## Sarah K Tasian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7816248/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Activated interleukin-7 receptor signaling drives B-cell acute lymphoblastic leukemia in mice. Leukemia, 2022, 36, 42-57.                                                                                                                                         | 7.2 | 16        |
| 2  | Molecular and phenotypic diversity of <i>CBL</i> -mutated juvenile myelomonocytic<br>leukemia. Haematologica, 2022, 107, 178-186.                                                                                                                                 | 3.5 | 25        |
| 3  | Modulation of CD22 Protein Expression in Childhood Leukemia by Pervasive Splicing Aberrations:<br>Implications for CD22-Directed Immunotherapies. Blood Cancer Discovery, 2022, 3, 103-115.                                                                       | 5.0 | 31        |
| 4  | Paediatric Strategy Forum for medicinal product development of chimeric antigen receptor T-cells in children and adolescents with cancer. European Journal of Cancer, 2022, 160, 112-133.                                                                         | 2.8 | 24        |
| 5  | CD123 Expression Is Associated With High-Risk Disease Characteristics in Childhood Acute Myeloid<br>Leukemia: A Report From the Children's Oncology Group. Journal of Clinical Oncology, 2022, 40,<br>252-261.                                                    | 1.6 | 18        |
| 6  | Temsirolimus combined with cyclophosphamide and etoposide for pediatric patients with<br>relapsed/refractory acute lymphoblastic leukemia: a Therapeutic Advances in Childhood Leukemia<br>Consortium trial (TACL 2014-001). Haematologica, 2022, 107, 2295-2303. | 3.5 | 8         |
| 7  | Cytosine base editing enables quadruple-edited allogeneic CART cells for T-ALL. Blood, 2022, 140, 619-629.                                                                                                                                                        | 1.4 | 45        |
| 8  | Minimal residual disease comparison between Ig/TCR PCR versus NGS assays in children with<br>Philadelphia chromosome-positive acute lymphoblastic leukemia: A report from the COG AALL1631<br>study Journal of Clinical Oncology, 2022, 40, 10023-10023.          | 1.6 | 1         |
| 9  | Combinatorial efficacy of entospletinib and chemotherapy in patient-derived xenograft models of<br>infant acute lymphoblastic leukemia. Haematologica, 2021, 106, 1067-1078.                                                                                      | 3.5 | 15        |
| 10 | Clinical utilization of blinatumomab and inotuzumab immunotherapy in children with relapsed or refractory Bâ€acute lymphoblastic leukemia. Pediatric Blood and Cancer, 2021, 68, e28718.                                                                          | 1.5 | 30        |
| 11 | Matched Targeted Therapy for Pediatric Patients with Relapsed, Refractory, or High-Risk Leukemias: A<br>Report from the LEAP Consortium. Cancer Discovery, 2021, 11, 1424-1439.                                                                                   | 9.4 | 16        |
| 12 | Diagnostic Challenges in Pediatric Hemophagocytic Lymphohistiocytosis. Journal of Clinical<br>Immunology, 2021, 41, 1213-1218.                                                                                                                                    | 3.8 | 10        |
| 13 | Direct long-read RNA sequencing identifies a subset of questionable exitrons likely arising from reverse transcription artifacts. Genome Biology, 2021, 22, 190.                                                                                                  | 8.8 | 20        |
| 14 | Activated natural killer cells predict poor clinical prognosis in high-risk B- and T-cell acute<br>lymphoblastic leukemia. Blood, 2021, 138, 1465-1480.                                                                                                           | 1.4 | 34        |
| 15 | Network Analysis Reveals Synergistic Genetic Dependencies for Rational Combination Therapy in<br>Philadelphia Chromosome–Like Acute Lymphoblastic Leukemia. Clinical Cancer Research, 2021, 27,<br>5109-5122.                                                     | 7.0 | 8         |
| 16 | Therapeutic potential of ruxolitinib and ponatinib in patients with <i>EPOR</i> -rearranged<br>Philadelphia chromosome-like acute lymphoblastic leukemia. Haematologica, 2021, 106, 2763-2767.                                                                    | 3.5 | 12        |
| 17 | Systematic preclinical evaluation of CD33-directed chimeric antigen receptor T cell immunotherapy for acute myeloid leukemia defines optimized construct design. , 2021, 9, e003149.                                                                              |     | 28        |
| 18 | Are we ABL to do better for children with BCR–ABL1-like acute lymphocytic leukaemia?. Lancet<br>Haematology,the, 2021, 8, e6-e8.                                                                                                                                  | 4.6 | 0         |

| #  | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Phat Mass and Ph-like ALL: A Link Between Obesity and CRLF2 Rearrangements?. , 2021, 18, .                                                                                                                                                             |      | 0         |
| 20 | Has Ph-like ALL Superseded Ph+ ALL as the Least Favorable Subtype?. Best Practice and Research in<br>Clinical Haematology, 2021, 34, 101331.                                                                                                           | 1.7  | 6         |
| 21 | Ph-Like ALL: Diagnosis and Management. Hematologic Malignancies, 2021, , 235-247.                                                                                                                                                                      | 0.2  | Ο         |
| 22 | Transcriptomic Features of Immune Exhaustion and Senescence Predict Outcomes and Define<br>Checkpoint Blockade-Unresponsive Microenvironments in Acute Myeloid Leukemia. Blood, 2021, 138,<br>223-223.                                                 | 1.4  | 1         |
| 23 | Transient atypical monocytosis after α/β Tâ€cellâ€depleted haploidentical hematopoietic stem cell<br>transplantation. Pediatric Blood and Cancer, 2020, 67, e28139.                                                                                    | 1.5  | 1         |
| 24 | The future of cellular immunotherapy for childhood leukemia. Current Opinion in Pediatrics, 2020, 32, 13-25.                                                                                                                                           | 2.0  | 13        |
| 25 | Targeted therapy or transplantation for paediatric ABL-class Ph-like acute lymphocytic leukaemia?.<br>Lancet Haematology,the, 2020, 7, e858-e859.                                                                                                      | 4.6  | 3         |
| 26 | Diverse noncoding mutations contribute to deregulation of cis-regulatory landscape in pediatric cancers. Science Advances, 2020, 6, eaba3064.                                                                                                          | 10.3 | 14        |
| 27 | Immune landscapes predict chemotherapy resistance and immunotherapy response in acute myeloid<br>leukemia. Science Translational Medicine, 2020, 12, .                                                                                                 | 12.4 | 117       |
| 28 | Clinical diagnostics and treatment strategies for Philadelphia chromosome–like acute lymphoblastic<br>leukemia. Blood Advances, 2020, 4, 218-228.                                                                                                      | 5.2  | 69        |
| 29 | Oncogene-independent BCR-like signaling adaptation confers drug resistance in Ph-like ALL. Journal of<br>Clinical Investigation, 2020, 130, 3637-3653.                                                                                                 | 8.2  | 30        |
| 30 | Outcomes of Patients with CRLF2-Overexpressing Acute Lymphoblastic Leukemia without Down<br>Syndrome: A Report from the Children's Oncology Group. Blood, 2020, 136, 45-46.                                                                            | 1.4  | 6         |
| 31 | DYRK1A Is Required to Alleviate Replication Stress in KMT2A-Rearranged Acute Lymphoblastic Leukemia.<br>Blood, 2020, 136, 39-40.                                                                                                                       | 1.4  | 2         |
| 32 | Abstract B63: Immune gene expression profiling of acute myeloid leukemia identifies predictors of survival and actionable targets for treatment. , 2020, , .                                                                                           |      | 0         |
| 33 | Clinical significance of serial tumor next generation sequencing (NGS) in 155 pediatric cancer patients Journal of Clinical Oncology, 2020, 38, e13666-e13666.                                                                                         | 1.6  | 1         |
| 34 | Temsirolimus combined with etoposide and cyclophosphamide for relapsed/refractory acute<br>lymphoblastic leukemia: Therapeutic advances in Childhood Leukemia Consortium (TACL 2014-001)<br>trial Journal of Clinical Oncology, 2020, 38, 10512-10512. | 1.6  | 1         |
| 35 | Abstract 3234: Multi-antigen targeting of CD19, CD22 and TSLPR to prevent Ph-like ALL resistance. , 2020, , .                                                                                                                                          |      | 1         |
| 36 | Abstract 3893: Novel synergistic targets for combination therapy in Philadelphia chromosome-like                                                                                                                                                       |      | 0         |

acute lymphoblastic leukemia. , 2020, , .

| #  | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Abstract 5120: Surveying the AML surfaceome for novel immunotherapeutic targets. , 2020, , .                                                                                                                                                        |     | Ο         |
| 38 | Outcomes of Patients with Down Syndrome and CRLF2-Overexpressing Acute Lymphoblastic Leukemia (ALL): A Report from the Children's Oncology Group (COG). Blood, 2020, 136, 44-45.                                                                    | 1.4 | 1         |
| 39 | An Immune Senescence and Exhaustion-Related RNA Profile Predicts Clinical Outcomes in Acute<br>Myeloid Leukemia. Blood, 2020, 136, 26-27.                                                                                                           | 1.4 | 2         |
| 40 | Reducing Dependence on General Anesthesia for Pediatric Oncology Outpatients Undergoing Repeated<br>Lumbar Punctures. Blood, 2020, 136, 9-10.                                                                                                       | 1.4 | 0         |
| 41 | Mutation-specific signaling profiles and kinase inhibitor sensitivities of juvenile myelomonocytic leukemia revealed by induced pluripotent stem cells. Leukemia, 2019, 33, 181-190.                                                                | 7.2 | 43        |
| 42 | Development and Clinical Validation of a Large Fusion Gene Panel for Pediatric Cancers. Journal of<br>Molecular Diagnostics, 2019, 21, 873-883.                                                                                                     | 2.8 | 41        |
| 43 | Clinical utility of custom-designed NGS panel testing in pediatric tumors. Genome Medicine, 2019, 11, 32.                                                                                                                                           | 8.2 | 79        |
| 44 | Targeting Leukemia Stem Cells and the Immunological Bone Marrow Microenvironment. Resistance To<br>Targeted Anti-cancer Therapeutics, 2019, , 153-172.                                                                                              | 0.1 | 2         |
| 45 | Opportunities for immunotherapy in childhood acute myeloid leukemia. Blood Advances, 2019, 3,<br>3750-3758.                                                                                                                                         | 5.2 | 25        |
| 46 | A parsimonious 3-gene signature predicts clinical outcomes in an acute myeloid leukemia multicohort<br>study. Blood Advances, 2019, 3, 1330-1346.                                                                                                   | 5.2 | 36        |
| 47 | Targeting EIF4E signaling with ribavirin in infant acute lymphoblastic leukemia. Oncogene, 2019, 38,<br>2241-2262.                                                                                                                                  | 5.9 | 29        |
| 48 | Immune Landscapes Predict Chemotherapy Resistance and Anti-Leukemic Activity of Flotetuzumab, an<br>Investigational CD123×CD3 Bispecific Dart® Molecule, in Patients with Relapsed/Refractory Acute<br>Myeloid Leukemia. Blood, 2019, 134, 460-460. | 1.4 | 2         |
| 49 | Correlation of CD123 Expression Level with Disease Characteristics and Outcomes in Pediatric Acute<br>Myeloid Leukemia: A Report from the Children's Oncology Group. Blood, 2019, 134, 459-459.                                                     | 1.4 | 6         |
| 50 | PI3Kδ Inhibition Enhances Sensitivity of Primary High-Risk Childhood B-Cell Acute Lymphoblastic<br>Leukemia Cells to Glucocorticoid Chemotherapy. Blood, 2019, 134, 2572-2572.                                                                      | 1.4 | 0         |
| 51 | DYRK1A Is Regulated By Oncogenic KMT2A and Required for Survival of KMT2A-Rearranged Acute<br>Lymphoblastic Leukemia. Blood, 2019, 134, 2742-2742.                                                                                                  | 1.4 | 0         |
| 52 | Oncogene-Independent Adaptation of Pre-B Cell Receptor Signaling Confers Drug Resistance and Signaling Plasticity in Ph-like ALL. Blood, 2019, 134, 747-747.                                                                                        | 1.4 | 1         |
| 53 | Glucocorticoids Regulate the Splicing Factor MBNL1, a Potential Control Point for B-Cell Specification. Blood, 2019, 134, 2478-2478.                                                                                                                | 1.4 | 0         |
| 54 | Opportunities for immunotherapy in childhood acute myeloid leukemia. Hematology American Society<br>of Hematology Education Program, 2019, 2019, 218-225.                                                                                           | 2.5 | 1         |

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Inhibition of mTORC1/C2 signaling improves anti-leukemia efficacy of JAK/STAT blockade in CRLF2<br>rearranged and/or JAK driven Philadelphia chromosome-like acute B-cell lymphoblastic leukemia.<br>Oncotarget, 2018, 9, 8027-8041.      | 1.8  | 42        |
| 56 | Aberrant splicing in B-cell acute lymphoblastic leukemia. Nucleic Acids Research, 2018, 46, 11357-11369.                                                                                                                                  | 14.5 | 39        |
| 57 | Approach to Philadelphia Chromosome-Like Acute Lymphoblastic Leukemia. Clinical Lymphoma, Myeloma<br>and Leukemia, 2018, 18, S6-S8.                                                                                                       | 0.4  | О         |
| 58 | Clinical efficacy of ruxolitinib and chemotherapy in a child with Philadelphia chromosome-like acute<br>lymphoblastic leukemia with <i>GOLGA5-JAK2</i> fusion and induction failure. Haematologica, 2018,<br>103, e427-e431.              | 3.5  | 56        |
| 59 | Targeting Leukemia Stem Cells in the Bone Marrow Niche. Biomedicines, 2018, 6, 22.                                                                                                                                                        | 3.2  | 14        |
| 60 | Generation of a human Juvenile myelomonocytic leukemia iPSC line, CHOPi001-A, with a mutation in CBL. Stem Cell Research, 2018, 31, 157-160.                                                                                              | 0.7  | 11        |
| 61 | Acute myeloid leukemia chimeric antigen receptor T-cell immunotherapy: how far up the road have we traveled?. Therapeutic Advances in Hematology, 2018, 9, 135-148.                                                                       | 2.5  | 53        |
| 62 | Abstract 1630: FLT3 chimeric antigen receptor T cell therapy induces B to T cell lineage switch in infant acute lymphoblastic leukemia. , 2018, , .                                                                                       |      | 2         |
| 63 | A Phase 2 Study of Ruxolitinib with Chemotherapy in Children with Philadelphia Chromosome-like<br>Acute Lymphoblastic Leukemia (INCB18424-269/AALL1521): Dose-Finding Results from the Part 1 Safety<br>Phase. Blood, 2018, 132, 555-555. | 1.4  | 42        |
| 64 | Matched Targeted Therapy for Pediatric Patients with Relapsed, Refractory or High-Risk Leukemias: A<br>Report from the LEAP Consortium. Blood, 2018, 132, 261-261.                                                                        | 1.4  | 3         |
| 65 | Matched targeted therapy for pediatric patients with relapsed, refractory or high-risk leukemias: A<br>report from the LEAP consortium Journal of Clinical Oncology, 2018, 36, 10518-10518.                                               | 1.6  | 1         |
| 66 | Capturing the complexity of the immune microenvironment of acute myeloid leukemia with 3D biology technology Journal of Clinical Oncology, 2018, 36, 50-50.                                                                               | 1.6  | 8         |
| 67 | mTOR inhibition enhances efficacy of dasatinib in <i>ABL</i> -rearranged Ph-like B-ALL. Oncotarget, 2018, 9, 6562-6571.                                                                                                                   | 1.8  | 15        |
| 68 | Abstract 2280: Systematic analysis of causal noncoding mutations in pediatric B-cell acute<br>lymphoblastic leukemia. , 2018, , .                                                                                                         |      | 0         |
| 69 | Abstract B62: Immune gene expression profiling identifies predictors of relapse in childhood acute myeloid leukemia. , 2018, , .                                                                                                          |      | Ο         |
| 70 | Immunophenotypic and Genetic Overlap between JMML and CMML. Blood, 2018, 132, 1803-1803.                                                                                                                                                  | 1.4  | 0         |
| 71 | Improved surfaceome coverage with a labelâ€free nonaffinityâ€purified workflow. Proteomics, 2017, 17, 1600344.                                                                                                                            | 2.2  | 9         |
| 72 | Optimized depletion of chimeric antigen receptor T cells in murine xenograft models of human acute myeloid leukemia. Blood, 2017, 129, 2395-2407.                                                                                         | 1.4  | 148       |

| #  | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Potent efficacy of combined PI3K/mTOR and JAK or ABL inhibition in murine xenograft models of Ph-like<br>acute lymphoblastic leukemia. Blood, 2017, 129, 177-187.                                                                                            | 1.4 | 138       |
| 74 | Suppression of B-cell development genes is key to glucocorticoid efficacy in treatment of acute<br>lymphoblastic leukemia. Blood, 2017, 129, 3000-3008.                                                                                                      | 1.4 | 48        |
| 75 | How is the Ph-like signature being incorporated into ALL therapy?. Best Practice and Research in Clinical Haematology, 2017, 30, 222-228.                                                                                                                    | 1.7 | 16        |
| 76 | A phase 1 trial of temsirolimus and intensive re-induction chemotherapy for 2nd or greater relapse of<br>acute lymphoblastic leukaemia: a Children's Oncology Group study (ADVL1114). British Journal of<br>Haematology, 2017, 177, 467-474.                 | 2.5 | 32        |
| 77 | Genomic characterization of paediatric acute lymphoblastic leukaemia: an opportunity for precision medicine therapeutics. British Journal of Haematology, 2017, 176, 867-882.                                                                                | 2.5 | 62        |
| 78 | Philadelphia chromosome–like acute lymphoblastic leukemia. Blood, 2017, 130, 2064-2072.                                                                                                                                                                      | 1.4 | 198       |
| 79 | Targeting FLT3 Signaling in Childhood Acute Myeloid Leukemia. Frontiers in Pediatrics, 2017, 5, 248.                                                                                                                                                         | 1.9 | 25        |
| 80 | Targeted Therapy and Precision Medicine. , 2017, , 183-200.                                                                                                                                                                                                  |     | 1         |
| 81 | Inhibiting pathways involved in Bâ€cell development enhances sensitivity of Bâ€cell acute lymphoblastic<br>leukemia to glucocorticoids. FASEB Journal, 2017, 31, .                                                                                           | 0.5 | 0         |
| 82 | Redundant JAK, SRC and PI3 Kinase Signaling Pathways Regulate Cell Survival in Human Ph-like ALL Cell<br>Lines and Primary Cells. Blood, 2017, 130, 717-717.                                                                                                 | 1.4 | 3         |
| 83 | Preclinical Development of FLT3-Redirected Chimeric Antigen Receptor T Cell Immunotherapy for Acute<br>Myeloid Leukemia. Blood, 2016, 128, 1072-1072.                                                                                                        | 1.4 | 17        |
| 84 | mTOR Kinase Inhibitors Enhance Efficacy of TKIs in Preclinical Models of Ph-like B-ALL. Blood, 2016, 128, 2763-2763.                                                                                                                                         | 1.4 | 5         |
| 85 | Evaluating on-Target Toxicity of Hematopoietic-Targeting Cars Demonstrates Target-Nonspecific Suppression of Marrow Progenitors. Blood, 2016, 128, 3357-3357.                                                                                                | 1.4 | 2         |
| 86 | Adaptive Reactivation of Signaling Pathways As a Novel Mechanism of Resistance to JAK Inhibitors in<br>Ph-like ALL. Blood, 2016, 128, 755-755.                                                                                                               | 1.4 | 4         |
| 87 | Abstract 2438: Genome-wide screen reveals a role for glucocorticoids in B cell development that can be exploited to improve treatment of B cell acute lymphoblastic leukemia. , 2016, , .                                                                    |     | 0         |
| 88 | Preclinical Development of a T-Cell ALL CAR Demonstrates That Differences in CAR Membrane<br>Distribution May Impact Efficacy. Blood, 2016, 128, 4019-4019.                                                                                                  | 1.4 | 0         |
| 89 | Childhood acute lymphoblastic leukemia: Integrating genomics into therapy. Cancer, 2015, 121, 3577-3590.                                                                                                                                                     | 4.1 | 59        |
| 90 | A phase 1 dosing study of ruxolitinib in children with relapsed or refractory solid tumors, leukemias, or myeloproliferative neoplasms: A Children's Oncology Group phase 1 consortium study (ADVL1011).<br>Pediatric Blood and Cancer, 2015, 62, 1717-1724. | 1.5 | 103       |

| #   | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Eradication of B-ALL using chimeric antigen receptor–expressing T cells targeting the TSLPR oncoprotein. Blood, 2015, 126, 629-639.                                                                                                                      | 1.4  | 110       |
| 92  | CD19-redirected chimeric antigen receptor-modified T cells: a promising immunotherapy for children<br>and adults with B-cell acute lymphoblastic leukemia (ALL). Therapeutic Advances in Hematology, 2015, 6,<br>228-241.                                | 2.5  | 89        |
| 93  | Efficacy of JAK/STAT pathway inhibition in murine xenograft models of early T-cell precursor (ETP)<br>acute lymphoblastic leukemia. Blood, 2015, 125, 1759-1767.                                                                                         | 1.4  | 189       |
| 94  | Histology of Testicular Biopsies Obtained for Experimental Fertility Preservation Protocol in Boys with Cancer. Journal of Urology, 2015, 194, 1420-1424.                                                                                                | 0.4  | 46        |
| 95  | Combined Targeting of JAK2 with a Type II JAK2 Inhibitor and mTOR with a TOR Kinase Inhibitor<br>Constitutes Synthetic Activity in JAK2-Driven Ph-like Acute Lymphoblastic Leukemia. Blood, 2015, 126,<br>2529-2529.                                     | 1.4  | 3         |
| 96  | Efficient Termination of CD123-Redirected Chimeric Antigen Receptor T Cells for Acute Myeloid<br>Leukemia to Mitigate Toxicity. Blood, 2015, 126, 565-565.                                                                                               | 1.4  | 14        |
| 97  | Potent Efficacy of Combined PI3K/mTOR and JAK or SRC/ABL Inhibition in Philadelphia Chromosome-like<br>Acute Lymphoblastic Leukemia. Blood, 2015, 126, 798-798.                                                                                          | 1.4  | 4         |
| 98  | Temsirolimus and intensive re-induction chemotherapy for 2nd or greater relapse of acute<br>lymphoblastic leukemia (ALL): A Children's Oncology Group study Journal of Clinical Oncology, 2015,<br>33, 10029-10029.                                      | 1.6  | 2         |
| 99  | Mixed Phenotype Acute Leukemia with Low Hypodiploidy in a Pediatric Patient. Journal of Pediatric Oncology, 2015, 3, 24-28.                                                                                                                              | 0.1  | 4         |
| 100 | Targeting the PI3K/mTOR Pathway in Pediatric Hematologic Malignancies. Frontiers in Oncology, 2014,<br>4, 108.                                                                                                                                           | 2.8  | 92        |
| 101 | Targetable Kinase-Activating Lesions in Ph-like Acute Lymphoblastic Leukemia. New England Journal of<br>Medicine, 2014, 371, 1005-1015.                                                                                                                  | 27.0 | 1,161     |
| 102 | Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen<br>receptor–modified T cells. Blood, 2014, 123, 2343-2354.                                                                                                | 1.4  | 396       |
| 103 | Dual Targeting of JAK2 Signaling with a Type II JAK2 Inhibitor and of mTOR with a TOR Kinase Inhibitor<br>Induces Apoptosis in CRLF2-Rearranged Ph-like Acute Lymphoblastic Leukemia. Blood, 2014, 124,<br>3706-3706.                                    | 1.4  | 1         |
| 104 | A phase I study of ruxolitinib in children with relapsed/refractory solid tumors, leukemias, or<br>myeloproliferative neoplasms: A Children's Oncology Group Phase I Consortium study (ADVL1011)<br>Journal of Clinical Oncology, 2014, 32, 10019-10019. | 1.6  | 1         |
| 105 | Molecular Therapeutic Approaches for Pediatric Acute Myeloid Leukemia. Frontiers in Oncology, 2014,<br>4, 55.                                                                                                                                            | 2.8  | 35        |
| 106 | Patient-derived induced pluripotent stem cells recapitulate hematopoietic abnormalities of juvenile<br>myelomonocytic leukemia. Blood, 2013, 121, 4925-4929.                                                                                             | 1.4  | 104       |
| 107 | Induction mortality and resource utilization in children treated for acute myeloid leukemia at freeâ€standing pediatric hospitals in the United States. Cancer, 2013, 119, 1916-1923.                                                                    | 4.1  | 37        |
| 108 | Anti-CD123 Chimeric Antigen Receptor T Cells (CART-123) Provide A Novel Myeloablative Conditioning<br>Regimen That Eradicates Human Acute Myeloid Leukemia In Preclinical Models. Blood, 2013, 122, 143-143.                                             | 1.4  | 9         |

| #   | Article                                                                                                                                                                                      | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | In Vivo Efficacy of PI3K Pathway Signaling Inhibition for Philadelphia Chromosome-Like Acute<br>Lymphoblastic Leukemia. Blood, 2013, 122, 2672-2672.                                         | 1.4 | 5         |
| 110 | Development of Anaplastic Wilms Tumor and Subsequent Relapse in a Child With<br>Diaphanospondylodysostosis. Journal of Pediatric Hematology/Oncology, 2012, 34, 548-551.                     | 0.6 | 9         |
| 111 | Outcome modeling with CRLF2, IKZF1, JAK, and minimal residual disease in pediatric acute lymphoblastic leukemia: a Children's Oncology Group Study. Blood, 2012, 119, 3512-3522.             | 1.4 | 210       |
| 112 | Aberrant STAT5 and PI3K/mTOR pathway signaling occurs in human CRLF2-rearranged B-precursor acute<br>lymphoblastic leukemia. Blood, 2012, 120, 833-842.                                      | 1.4 | 201       |
| 113 | Targeting JAK1/2 and mTOR in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood, 2012, 120, 3510-3518.                                                                   | 1.4 | 263       |
| 114 | Labial Ecthyma Gangrenosum in an Immunocompromised Infant With Leukemia: Heightening Awareness<br>for the Urologist. Urology, 2012, 80, 1366-1368.                                           | 1.0 | 9         |
| 115 | Mortality and Resource Utilization in Children with De Novo Acute Myeloid Leukemia Treated with<br>Chemotherapy and Gemtuzumab Ozogamicin in the United States. Blood, 2012, 120, 4283-4283. | 1.4 | 0         |
| 116 | Understanding the Biology of CRLF2-Overexpressing Acute Lymphoblastic Leukemia. Critical Reviews in Oncogenesis, 2011, 16, 13-24.                                                            | 0.4 | 39        |
| 117 | Targeting mTOR and JAK2 in Xenograft Models of CRLF2-Overexpressing Acute Lymphoblastic Leukemia<br>(ALL). Blood, 2011, 118, 249-249.                                                        | 1.4 | 1         |
| 118 | Thymic Stromal Lymphopoietin Stimulation of Pediatric Acute Lymphoblastic Leukemias with CRLF2<br>Alterations Induces JAK/STAT and PI3K Phosphosignaling. Blood, 2010, 116, 410-410.         | 1.4 | 4         |
| 119 | JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9414-9418.                    | 7.1 | 516       |
| 120 | Antigen loading of DCs with irradiated apoptotic tumor cells induces improved anti-tumor immunity compared to other approaches. Cancer Immunology, Immunotherapy, 2009, 58, 1257-1264.       | 4.2 | 29        |
| 121 | Influenzaâ€associated morbidity in children with cancer. Pediatric Blood and Cancer, 2008, 50, 983-987.                                                                                      | 1.5 | 56        |