and Molecular Biological Assessments of Inflammation and Autoimmunity After Spinal Cord Injury. Springer Protocols, 2012, , 553-571.	0.1	0
84	Spinal cord injury therapies in humans: an overview of current clinical trials and their potential effects on intrinsic CNS macrophages. Expert Opinion on Therapeutic Targets, 2011, 15, 505-518.	1.5	72
85	Inflammation and axon regeneration. Current Opinion in Neurology, 2011, 24, 577-583.	1.8	207
86	Emerging Concepts in Myeloid Cell Biology after Spinal Cord Injury. Neurotherapeutics, 2011, 8, 252-261.	2.1	88
87	Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. Journal of Neuroinflammation, 2011, 8, 110.	3.1	647
88	Deficient CX3CR1 Signaling Promotes Recovery after Mouse Spinal Cord Injury by Limiting the Recruitment and Activation of Ly6Clo/iNOS+ Macrophages. Journal of Neuroscience, 2011, 31, 9910-9922.	1.7	188
89	B cells and autoantibodies: complex roles in CNS injury. Trends in Immunology, 2010, 31, 332-338.	2.9	86
90	Progranulin expression is upregulated after spinal contusion in mice. Acta Neuropathologica, 2010, 119, 123-133	3.9	63

#	Article	IF	CITATIONS
91	Semi-automated Sholl analysis for quantifying changes in growth and differentiation of neurons and glia. Journal of Neuroscience Methods, 2010, 190, 71-79.	1.3	69
92	Macrophages Promote Axon Regeneration with Concurrent Neurotoxicity. Spinal Surgery, 2010, 24, 92-94.	0.0	0
93	A Mouse Model of Ischemic Spinal Cord Injury with Delayed Paralysis Caused by Aortic Cross-clamping. Anesthesiology, 2010, 113, 880-891.	1.3	46
94	Fractalkine receptor (CX3CR1) deficiency sensitizes mice to the behavioral changes induced by lipopolysaccharide. Journal of Neuroinflammation, 2010, 7, 93.	3.1	166
95	Macrophages Promote Axon Regeneration with Concurrent Neurotoxicity. Journal of Neuroscience, 2009, 29, 3956-3968.	1.7	191
96	Major Histocompatibility Complex Haplotype Determines hsp70-Dependent Protection against Measles Virus Neurovirulence. Journal of Virology, 2009, 83, 5544-5555.	1.5	16
97	Three Promoters Regulate Tissue- and Cell Type-specific Expression of Murine Interleukin-1 Receptor Type I. Journal of Biological Chemistry, 2009, 284, 8703-8713.	1.6	11
98	Damage control in the nervous system: beware the immune system in spinal cord injury. Nature Medicine, 2009, 15, 736-737.	15.2	57
99	Stress hormones collaborate to induce lymphocyte apoptosis after high level spinal cord injury. Journal of Neurochemistry, 2009, 110, 1409-1421.	2.1	84
100	An efficient and reproducible method for quantifying macrophages in different experimental models of central nervous system pathology. Journal of Neuroscience Methods, 2009, 181, 36-44.	1.3	116
101	B cells produce pathogenic antibodies and impair recovery after spinal cord injury in mice. Journal of Clinical Investigation, 2009, 119, 2990-2999.	3.9	164
102	Stress exacerbates neuropathic pain via glucocorticoid and NMDA receptor activation. Brain, Behavior, and Immunity, 2009, 23, 851-860.	2.0	118
103	Neuroinflammation in spinal cord injury: therapeutic targets for neuroprotection and regeneration. Progress in Brain Research, 2009, 175, 125-137.	0.9	137
104	Identification of Two Distinct Macrophage Subsets with Divergent Effects Causing either Neurotoxicity or Regeneration in the Injured Mouse Spinal Cord. Journal of Neuroscience, 2009, 29, 13435-13444.	1.7	1,831
105	Toll-Like Receptors in Spinal Cord Injury. Current Topics in Microbiology and Immunology, 2009, 336, 121-136.	0.7	42
106	Can the immune system be harnessed to repair the CNS?. Nature Reviews Neuroscience, 2008, 9, 481-493.	4.9	247
107	Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Experimental Neurology, 2008, 209, 378-388.	2.0	812
108	Remote activation of microglia and pro-inflammatory cytokines predict the onset and severity of below-level neuropathic pain after spinal cord injury in rats. Experimental Neurology, 2008, 212, 337-347.	2.0	229

#	Article	IF	CITATIONS
109	Oligodendrocyte Generation Is Differentially Influenced by Toll-Like Receptor (TLR) 2 and TLR4-Mediated Intraspinal Macrophage Activation. Journal of Neuropathology and Experimental Neurology, 2007, 66, 1124-1135.	0.9	87
110	Impaired antibody synthesis after spinal cord injury is level dependent and is due to sympathetic nervous system dysregulation. Experimental Neurology, 2007, 207, 75-84.	2.0	169
111	The Immune System of the Brain. NeuroImmune Biology, 2007, , 127-144.	0.2	2
112	Macrophage depletion alters the blood–nerve barrier without affecting Schwann cell function after neural injury. Journal of Neuroscience Research, 2007, 85, 766-777.	1.3	41
113	Central nervous system and non-central nervous system antigen vaccines exacerbate neuropathology caused by nerve injury. European Journal of Neuroscience, 2007, 25, 2053-2064.	1.2	29
114	Toll-like receptor (TLR)-2 and TLR-4 regulate inflammation, gliosis, and myelin sparing after spinal cord injury. Journal of Neurochemistry, 2007, 102, 37-50.	2.1	257
115	Characterization and modeling of monocyte-derived macrophages after spinal cord injury. Journal of Neurochemistry, 2007, 102, 1083-1094.	2.1	84
116	Basso Mouse Scale for Locomotion Detects Differences in Recovery after Spinal Cord Injury in Five Common Mouse Strains. Journal of Neurotrauma, 2006, 23, 635-659.	1.7	1,253
117	MICAL flavoprotein monooxygenases: Expression during neural development and following spinal cord injuries in the rat. Molecular and Cellular Neurosciences, 2006, 31, 52-69.	1.0	63
118	Spinal cord injury triggers systemic autoimmunity: evidence for chronic B lymphocyte activation and lupus-like autoantibody synthesis. Journal of Neurochemistry, 2006, 99, 1073-1087.	2.1	158
119	Debate: "ls Increasing Neuroinflammation Beneficial for Neural Repair?― Journal of Neurolmmune Pharmacology, 2006, 1, 195-211.	2.1	63
120	Comparative analysis of lesion development and intraspinal inflammation in four strains of mice following spinal contusion injury. Journal of Comparative Neurology, 2006, 494, 578-594.	0.9	255
121	Drug evaluation: ProCord - a potential cell-based therapy for spinal cord injury. IDrugs: the Investigational Drugs Journal, 2006, 9, 354-60.	0.7	4
122	Molecular Control of Physiological and Pathological T-Cell Recruitment after Mouse Spinal Cord Injury. Journal of Neuroscience, 2005, 25, 6576-6583.	1.7	83
123	Passive or Active Immunization with Myelin Basic Protein Impairs Neurological Function and Exacerbates Neuropathology after Spinal Cord Injury in Rats. Journal of Neuroscience, 2004, 24, 3752-3761.	1.7	129
124	Rats and mice exhibit distinct inflammatory reactions after spinal cord injury. Journal of Comparative Neurology, 2003, 462, 223-240.	0.9	328
125	Hematogenous macrophages express CD8 and distribute to regions of lesion cavitation after spinal cord injury. Experimental Neurology, 2003, 182, 275-287.	2.0	73
126	Manipulating neuroinflammatory reactions in the injured spinal cord: back to basics. Trends in Pharmacological Sciences, 2003, 24, 13-17.	4.0	184

#	Article	IF	CITATIONS
127	The Neuropathological and Behavioral Consequences of Intraspinal Microglial/Macrophage Activation. Journal of Neuropathology and Experimental Neurology, 2002, 61, 623-633.	0.9	269
128	Pathological CNS Autoimmune Disease Triggered by Traumatic Spinal Cord Injury: Implications for Autoimmune Vaccine Therapy. Journal of Neuroscience, 2002, 22, 2690-2700.	1.7	188
129	Role of Microglia and Macrophages in Secondary Injury of the Traumatized Spinal Cord: Troublemakers or Scapegoats?. , 2002, , 152-165.		1
130	Alterations in Immune Cell Phenotype and Function after Experimental Spinal Cord Injury. Journal of Neurotrauma, 2001, 18, 957-966.	1.7	72
131	Bone Marrow Chimeric Rats Reveal the Unique Distribution of Resident and Recruited Macrophages in the Contused Rat Spinal Cord. Journal of Neuropathology and Experimental Neurology, 2001, 60, 676-685.	0.9	133
132	Immunological regulation of neuronal degeneration and regeneration in the injured spinal cord. Progress in Brain Research, 2000, 128, 43-58.	0.9	103
133	Strategies for spinal cord injury repair. Progress in Brain Research, 2000, 128, 3-8.	0.9	34
134	Traumatic Spinal Cord Injury Produced by Controlled Contusion in Mouse. Journal of Neurotrauma, 2000, 17, 299-319.	1.7	187
135	Localization of Transforming Growth Factor-β1 and Receptor mRNA after Experimental Spinal Cord Injury. Experimental Neurology, 2000, 163, 220-230.	2.0	84
136	Depletion of Hematogenous Macrophages Promotes Partial Hindlimb Recovery and Neuroanatomical Repair after Experimental Spinal Cord Injury. Experimental Neurology, 1999, 158, 351-365.	2.0	619
137	Cytokine mRNA Profiles in Contused Spinal Cord and Axotomized Facial Nucleus Suggest a Beneficial Role for Inflammation and Gliosis. Experimental Neurology, 1998, 152, 74-87.	2.0	309
138	ls Spinal Cord Injury an Autoimmune Disorder?. Neuroscientist, 1998, 4, 71-76.	2.6	17
139	Spinal Cord Neuropathology in Rat Experimental Autoimmune Encephalomyelitis. Journal of Neuropathology and Experimental Neurology, 1997, 56, 1323-1338.	0.9	25
140	Cellular inflammatory response after spinal cord injury in sprague-dawley and lewis rats. , 1997, 377, 443-464.		810
141	A Quantitative Spatial Analysis of the Blood–Spinal Cord Barrier. Experimental Neurology, 1996, 142, 226-243.	2.0	13
142	A Quantitative Spatial Analysis of the Blood–Spinal Cord Barrier. Experimental Neurology, 1996, 142, 258-275.	2.0	237
143	Concept of autoimmunity following spinal cord injury: Possible roles for T lymphocytes in the traumatized central nervous system. Journal of Neuroscience Research, 1996, 45, 349-363.	1.3	235
144	Analysis of TGF-β1 Gene Expression in Contused Rat Spinal Cord Using Quantitative RT-PCR. Journal of Neurotrauma, 1995, 12, 1003-1014.	1.7	56

#	Article	IF	CITATIONS
145	Elevation of the neurotoxin quinolinic acid occurs following spinal cord trauma. Brain Research, 1994, 633, 348-352.	1.1	63
146	Differential Expression of MHC Class II Antigen in the Contused Rat Spinal Cord. Journal of Neurotrauma, 1993, 10, 37-46.	1.7	39