
Mohamed Goune

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7813597/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dual-Phase Steels: The First Family of Advanced High Strength Steels. , 2022, , 37-62.		3
2	Novel lead-free BCZT-based ceramic with thermally-stable recovered energy density and increased energy storage efficiency. Journal of Materiomics, 2022, 8, 873-881.	5.7	8
3	A flexible self-poled piezocomposite nanogenerator based on H ₂ (Zr _{0.1} Ti _{0.9}) ₃ O ₇ nanowires and polylactic acid biopolymer. Sustainable Energy and Fuels, 2022, 6, 1983-1991.	4.9	12
4	Enhanced near-ambient temperature energy storage and electrocaloric effect in the lead-free BaTi0.89Sn0.11O3 ceramic synthesized by sol–gel method. Journal of Materials Science: Materials in Electronics, 2022, 33, 12900-12911.	2.2	5
5	Low-temperature synthesis and characterization of lead-free BaTi0.89Sn0.11O3 piezoelectric powders. Materials Today: Proceedings, 2022, , .	1.8	0
6	Lead-free nanocomposite piezoelectric nanogenerator film for biomechanical energy harvesting. Nano Energy, 2021, 81, 105661.	16.0	79
7	Morphogenesis mechanisms in the hydrothermal growth of lead-free BCZT nanostructured multipods. CrystEngComm, 2021, 23, 5249-5256.	2.6	11
8	Thermally-stable high energy storage performances and large electrocaloric effect over a broad temperature span in lead-free BCZT ceramic. RSC Advances, 2020, 10, 30746-30755.	3.6	43
9	Structural, dielectric, and ferroelectric properties of lead-free BCZT ceramics elaborated by low-temperature hydrothermal processing. Journal of Materials Science: Materials in Electronics, 2020, 31, 10096-10104.	2.2	31
10	Reflections on the Analysis of Interfaces and Grain Boundaries by Atom Probe Tomography. Microscopy and Microanalysis, 2020, 26, 247-257.	0.4	30
11	Carbon heterogeneities in austenite during Quenching & Partitioning (Q&P) process revealed by in situ High Energy X-Ray Diffraction (HEXRD) experiments. Scripta Materialia, 2020, 181, 108-114.	5.2	9
12	Enhanced dielectric and electrocaloric properties in lead-free rod-like BCZT ceramics. Journal of Advanced Ceramics, 2020, 9, 210-219.	17.4	45
13	Microstructure Evolution and Competitive Reactions during Quenching and Partitioning of a Model Fe–C–Mn–Si Alloy. Metals, 2020, 10, 137.	2.3	14
14	The Basics to Better Understand Couplings in Physical Metallurgy. , 2019, , 25-48.		0
15	Time-evolution of microstructure and mechanical behaviour of double annealed medium Mn steel. Materials Science and Technology, 2019, 35, 2076-2083.	1.6	8
16	Phase transitions, energy storage performances and electrocaloric effect of the lead-free Ba0.85Ca0.15Zr0.10Ti0.90O3 ceramic relaxor. Journal of Materials Science: Materials in Electronics, 2019, 30, 6430-6438.	2.2	58
17	Enhancement of dielectric properties of lead-free BCZT ferroelectric ceramics by grain size engineering. Superlattices and Microstructures, 2019, 127, 109-117.	3.1	47
18	Very-low temperature synthesis of pure and crystalline lead-free Ba .85 Ca .15 Zr .1 Ti .9 O 3 ceramic. Ceramics International, 2018, 44, 10997-11000.	4.8	30

Mohamed Goune

#	Article	IF	CITATIONS
19	Numerical Investigations of the Effects of Substitutional Elements on the Interface Conditions During Partitioning in Quenching and Partitioning Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 2568-2572.	2.2	2
20	Hydrothermal Sintering for Densification of Silica. Evidence for the Role of Water. Journal of the European Ceramic Society, 2018, 38, 1860-1870.	5.7	53
21	Carbon diffusivity and kinetics of spinodal decomposition of martensite in a model Fe-Ni-C alloy. Materials Letters, 2018, 214, 213-216.	2.6	17
22	Internal stresses and carbon enrichment in austenite of Quenching and Partitioning steels from high energy X-ray diffraction experiments. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 710, 245-250.	5.6	58
23	Link between Microstructure and Mechanical Behavior of Double Annealed Medium Mn Steel. Materials Science Forum, 2018, 941, 524-529.	0.3	0
24	Contribution of Local Analysis Techniques for the Characterization of Iron and Alloying Elements in Nitrides: Consequences on the Precipitation Process in Fe–Si and Fe–Cr Nitrided Alloys. Materials, 2018, 11, 1409.	2.9	2
25	Mechanism of porosity formation and influence on mechanical properties in selective laser melting of Ti-6Al-4V parts. Materials and Design, 2018, 156, 480-493.	7.0	90
26	In Situ Investigation of the Iron Carbide Precipitation Process in a Fe-C-Mn-Si Q&P Steel. Materials, 2018, 11, 1087.	2.9	31
27	Critical factors governing the thermal stability of austenite in an ultra-fined grained Medium-Mn steel. Philosophical Magazine Letters, 2017, 97, 125-131.	1.2	24
28	Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys. Science and Technology of Advanced Materials, 2017, 18, 584-610.	6.1	660
29	Effect of interstitial carbon distribution and nickel substitution on the tetragonality of martensite: A first-principles study. Intermetallics, 2017, 89, 92-99.	3.9	30
30	Mechanism of Si3N4 precipitation in nitrided Fe-Si alloys: A novel example of particle-stimulated-nucleation. Materials Letters, 2017, 189, 25-27.	2.6	6
31	Effects of Q&P Processing Conditions on Austenite Carbon Enrichment Studied by In Situ High-Energy X-ray Diffraction Experiments. Metals, 2017, 7, 232.	2.3	32
32	Mechanism of Austenite Formation from Spheroidized Microstructure in an Intermediate Fe-0.1C-3.5Mn Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 3375-3386.	2.2	45
33	Influence of martensite volume fraction and hardness on the plastic behavior of dual-phase steels: Experiments and micromechanical modeling. International Journal of Plasticity, 2016, 80, 187-203.	8.8	87
34	Competitive precipitation of amorphous and crystalline silicon nitride in ferrite: Interaction between structure, morphology, and stress relaxation. Acta Materialia, 2015, 93, 218-234.	7.9	17
35	Microstructural design of new high conductivity – high strength Cu-based alloy. Journal of Alloys and Compounds, 2015, 633, 42-47.	5.5	61
36	Overview of the current issues in austenite to ferrite transformation and the role of migrating interfaces therein for low alloyed steels. Materials Science and Engineering Reports, 2015, 92, 1-38.	31.8	136

#	Article	IF	CITATIONS
37	Microstructure refinement of dual-phase steels with 3.5wt% Mn: Influence on plastic and fracture behavior. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 638, 78-89.	5.6	23
38	Microstructural heterogeneity and its relationship to the strength of martensite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 638, 329-339.	5.6	34
39	Nucleation and growth of carbo-nitride nanoparticles in α-Fe-based alloys and associated interfacial process. Nanotechnology Reviews, 2015, 4, .	5.8	7
40	Monitoring tantalum nitride thin film structure by reactive RF magnetron sputtering: Influence of processing parameters. Surface and Coatings Technology, 2015, 284, 192-197.	4.8	14
41	Damage and fracture of dual-phase steels: Influence of martensite volume fraction. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 646, 322-331.	5.6	104
42	Superledge Model for Interphase Precipitation During Austenite-to-Ferrite Transformation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 5351-5361.	2.2	22
43	Interphase precipitation in vanadium-alloyed steels: Strengthening contribution and morphological variability with austenite to ferrite transformation. Acta Materialia, 2014, 64, 78-92.	7.9	90
44	Static and dynamical ageing processes at room temperature in a Fe25Ni0.4C virgin martensite: effect of C redistribution at the nanoscale. Philosophical Magazine Letters, 2013, 93, 68-76.	1.2	23
45	Application of interrupted cooling experiments to study the mechanism of bainitic ferrite formation in steels. Acta Materialia, 2013, 61, 4512-4523.	7.9	30
46	Characterization and Modeling of Manganese Effect on Strength and Strain Hardening of Martensitic Carbon Steels. ISIJ International, 2013, 53, 1076-1080.	1.4	44
47	Distribution of Carbon in Martensite During Quenching and Tempering of Dual Phase Steels and Consequences for Damage Properties. ISIJ International, 2013, 53, 1215-1223.	1.4	20
48	Application of the stagnant stage concept for monitoring Mn partitioning at the austenite-ferrite interface in the intercritical region for Fe–Mn–C alloys. Philosophical Magazine Letters, 2012, 92, 547-555.	1.2	18
49	Nitride precipitation in compositionally heterogeneous alloys: Nucleation, growth and coarsening during nitriding. Journal of Crystal Growth, 2012, 341, 53-60.	1.5	26
50	Modelling of the interaction between phase transformation and precipitation: Coupled kinetics in microalloyed multiphase steels. Computational Materials Science, 2012, 55, 127-135.	3.0	10
51	Analysis of the stagnant stage in diffusional phase transformations starting from austenite–ferrite mixtures. Computational Materials Science, 2012, 55, 34-43.	3.0	23
52	A Criterion for the Change from Fast to Slow Regime of Cementite Dissolution in Fe–C–Mn Steels. Journal of Materials Science and Technology, 2012, 28, 728-736.	10.7	32
53	Investigation of a Ferrite/Silicon Nitride Composite Concept Aimed at Automotive Applications. Steel Research International, 2012, 83, 590-593.	1.8	14
54	Kinetics of bainite transformation in heterogeneous microstructures. Materials Letters, 2012, 67, 187-189.	2.6	9

Mohamed Goune

#	Article	IF	CITATIONS
55	Evolution of microstructure and mechanical properties of medium Mn steels during double annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 542, 31-39.	5.6	197
56	Banded structure in Dual Phase steels in relation with the austenite-to-ferrite transformation mechanisms. Journal of Materials Science, 2011, 46, 7026-7038.	3.7	41
57	ALEMI: A Ten-Year History of Discussions of Alloying-Element Interactions with Migrating Interfaces. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 3703-3718.	2.2	70
58	Banded structures in dual-phase steels – A novel characterization method. International Journal of Materials Research, 2011, 102, 200-207.	0.3	5
59	Transmission electron microscopy investigation of acicular ferrite precipitation in γ′-Fe4N nitride. Materials Characterization, 2010, 61, 1245-1251.	4.4	3
60	QUANTITATIVE ANALYSIS OF BANDED STRUCTURES IN DUAL-PHASE STEELS. Image Analysis and Stereology, 2010, 29, 85.	0.9	13
61	Atom probe tomography evidence of nitrogen excess in the matrix of nitrided Fe–Cr. Philosophical Magazine Letters, 2010, 90, 793-800.	1.2	19
62	Sensitivity And Quantitativity In Atom Probe Tomography. Microscopy and Microanalysis, 2009, 15, 258-259.	0.4	1
63	Selecting non-isothermal heat treatment schedules for precipitation hardening systems: An example of coupled process–property optimization. Acta Materialia, 2007, 55, 213-223.	7.9	49
64	Linear stability analysis of a γ′-Fe4N nitride layer growing in pure iron. Computational Materials Science, 2006, 38, 126-135.	3.0	12
65	Study of the effect of cold deformation on the austenite formation. Revue De Metallurgie, 2006, 103, 465-471.	0.3	5
66	Kinetics of vanadium carbonitride precipitation in steel: A computer model. Acta Materialia, 2005, 53, 3359-3367.	7.9	160
67	Precipitation of copper in ferrite: Prediction of the strengthening kinetics. Revue De Metallurgie, 2004, 101, 71-78.	0.3	3
68	Thermodynamic and structural studies on nitrided Fe–1.62%Mn and Fe–0.56%V alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 351, 23-30.	5.6	31
69	Identification and characterization of a novel Mn–N nitride formed in Fe–Mn–N alloy. Journal of Applied Crystallography, 2003, 36, 103-108.	4.5	14
70	Numerical modeling of interstitial diffusion in binary systems. Application to iron nitriding. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 302, 246-257.	5.6	41
71	The Role of Dispersions in Modeling the Kinetics of Phase Transformations. Solid State Phenomena, 0, 172-174, 279-284.	0.3	2