Sarah K Tasian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7816248/publications.pdf

Version: 2024-02-01

136950 82547 5,719 121 32 72 citations h-index g-index papers 129 129 129 6920 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Targetable Kinase-Activating Lesions in Ph-like Acute Lymphoblastic Leukemia. New England Journal of Medicine, 2014, 371, 1005-1015.	27.0	1,161
2	JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9414-9418.	7.1	516
3	Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor–modified T cells. Blood, 2014, 123, 2343-2354.	1.4	396
4	Targeting JAK1/2 and mTOR in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood, 2012, 120, 3510-3518.	1.4	263
5	Outcome modeling with CRLF2, IKZF1, JAK, and minimal residual disease in pediatric acute lymphoblastic leukemia: a Children's Oncology Group Study. Blood, 2012, 119, 3512-3522.	1.4	210
6	Aberrant STAT5 and PI3K/mTOR pathway signaling occurs in human CRLF2-rearranged B-precursor acute lymphoblastic leukemia. Blood, 2012, 120, 833-842.	1.4	201
7	Philadelphia chromosome–like acute lymphoblastic leukemia. Blood, 2017, 130, 2064-2072.	1.4	198
8	Efficacy of JAK/STAT pathway inhibition in murine xenograft models of early T-cell precursor (ETP) acute lymphoblastic leukemia. Blood, 2015, 125, 1759-1767.	1.4	189
9	Optimized depletion of chimeric antigen receptor T cells in murine xenograft models of human acute myeloid leukemia. Blood, 2017, 129, 2395-2407.	1.4	148
10	Potent efficacy of combined PI3K/mTOR and JAK or ABL inhibition in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood, 2017, 129, 177-187.	1.4	138
11	Immune landscapes predict chemotherapy resistance and immunotherapy response in acute myeloid leukemia. Science Translational Medicine, 2020, 12, .	12.4	117
12	Eradication of B-ALL using chimeric antigen receptor–expressing T cells targeting the TSLPR oncoprotein. Blood, 2015, 126, 629-639.	1.4	110
13	Patient-derived induced pluripotent stem cells recapitulate hematopoietic abnormalities of juvenile myelomonocytic leukemia. Blood, 2013, 121, 4925-4929.	1.4	104
14	A phase 1 dosing study of ruxolitinib in children with relapsed or refractory solid tumors, leukemias, or myeloproliferative neoplasms: A Children's Oncology Group phase 1 consortium study (ADVL1011). Pediatric Blood and Cancer, 2015, 62, 1717-1724.	1.5	103
15	Targeting the PI3K/mTOR Pathway in Pediatric Hematologic Malignancies. Frontiers in Oncology, 2014, 4, 108.	2.8	92
16	CD19-redirected chimeric antigen receptor-modified T cells: a promising immunotherapy for children and adults with B-cell acute lymphoblastic leukemia (ALL). Therapeutic Advances in Hematology, 2015, 6, 228-241.	2.5	89
17	Clinical utility of custom-designed NGS panel testing in pediatric tumors. Genome Medicine, 2019, 11, 32.	8.2	79
18	Clinical diagnostics and treatment strategies for Philadelphia chromosome–like acute lymphoblastic leukemia. Blood Advances, 2020, 4, 218-228.	5.2	69

#	Article	IF	CITATIONS
19	Genomic characterization of paediatric acute lymphoblastic leukaemia: an opportunity for precision medicine therapeutics. British Journal of Haematology, 2017, 176, 867-882.	2.5	62
20	Childhood acute lymphoblastic leukemia: Integrating genomics into therapy. Cancer, 2015, 121, 3577-3590.	4.1	59
21	Influenzaâ€associated morbidity in children with cancer. Pediatric Blood and Cancer, 2008, 50, 983-987.	1.5	56
22	Clinical efficacy of ruxolitinib and chemotherapy in a child with Philadelphia chromosome-like acute lymphoblastic leukemia with <i>GOLGA5-JAK2</i> fusion and induction failure. Haematologica, 2018, 103, e427-e431.	3.5	56
23	Acute myeloid leukemia chimeric antigen receptor T-cell immunotherapy: how far up the road have we traveled?. Therapeutic Advances in Hematology, 2018, 9, 135-148.	2.5	53
24	Suppression of B-cell development genes is key to glucocorticoid efficacy in treatment of acute lymphoblastic leukemia. Blood, 2017, 129, 3000-3008.	1.4	48
25	Histology of Testicular Biopsies Obtained for Experimental Fertility Preservation Protocol in Boys with Cancer. Journal of Urology, 2015, 194, 1420-1424.	0.4	46
26	Cytosine base editing enables quadruple-edited allogeneic CART cells for T-ALL. Blood, 2022, 140, 619-629.	1.4	45
27	Mutation-specific signaling profiles and kinase inhibitor sensitivities of juvenile myelomonocytic leukemia revealed by induced pluripotent stem cells. Leukemia, 2019, 33, 181-190.	7.2	43
28	Inhibition of mTORC1/C2 signaling improves anti-leukemia efficacy of JAK/STAT blockade in CRLF2 rearranged and/or JAK driven Philadelphia chromosome-like acute B-cell lymphoblastic leukemia. Oncotarget, 2018, 9, 8027-8041.	1.8	42
29	A Phase 2 Study of Ruxolitinib with Chemotherapy in Children with Philadelphia Chromosome-like Acute Lymphoblastic Leukemia (INCB18424-269/AALL1521): Dose-Finding Results from the Part 1 Safety Phase. Blood, 2018, 132, 555-555.	1.4	42
30	Development and Clinical Validation of a Large Fusion Gene Panel for Pediatric Cancers. Journal of Molecular Diagnostics, 2019, 21, 873-883.	2.8	41
31	Understanding the Biology of CRLF2-Overexpressing Acute Lymphoblastic Leukemia. Critical Reviews in Oncogenesis, 2011, 16, 13-24.	0.4	39
32	Aberrant splicing in B-cell acute lymphoblastic leukemia. Nucleic Acids Research, 2018, 46, 11357-11369.	14.5	39
33	Induction mortality and resource utilization in children treated for acute myeloid leukemia at freeâ€standing pediatric hospitals in the United States. Cancer, 2013, 119, 1916-1923.	4.1	37
34	A parsimonious 3-gene signature predicts clinical outcomes in an acute myeloid leukemia multicohort study. Blood Advances, 2019, 3, 1330-1346.	5.2	36
35	Molecular Therapeutic Approaches for Pediatric Acute Myeloid Leukemia. Frontiers in Oncology, 2014, 4, 55.	2.8	35
36	Activated natural killer cells predict poor clinical prognosis in high-risk B- and T-cell acute lymphoblastic leukemia. Blood, 2021, 138, 1465-1480.	1.4	34

#	Article	IF	CITATIONS
37	A phase 1 trial of temsirolimus and intensive re-induction chemotherapy for 2nd or greater relapse of acute lymphoblastic leukaemia: a Children's Oncology Group study (ADVL1114). British Journal of Haematology, 2017, 177, 467-474.	2.5	32
38	Modulation of CD22 Protein Expression in Childhood Leukemia by Pervasive Splicing Aberrations: Implications for CD22-Directed Immunotherapies. Blood Cancer Discovery, 2022, 3, 103-115.	5.0	31
39	Clinical utilization of blinatumomab and inotuzumab immunotherapy in children with relapsed or refractory Bâ€acute lymphoblastic leukemia. Pediatric Blood and Cancer, 2021, 68, e28718.	1.5	30
40	Oncogene-independent BCR-like signaling adaptation confers drug resistance in Ph-like ALL. Journal of Clinical Investigation, 2020, 130, 3637-3653.	8.2	30
41	Antigen loading of DCs with irradiated apoptotic tumor cells induces improved anti-tumor immunity compared to other approaches. Cancer Immunology, Immunotherapy, 2009, 58, 1257-1264.	4.2	29
42	Targeting EIF4E signaling with ribavirin in infant acute lymphoblastic leukemia. Oncogene, 2019, 38, 2241-2262.	5.9	29
43	Systematic preclinical evaluation of CD33-directed chimeric antigen receptor T cell immunotherapy for acute myeloid leukemia defines optimized construct design., 2021, 9, e003149.		28
44	Targeting FLT3 Signaling in Childhood Acute Myeloid Leukemia. Frontiers in Pediatrics, 2017, 5, 248.	1.9	25
45	Opportunities for immunotherapy in childhood acute myeloid leukemia. Blood Advances, 2019, 3, 3750-3758.	5.2	25
46	Molecular and phenotypic diversity of <l>CBL</l> -mutated juvenile myelomonocytic leukemia. Haematologica, 2022, 107, 178-186.	3.5	25
47	Paediatric Strategy Forum for medicinal product development of chimeric antigen receptor T-cells in children and adolescents with cancer. European Journal of Cancer, 2022, 160, 112-133.	2.8	24
48	Direct long-read RNA sequencing identifies a subset of questionable exitrons likely arising from reverse transcription artifacts. Genome Biology, 2021, 22, 190.	8.8	20
49	CD123 Expression Is Associated With High-Risk Disease Characteristics in Childhood Acute Myeloid Leukemia: A Report From the Children's Oncology Group. Journal of Clinical Oncology, 2022, 40, 252-261.	1.6	18
50	Preclinical Development of FLT3-Redirected Chimeric Antigen Receptor T Cell Immunotherapy for Acute Myeloid Leukemia. Blood, 2016, 128, 1072-1072.	1.4	17
51	How is the Ph-like signature being incorporated into ALL therapy?. Best Practice and Research in Clinical Haematology, 2017, 30, 222-228.	1.7	16
52	Matched Targeted Therapy for Pediatric Patients with Relapsed, Refractory, or High-Risk Leukemias: A Report from the LEAP Consortium. Cancer Discovery, 2021, 11, 1424-1439.	9.4	16
53	Activated interleukin-7 receptor signaling drives B-cell acute lymphoblastic leukemia in mice. Leukemia, 2022, 36, 42-57.	7.2	16
54	Combinatorial efficacy of entospletinib and chemotherapy in patient-derived xenograft models of infant acute lymphoblastic leukemia. Haematologica, 2021, 106, 1067-1078.	3.5	15

#	Article	IF	CITATIONS
55	mTOR inhibition enhances efficacy of dasatinib in <i>ABL</i> -rearranged Ph-like B-ALL. Oncotarget, 2018, 9, 6562-6571.	1.8	15
56	Targeting Leukemia Stem Cells in the Bone Marrow Niche. Biomedicines, 2018, 6, 22.	3.2	14
57	Diverse noncoding mutations contribute to deregulation of cis-regulatory landscape in pediatric cancers. Science Advances, 2020, 6, eaba3064.	10.3	14
58	Efficient Termination of CD123-Redirected Chimeric Antigen Receptor T Cells for Acute Myeloid Leukemia to Mitigate Toxicity. Blood, 2015, 126, 565-565.	1.4	14
59	The future of cellular immunotherapy for childhood leukemia. Current Opinion in Pediatrics, 2020, 32, 13-25.	2.0	13
60	Therapeutic potential of ruxolitinib and ponatinib in patients with <i>EPOR</i> -rearranged Philadelphia chromosome-like acute lymphoblastic leukemia. Haematologica, 2021, 106, 2763-2767.	3.5	12
61	Generation of a human Juvenile myelomonocytic leukemia iPSC line, CHOPi001-A, with a mutation in CBL. Stem Cell Research, 2018, 31, 157-160.	0.7	11
62	Diagnostic Challenges in Pediatric Hemophagocytic Lymphohistiocytosis. Journal of Clinical Immunology, 2021, 41, 1213-1218.	3.8	10
63	Development of Anaplastic Wilms Tumor and Subsequent Relapse in a Child With Diaphanospondylodysostosis. Journal of Pediatric Hematology/Oncology, 2012, 34, 548-551.	0.6	9
64	Labial Ecthyma Gangrenosum in an Immunocompromised Infant With Leukemia: Heightening Awareness for the Urologist. Urology, 2012, 80, 1366-1368.	1.0	9
65	Improved surfaceome coverage with a labelâ€free nonaffinityâ€purified workflow. Proteomics, 2017, 17, 1600344.	2.2	9
66	Anti-CD123 Chimeric Antigen Receptor T Cells (CART-123) Provide A Novel Myeloablative Conditioning Regimen That Eradicates Human Acute Myeloid Leukemia In Preclinical Models. Blood, 2013, 122, 143-143.	1.4	9
67	Network Analysis Reveals Synergistic Genetic Dependencies for Rational Combination Therapy in Philadelphia Chromosome–Like Acute Lymphoblastic Leukemia. Clinical Cancer Research, 2021, 27, 5109-5122.	7.0	8
68	Capturing the complexity of the immune microenvironment of acute myeloid leukemia with 3D biology technology Journal of Clinical Oncology, 2018, 36, 50-50.	1.6	8
69	Temsirolimus combined with cyclophosphamide and etoposide for pediatric patients with relapsed/refractory acute lymphoblastic leukemia: a Therapeutic Advances in Childhood Leukemia Consortium trial (TACL 2014-001). Haematologica, 2022, 107, 2295-2303.	3.5	8
70	Correlation of CD123 Expression Level with Disease Characteristics and Outcomes in Pediatric Acute Myeloid Leukemia: A Report from the Children's Oncology Group. Blood, 2019, 134, 459-459.	1.4	6
71	Outcomes of Patients with CRLF2-Overexpressing Acute Lymphoblastic Leukemia without Down Syndrome: A Report from the Children's Oncology Group. Blood, 2020, 136, 45-46.	1.4	6
72	Has Ph-like ALL Superseded Ph+ ALL as the Least Favorable Subtype?. Best Practice and Research in Clinical Haematology, 2021, 34, 101331.	1.7	6

#	Article	IF	CITATIONS
73	In Vivo Efficacy of PI3K Pathway Signaling Inhibition for Philadelphia Chromosome-Like Acute Lymphoblastic Leukemia. Blood, 2013, 122, 2672-2672.	1.4	5
74	mTOR Kinase Inhibitors Enhance Efficacy of TKIs in Preclinical Models of Ph-like B-ALL. Blood, 2016, 128, 2763-2763.	1.4	5
75	Thymic Stromal Lymphopoietin Stimulation of Pediatric Acute Lymphoblastic Leukemias with CRLF2 Alterations Induces JAK/STAT and PI3K Phosphosignaling. Blood, 2010, 116, 410-410.	1.4	4
76	Potent Efficacy of Combined PI3K/mTOR and JAK or SRC/ABL Inhibition in Philadelphia Chromosome-like Acute Lymphoblastic Leukemia. Blood, 2015, 126, 798-798.	1.4	4
77	Adaptive Reactivation of Signaling Pathways As a Novel Mechanism of Resistance to JAK Inhibitors in Ph-like ALL. Blood, 2016, 128, 755-755.	1.4	4
78	Mixed Phenotype Acute Leukemia with Low Hypodiploidy in a Pediatric Patient. Journal of Pediatric Oncology, 2015, 3, 24-28.	0.1	4
79	Targeted therapy or transplantation for paediatric ABL-class Ph-like acute lymphocytic leukaemia?. Lancet Haematology,the, 2020, 7, e858-e859.	4.6	3
80	Matched Targeted Therapy for Pediatric Patients with Relapsed, Refractory or High-Risk Leukemias: A Report from the LEAP Consortium. Blood, 2018, 132, 261-261.	1.4	3
81	Combined Targeting of JAK2 with a Type II JAK2 Inhibitor and mTOR with a TOR Kinase Inhibitor Constitutes Synthetic Activity in JAK2-Driven Ph-like Acute Lymphoblastic Leukemia. Blood, 2015, 126, 2529-2529.	1.4	3
82	Redundant JAK, SRC and PI3 Kinase Signaling Pathways Regulate Cell Survival in Human Ph-like ALL Cell Lines and Primary Cells. Blood, 2017, 130, 717-717.	1.4	3
83	Targeting Leukemia Stem Cells and the Immunological Bone Marrow Microenvironment. Resistance To Targeted Anti-cancer Therapeutics, 2019, , 153-172.	0.1	2
84	Abstract 1630: FLT3 chimeric antigen receptor T cell therapy induces B to T cell lineage switch in infant acute lymphoblastic leukemia. , 2018, , .		2
85	Immune Landscapes Predict Chemotherapy Resistance and Anti-Leukemic Activity of Flotetuzumab, an Investigational CD123×CD3 Bispecific Dart® Molecule, in Patients with Relapsed/Refractory Acute Myeloid Leukemia. Blood, 2019, 134, 460-460.	1.4	2
86	DYRK1A Is Required to Alleviate Replication Stress in KMT2A-Rearranged Acute Lymphoblastic Leukemia. Blood, 2020, 136, 39-40.	1.4	2
87	Evaluating on-Target Toxicity of Hematopoietic-Targeting Cars Demonstrates Target-Nonspecific Suppression of Marrow Progenitors. Blood, 2016, 128, 3357-3357.	1.4	2
88	Temsirolimus and intensive re-induction chemotherapy for 2nd or greater relapse of acute lymphoblastic leukemia (ALL): A Children's Oncology Group study Journal of Clinical Oncology, 2015, 33, 10029-10029.	1.6	2
89	An Immune Senescence and Exhaustion-Related RNA Profile Predicts Clinical Outcomes in Acute Myeloid Leukemia. Blood, 2020, 136, 26-27.	1.4	2
90	Transient atypical monocytosis after $\hat{l}\pm\hat{l}^2$ Tâ \in cellâ \in depleted haploidentical hematopoietic stem cell transplantation. Pediatric Blood and Cancer, 2020, 67, e28139.	1.5	1

#	Article	IF	CITATIONS
91	Dual Targeting of JAK2 Signaling with a Type II JAK2 Inhibitor and of mTOR with a TOR Kinase Inhibitor Induces Apoptosis in CRLF2-Rearranged Ph-like Acute Lymphoblastic Leukemia. Blood, 2014, 124, 3706-3706.	1.4	1
92	A phase I study of ruxolitinib in children with relapsed/refractory solid tumors, leukemias, or myeloproliferative neoplasms: A Children's Oncology Group Phase I Consortium study (ADVL1011) Journal of Clinical Oncology, 2014, 32, 10019-10019.	1.6	1
93	Matched targeted therapy for pediatric patients with relapsed, refractory or high-risk leukemias: A report from the LEAP consortium Journal of Clinical Oncology, 2018, 36, 10518-10518.	1.6	1
94	Targeting mTOR and JAK2 in Xenograft Models of CRLF2-Overexpressing Acute Lymphoblastic Leukemia (ALL). Blood, 2011, 118, 249-249.	1.4	1
95	Targeted Therapy and Precision Medicine. , 2017, , 183-200.		1
96	Oncogene-Independent Adaptation of Pre-B Cell Receptor Signaling Confers Drug Resistance and Signaling Plasticity in Ph-like ALL. Blood, 2019, 134, 747-747.	1.4	1
97	Opportunities for immunotherapy in childhood acute myeloid leukemia. Hematology American Society of Hematology Education Program, 2019, 2019, 218-225.	2.5	1
98	Clinical significance of serial tumor next generation sequencing (NGS) in 155 pediatric cancer patients Journal of Clinical Oncology, 2020, 38, e13666-e13666.	1.6	1
99	Temsirolimus combined with etoposide and cyclophosphamide for relapsed/refractory acute lymphoblastic leukemia: Therapeutic advances in Childhood Leukemia Consortium (TACL 2014-001) trial Journal of Clinical Oncology, 2020, 38, 10512-10512.	1.6	1
100	Abstract 3234: Multi-antigen targeting of CD19, CD22 and TSLPR to prevent Ph-like ALL resistance. , 2020, , .		1
101	Transcriptomic Features of Immune Exhaustion and Senescence Predict Outcomes and Define Checkpoint Blockade-Unresponsive Microenvironments in Acute Myeloid Leukemia. Blood, 2021, 138, 223-223.	1.4	1
102	Outcomes of Patients with Down Syndrome and CRLF2-Overexpressing Acute Lymphoblastic Leukemia (ALL): A Report from the Children's Oncology Group (COG). Blood, 2020, 136, 44-45.	1.4	1
103	Minimal residual disease comparison between lg/TCR PCR versus NGS assays in children with Philadelphia chromosome-positive acute lymphoblastic leukemia: A report from the COG AALL1631 study Journal of Clinical Oncology, 2022, 40, 10023-10023.	1.6	1
104	Approach to Philadelphia Chromosome-Like Acute Lymphoblastic Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2018, 18, S6-S8.	0.4	0
105	Are we ABL to do better for children with BCR–ABL1-like acute lymphocytic leukaemia?. Lancet Haematology,the, 2021, 8, e6-e8.	4.6	0
106	Phat Mass and Ph-like ALL: A Link Between Obesity and CRLF2 Rearrangements?., 2021, 18,.		0
107	Mortality and Resource Utilization in Children with De Novo Acute Myeloid Leukemia Treated with Chemotherapy and Gemtuzumab Ozogamicin in the United States. Blood, 2012, 120, 4283-4283.	1.4	0
108	Abstract 2438: Genome-wide screen reveals a role for glucocorticoids in B cell development that can be exploited to improve treatment of B cell acute lymphoblastic leukemia. , 2016, , .		0

#	Article	IF	CITATIONS
109	Preclinical Development of a T-Cell ALL CAR Demonstrates That Differences in CAR Membrane Distribution May Impact Efficacy. Blood, 2016, 128, 4019-4019.	1.4	0
110	Inhibiting pathways involved in Bâ€cell development enhances sensitivity of Bâ€cell acute lymphoblastic leukemia to glucocorticoids. FASEB Journal, 2017, 31, .	0.5	0
111	Abstract 2280: Systematic analysis of causal noncoding mutations in pediatric B-cell acute lymphoblastic leukemia., 2018,,.		0
112	Abstract B62: Immune gene expression profiling identifies predictors of relapse in childhood acute myeloid leukemia. , 2018, , .		0
113	Immunophenotypic and Genetic Overlap between JMML and CMML. Blood, 2018, 132, 1803-1803.	1.4	0
114	PI3Kδ Inhibition Enhances Sensitivity of Primary High-Risk Childhood B-Cell Acute Lymphoblastic Leukemia Cells to Glucocorticoid Chemotherapy. Blood, 2019, 134, 2572-2572.	1.4	0
115	DYRK1A Is Regulated By Oncogenic KMT2A and Required for Survival of KMT2A-Rearranged Acute Lymphoblastic Leukemia. Blood, 2019, 134, 2742-2742.	1.4	0
116	Glucocorticoids Regulate the Splicing Factor MBNL1, a Potential Control Point for B-Cell Specification. Blood, 2019, 134, 2478-2478.	1.4	0
117	Abstract B63: Immune gene expression profiling of acute myeloid leukemia identifies predictors of survival and actionable targets for treatment. , 2020, , .		0
118	Abstract 3893: Novel synergistic targets for combination therapy in Philadelphia chromosome-like acute lymphoblastic leukemia., 2020,,.		0
119	Abstract 5120: Surveying the AML surfaceome for novel immunotherapeutic targets. , 2020, , .		0
120	Ph-Like ALL: Diagnosis and Management. Hematologic Malignancies, 2021, , 235-247.	0.2	0
121	Reducing Dependence on General Anesthesia for Pediatric Oncology Outpatients Undergoing Repeated Lumbar Punctures. Blood, 2020, 136, 9-10.	1.4	O