
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7812487/publications.pdf Version: 2024-02-01

WENEEL DONG

#	Article	IF	CITATIONS
1	Microfluidic Electroporation-Facilitated Synthesis of Erythrocyte Membrane-Coated Magnetic Nanoparticles for Enhanced Imaging-Guided Cancer Therapy. ACS Nano, 2017, 11, 3496-3505.	14.6	377
2	Cancer Cell Membrane Camouflaged Nanoparticles to Realize Starvation Therapy Together with Checkpoint Blockades for Enhancing Cancer Therapy. ACS Nano, 2019, 13, 2849-2857.	14.6	253
3	Bioinspired Diselenideâ€Bridged Mesoporous Silica Nanoparticles for Dualâ€Responsive Protein Delivery. Advanced Materials, 2018, 30, e1801198.	21.0	234
4	Multifunctional superparamagnetic iron oxide nanoparticles: design, synthesis and biomedical photonic applications. Nanoscale, 2013, 5, 7664.	5.6	196
5	Janus Nanobullets Combine Photodynamic Therapy and Magnetic Hyperthermia to Potentiate Synergetic Antiâ€Metastatic Immunotherapy. Advanced Science, 2019, 6, 1901690.	11.2	169
6	Coating biomimetic nanoparticles with chimeric antigen receptor T cell-membrane provides high specificity for hepatocellular carcinoma photothermal therapy treatment. Theranostics, 2020, 10, 1281-1295.	10.0	138
7	Janus "nano-bullets―for magnetic targeting liver cancer chemotherapy. Biomaterials, 2016, 100, 118-133.	11.4	137
8	Janus Gold Nanoplatform for Synergetic Chemoradiotherapy and Computed Tomography Imaging of Hepatocellular Carcinoma. ACS Nano, 2017, 11, 12732-12741.	14.6	136
9	Shape-controlled magnetic mesoporous silica nanoparticles for magnetically-mediated suicide gene therapy of hepatocellular carcinoma. Biomaterials, 2018, 154, 147-157.	11.4	127
10	Biomimetic Diselenideâ€Bridged Mesoporous Organosilica Nanoparticles as an Xâ€rayâ€Responsive Biodegradable Carrier for Chemoâ€Immunotherapy. Advanced Materials, 2020, 32, e2004385.	21.0	122
11	Two-Step Hydrothermal Preparation of Carbon Dots for Calcium Ion Detection. ACS Applied Materials & Interfaces, 2019, 11, 44566-44572.	8.0	118
12	Magnetic-mesoporous Janus nanoparticles. Chemical Communications, 2011, 47, 1225-1227.	4.1	115
13	The shape effect of magnetic mesoporous silica nanoparticles on endocytosis, biocompatibility and biodistribution. Acta Biomaterialia, 2017, 49, 531-540.	8.3	111
14	Surface Functionalization of Polymeric Nanoparticles with Umbilical Cord-Derived Mesenchymal Stem Cell Membrane for Tumor-Targeted Therapy. ACS Applied Materials & Interfaces, 2018, 10, 22963-22973.	8.0	110
15	Janus Silver-Mesoporous Silica Nanocarriers for SERS Traceable and pH-Sensitive Drug Delivery in Cancer Therapy. ACS Applied Materials & Interfaces, 2016, 8, 4303-4308.	8.0	106
16	Janus Silver/Silica Nanoplatforms for Light-Activated Liver Cancer Chemo/Photothermal Therapy. ACS Applied Materials & Interfaces, 2017, 9, 30306-30317.	8.0	80
17	Influence of Shell Structure on Stability, Integrity, and Mesh Size of Polyelectrolyte Capsules:Â Mechanism and Strategy for Improved Preparation. Chemistry of Materials, 2005, 17, 2603-2611.	6.7	76
18	Janus Gold Triangle-Mesoporous Silica Nanoplatforms for Hypoxia-Activated Radio-Chemo-Photothermal Therapy of Liver Cancer. ACS Applied Materials & Interfaces, 2019, 11, 34755-34765.	8.0	68

#	Article	IF	CITATIONS
19	Controlled Cavitation at Nano/Microparticle Surfaces. Chemistry of Materials, 2014, 26, 2244-2248.	6.7	67
20	Redox/pH dual-controlled release of chlorhexidine and silver ions from biodegradable mesoporous silica nanoparticles against oral biofilms. International Journal of Nanomedicine, 2018, Volume 13, 7697-7709.	6.7	66
21	Stable ZnO@TiO ₂ core/shell nanorod arrays with exposed high energy facets for self-cleaning coatings with anti-reflective properties. Journal of Materials Chemistry A, 2014, 2, 7313-7318.	10.3	63
22	Formation mechanism of carbon dots: From chemical structures to fluorescent behaviors. Carbon, 2022, 194, 42-51.	10.3	63
23	An Unobtrusive and Calibration-free Blood Pressure Estimation Method using Photoplethysmography and Biometrics. Scientific Reports, 2019, 9, 8611.	3.3	62
24	A strong green fluorescent nanoprobe for highly sensitive and selective detection of nitrite ions based on phosphorus and nitrogen co-doped carbon quantum dots. Sensors and Actuators B: Chemical, 2018, 262, 555-561.	7.8	60
25	Synergistic bactericidal activity of chlorhexidine-loaded, silver-decorated mesoporous silica nanoparticles. International Journal of Nanomedicine, 2017, Volume 12, 3577-3589.	6.7	58
26	Core-Shell Magnetic Gold Nanoparticles for Magnetic Field-Enhanced Radio-Photothermal Therapy in Cervical Cancer. Nanomaterials, 2017, 7, 111.	4.1	57
27	Platelet membrane-coated nanoparticles for targeted drug delivery and local chemo-photothermal therapy of orthotopic hepatocellular carcinoma. Journal of Materials Chemistry B, 2020, 8, 4648-4659.	5.8	56
28	Shape Engineering Boosts Magnetic Mesoporous Silica Nanoparticle-Based Isolation and Detection of Circulating Tumor Cells. ACS Applied Materials & Interfaces, 2018, 10, 10656-10663.	8.0	53
29	Enhanced Raman imaging and optical spectra of gold nanoparticle doped microcapsules. Physical Chemistry Chemical Physics, 2003, 5, 3003-3012.	2.8	52
30	Berberineâ€loaded Janus nanocarriers for magnetic fieldâ€enhanced therapy against hepatocellular carcinoma. Chemical Biology and Drug Design, 2017, 89, 464-469.	3.2	46
31	Janus nanocarrier-based co-delivery of doxorubicin and berberine weakens chemotherapy-exacerbated hepatocellular carcinoma recurrence. Acta Biomaterialia, 2019, 100, 352-364.	8.3	44
32	Janus silver mesoporous silica nanobullets with synergistic antibacterial functions. Colloids and Surfaces B: Biointerfaces, 2017, 157, 199-206.	5.0	43
33	Antibacterial and biodegradable tissue nano-adhesives for rapid wound closure. International Journal of Nanomedicine, 2018, Volume 13, 5849-5863.	6.7	43
34	Coordination and Redox Dualâ€Responsive Mesoporous Organosilica Nanoparticles Amplify Immunogenic Cell Death for Cancer Chemoimmunotherapy. Small, 2021, 17, e2100006.	10.0	40
35	Cancer cell membrane-modified biodegradable mesoporous silica nanocarriers for berberine therapy of liver cancer. RSC Advances, 2018, 8, 40288-40297.	3.6	38
36	Ultrathin Free-Standing Polyelectrolyte Nanocomposites:Â A Novel Method for Preparation and Characterization of Assembly Dynamics. Journal of Physical Chemistry B, 2005, 109, 14764-14768.	2.6	37

#	Article	IF	CITATIONS
37	Facile Synthesis of Core–shell Magnetic Mesoporous Silica Nanoparticles for <scp>pH</scp> â€sensitive Anticancer Drug Delivery. Chemical Biology and Drug Design, 2015, 86, 1548-1553.	3.2	34
38	<p>Berberine-loaded Janus gold mesoporous silica nanocarriers for chemo/radio/photothermal therapy of liver cancer and radiation-induced injury inhibition</p> . International Journal of Nanomedicine, 2019, Volume 14, 3967-3982.	6.7	34
39	A novel "on–off–on―fluorescence assay for the discriminative detection of Cu(<scp>ii</scp>) and <scp>l-</scp> cysteine based on red-emissive Si-CDs and cellular imaging applications. Journal of Materials Chemistry B, 2020, 8, 919-927.	5.8	34
40	Riboflavin-based carbon dots with high singlet oxygen generation for photodynamic therapy. Journal of Materials Chemistry B, 2021, 9, 7972-7978.	5.8	34
41	Gold nanorods-silica Janus nanoparticles for theranostics. Applied Physics Letters, 2015, 106, .	3.3	33
42	Tannic Acid-Assisted Synthesis of Biodegradable and Antibacterial Mesoporous Organosilica Nanoparticles Decorated with Nanosilver. ACS Sustainable Chemistry and Engineering, 2020, 8, 1695-1702.	6.7	31
43	Cancer–leukocyte hybrid membrane-cloaked magnetic beads for the ultrasensitive isolation, purification, and non-destructive release of circulating tumor cells. Nanoscale, 2020, 12, 19121-19128.	5.6	30
44	Janus Au–mesoporous silica nanocarriers for chemo-photothermal treatment of liver cancer cells. RSC Advances, 2016, 6, 44498-44505.	3.6	29
45	A comparison of mesoporous silica nanoparticles and mesoporous organosilica nanoparticles as drug vehicles for cancer therapy. Chemical Biology and Drug Design, 2018, 92, 1435-1444.	3.2	29
46	One-step synthesis of nitrogen, sulfur co-doped carbon nanodots and application for Fe ³⁺ detection. Journal of Materials Chemistry B, 2018, 6, 3549-3554.	5.8	24
47	Fluorescent-magnetic Janus nanorods for selective capture and rapid identification of foodborne bacteria. Sensors and Actuators B: Chemical, 2018, 260, 1004-1011.	7.8	24
48	Electrochemical Determination of Ca ²⁺ Based On Recycling Formation of Highly Selective DNAzyme and Gold Nanoparticle-Mediated Amplification. Bioconjugate Chemistry, 2018, 29, 1021-1024.	3.6	23
49	Iron and nitrogen-co-doped carbon quantum dots for the sensitive and selective detection of hematin and ferric ions and cell imaging. Analyst, The, 2021, 146, 4954-4963.	3.5	23
50	A Yellow Fluorescence Probe for the Detection of Oxidized Glutathione and Biological Imaging. ACS Applied Materials & Interfaces, 2022, 14, 17119-17127.	8.0	23
51	Biomimetic immunomagnetic gold hybrid nanoparticles coupled with inductively coupled plasma mass spectrometry for the detection of circulating tumor cells. Journal of Materials Chemistry B, 2020, 8, 5019-5025.	5.8	22
52	Simultaneous Recognition of Dopamine and Uric Acid in the Presence of Ascorbic Acid via an Intercalated MXene/PPy Nanocomposite. Sensors, 2021, 21, 3069.	3.8	22
53	Magnetic Janus nanorods for efficient capture, separation and elimination of bacteria. RSC Advances, 2017, 7, 3550-3553.	3.6	20
54	Janus nanocarriers for magnetically targeted and hyperthermia-enhanced curcumin therapy of liver cancer. RSC Advances, 2018, 8, 30448-30454.	3.6	19

#	Article	IF	CITATIONS
55	One-pot facile synthesis of yellow-green emission carbon dots for rapid and efficient determination of progesterone. Applied Surface Science, 2021, 566, 150686.	6.1	18
56	A PCR-free voltammetric telomerase activity assay using a substrate primer on a gold electrode and DNA-triggered capture of gold nanoparticles. Mikrochimica Acta, 2018, 185, 398.	5.0	17
57	Specific recognition and photothermal release of circulating tumor cells using near-infrared light-responsive 2D MXene nanosheets@hydrogel membranes. Talanta, 2021, 235, 122770.	5.5	17
58	The influence of polyanion molecular weight on polyelectrolyte multilayers at surfaces: elasticity and susceptibility to saloplasticity of strongly dissociated synthetic polymers at fluid–fluid interfaces. Physical Chemistry Chemical Physics, 2017, 19, 23781-23789.	2.8	15
59	Chitosan-based carbon nanoparticles as a heavy metal indicator and for wastewater treatment. RSC Advances, 2021, 11, 12015-12021.	3.6	14
60	High photoluminescence nitrogen, phosphorus co-doped carbon nanodots for assessment of microbial viability. Colloids and Surfaces B: Biointerfaces, 2020, 191, 110987.	5.0	13
61	Green Synthesis of Lutein-Based Carbon Dots Applied for Free-Radical Scavenging within Cells. Materials, 2020, 13, 4146.	2.9	12
62	Cyan-emitting silicon quantum dots as a fluorescent probe directly used for highly sensitive and selective detection of chlorogenic acid. Talanta, 2021, 233, 122465.	5.5	12
63	One-step synthesis of green emission carbon dots for selective and sensitive detection of nitrite ions and cellular imaging application. RSC Advances, 2020, 10, 10067-10075.	3.6	11
64	Green Synthesis of Phosphorescent Carbon Dots for Anticounterfeiting and Information Encryption. Sensors, 2022, 22, 2944.	3.8	11
65	F-doped silicon quantum dots as a novel fluorescence nanosensor for quantitative detection of new coccine and application in food samples. Microchemical Journal, 2022, 179, 107453.	4.5	10
66	Ultra-bright carbon quantum dots for rapid cell staining. Analyst, The, 2022, 147, 2558-2566.	3.5	10
67	One-pot synthesis of chlorhexidine-templated biodegradable mesoporous organosilica nanoantiseptics. Colloids and Surfaces B: Biointerfaces, 2020, 187, 110653.	5.0	9
68	Theoretical Study on the Photoinduced Electron Transfer Mechanisms of Different Peroxynitrite Probes. Journal of Physical Chemistry A, 2018, 122, 217-223.	2.5	8
69	The Overall Release of Circulating Tumor Cells by Using Temperature Control and Matrix Metalloproteinase-9 Enzyme on Gelatin Film. ACS Applied Bio Materials, 2018, 1, 910-916.	4.6	8
70	Yttriumâ€mediated red fluorescent carbon dots for sensitive and selective detection of calcium ions. Luminescence, 2021, 36, 1969-1976.	2.9	8
71	Janus metallic mesoporous silica nanoparticles: Unique structures for cancer theranostics. Current Opinion in Biomedical Engineering, 2021, 19, 100294.	3.4	8
72	Superior reducing carbon dots from proanthocyanidin for free-radical scavenging and for cell imaging. Analyst, The, 2021, 146, 2330-2338.	3.5	6

#	Article	IF	CITATIONS
73	Label-free detection of biotin using nanoporous TiO2/DNA thin-film coated wavelength interrogated surface plasmon resonance sensors. Chemical Research in Chinese Universities, 2014, 30, 157-162.	2.6	5
74	One-Step Synthesis of Green Fluorescent Carbon Dots for Chloride Detecting and for Bioimaging. Frontiers in Chemistry, 2021, 9, 718856.	3.6	5
75	Silver Mesoporous Silica Nanoparticles: Fabrication to Combination Therapies for Cancer and Infection. Chemical Record, 2022, , e202100287.	5.8	4
76	Starch-Based Carbon Dots for Nitrite and Sulfite Detection. Frontiers in Chemistry, 2021, 9, 782238.	3.6	3
77	Sensitivity-enhanced uncooled infrared detector based on a Lamb wave sensor with polydopamine coating. Applied Physics Letters, 2019, 114, 183505.	3.3	2
78	Expression profile and potential functional differentiation of the Speedy/RINGO family in mice. Gene, 2019, 683, 80-86.	2.2	1
79	Short-range dynamic gain control for laser radar. , 2016, , .		0