Wuyuan Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7812325/publications.pdf

Version: 2024-02-01

181	10,661	56 h-index	93
papers	citations		g-index
185	185	185	10342
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Inhibition of SARS-CoV-2 Infection by Human Defensin HNP1 and Retrocyclin RC-101. Journal of Molecular Biology, 2022, 434, 167225.	4.2	19
2	Human defensin-inspired discovery of peptidomimetic antibiotics. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117283119.	7.1	16
3	Nanodefensin-encased hydrogel with dual bactericidal and pro-regenerative functions for advanced wound therapy. Theranostics, 2021, 11, 3642-3660.	10.0	17
4	Interferon-Induced Transmembrane Protein 3 Blocks Fusion of Diverse Enveloped Viruses by Altering Mechanical Properties of Cell Membranes. ACS Nano, 2021, 15, 8155-8170.	14.6	50
5	Human Defensins Inhibit SARS-CoV-2 Infection by Blocking Viral Entry. Viruses, 2021, 13, 1246.	3.3	35
6	Human intelectin-1 (ITLN1) genetic variation and intestinal expression. Scientific Reports, 2021, 11, 12889.	3.3	13
7	Mechanism through Which Retrocyclin Targets Flavivirus Multiplication. Journal of Virology, 2021, 95, e0056021.	3.4	6
8	Human Beta-Defensin 2 and 3 Inhibit HIV-1 Replication in Macrophages. Frontiers in Cellular and Infection Microbiology, 2021, 11, 535352.	3.9	12
9	Design of ultrahigh-affinity and dual-specificity peptide antagonists of MDM2 and MDMX for P53 activation and tumor suppression. Acta Pharmaceutica Sinica B, 2021, 11, 2655-2669.	12.0	15
10	A nano-predator of pathological MDMX construct by clearable supramolecular gold(I)-thiol-peptide complexes achieves safe and potent anti-tumor activity. Theranostics, 2021, 11, 6833-6846.	10.0	65
11	Evolution toward beta common chain receptor usage links the matrix proteins of HIV-1 and its ancestors to human erythropoietin. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2021366118.	7.1	4
12	Defensins: The natural peptide antibiotic. Advanced Drug Delivery Reviews, 2021, 179, 114008.	13.7	48
13	Resurrecting a p53 peptide activator - An enabling nanoengineering strategy for peptide therapeutics. Journal of Controlled Release, 2020, 325, 293-303.	9.9	28
14	The Antimicrobial Peptide Human Beta-Defensin 2 Inhibits Biofilm Production of Pseudomonas aeruginosa Without Compromising Metabolic Activity. Frontiers in Immunology, 2020, 11, 805.	4.8	28
15	Defensins: A Double-Edged Sword in Host Immunity. Frontiers in Immunology, 2020, 11, 764.	4.8	114
16	Chiral Protein Supraparticles for Tumor Suppression and Synergistic Immunotherapy: An Enabling Strategy for Bioactive Supramolecular Chirality Construction. Nano Letters, 2020, 20, 5844-5852.	9.1	176
17	Antimicrobial peptides. Seminars in Cell and Developmental Biology, 2019, 88, 105-106.	5.0	10
18	A Hierarchical Peptide–Lanthanide Framework To Accurately Redress Intracellular Carcinogenic Protein–Protein Interaction. Nano Letters, 2019, 19, 7918-7926.	9.1	22

#	Article	IF	CITATIONS
19	Dithiocarbamate-inspired side chain stapling chemistry for peptide drug design. Chemical Science, 2019, 10, 1522-1530.	7.4	43
20	Systematic mutational analysis of human neutrophil \hat{l}_{\pm} -defensin HNP4. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 835-844.	2.6	11
21	CCL7 Is a Negative Regulator of Cutaneous Inflammation Following Leishmania major Infection. Frontiers in Immunology, 2019, 9, 3063.	4.8	29
22	Critical determinants of human neutrophil peptide 1 for enhancing host epithelial adhesion of <i>Shigella flexneri </i> . Cellular Microbiology, 2019, 21, e13069.	2.1	8
23	Tanshinones: First-in-Class Inhibitors of the Biogenesis of the Type 3 Secretion System Needle of <i>Pseudomonas aeruginosa</i> for Antibiotic Therapy. ACS Central Science, 2019, 5, 1278-1288.	11.3	21
24	A tetrameric protein scaffold as a nano-carrier of antitumor peptides for cancer therapy. Biomaterials, 2019, 204, 1-12.	11.4	30
25	A lanthanide-peptide-derived bacterium-like nanotheranostic with high tumor-targeting, -imaging and -killing properties. Biomaterials, 2019, 206, 13-24.	11.4	33
26	Selfâ€Assembly of Therapeutic Peptide into Stimuliâ€Responsive Clustered Nanohybrids for Cancerâ€Targeted Therapy. Advanced Functional Materials, 2019, 29, 1807736.	14.9	59
27	Human Enteric Defensin 5 Promotes <i>Shigella</i> Infection of Macrophages. Infection and Immunity, 2019, 88, .	2.2	18
28	Identification of amino acid residues critical for the B cell growth-promoting activity of HIV-1 matrix protein p17 variants. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 13-24.	2.4	20
29	Self-Assembled Peptide–Lanthanide Nanoclusters for Safe Tumor Therapy: Overcoming and Utilizing Biological Barriers to Peptide Drug Delivery. ACS Nano, 2018, 12, 2017-2026.	14.6	110
30	Lanthanide-doped nanoparticles conjugated with an anti-CD33 antibody and a p53-activating peptide for acute myeloid leukemia therapy. Biomaterials, 2018, 167, 132-142.	11.4	56
31	Peptide-Induced Self-Assembly of Therapeutics into a Well-Defined Nanoshell with Tumor-Triggered Shape and Charge Switch. Chemistry of Materials, 2018, 30, 7034-7046.	6.7	35
32	Turning a Luffa Protein into a Self-Assembled Biodegradable Nanoplatform for Multitargeted Cancer Therapy. ACS Nano, 2018, 12, 11664-11677.	14.6	40
33	Human Enteric \hat{l}_{\pm} -Defensin 5 Promotes Shigella Infection by Enhancing Bacterial Adhesion and Invasion. Immunity, 2018, 48, 1233-1244.e6.	14.3	47
34	Self-Assembling Myristoylated Human \hat{l}_{\pm} -Defensin 5 as a Next-Generation Nanobiotics Potentiates Therapeutic Efficacy in Bacterial Infection. ACS Nano, 2018, 12, 5284-5296.	14.6	96
35	Rapid identification of dual p53-MDM2/MDMX interaction inhibitors through virtual screening and hit-based substructure search. RSC Advances, 2017, 7, 9989-9997.	3.6	11
36	Stapled RGD Peptide Enables Glioma-Targeted Drug Delivery by Overcoming Multiple Barriers. ACS Applied Materials & Drug Delivery by Overcoming Multiple Barriers. ACS Applied Materials & Drug Delivery by Overcoming Multiple Barriers. ACS Applied Materials & Drug Delivery by Overcoming Multiple Barriers. ACS Applied Materials & Drug Delivery by Overcoming Multiple Barriers. ACS Applied Materials & Drug Delivery by Overcoming Multiple Barriers. ACS Applied Materials & Drug Delivery by Overcoming Multiple Barriers. ACS Applied Materials & Drug Delivery by Overcoming Multiple Barriers. ACS Applied Materials & Drug Delivery by Overcoming Multiple Barriers. ACS Applied Materials & Drug Delivery by Overcoming Multiple Barriers. ACS Applied Materials & Drug Delivery Barriers & Drug Delivery & Dr	8.0	57

#	Article	IF	CITATIONS
37	The \hat{l}_{s} -defensin retrocyclin 101 inhibits TLR4- and TLR2-dependent signaling and protects mice against influenza infection. Journal of Leukocyte Biology, 2017, 102, 1103-1113.	3.3	18
38	Crystal structure of master biofilm regulator CsgD regulatory domain reveals an atypical receiver domain. Protein Science, 2017, 26, 2073-2082.	7.6	11
39	A single amino acid substitution confers B-cell clonogenic activity to the HIV-1 matrix protein p17. Scientific Reports, 2017, 7, 6555.	3.3	15
40	The Beta Subunit of Hemoglobin (HBB2/HBB) Suppresses Neuroblastoma Growth and Metastasis. Cancer Research, 2017, 77, 14-26.	0.9	31
41	Structural evaluation of a nanobody targeting complement receptor Vsig4 and its cross reactivity. Immunobiology, 2017, 222, 807-813.	1.9	23
42	Human Beta Defensin 2 Selectively Inhibits HIV-1 in Highly Permissive CCR6+CD4+ T Cells. Viruses, 2017, 9, 111.	3.3	23
43	Key Determinants of Human α-Defensin 5 and 6 for Enhancement of HIV Infectivity. Viruses, 2017, 9, 244.	3.3	6
44	IFN-Îμ protects primary macrophages against HIV infection. JCI Insight, 2016, 1, e88255.	5.0	30
45	Defensins Potentiate a Neutralizing Antibody Response to Enteric Viral Infection. PLoS Pathogens, 2016, 12, e1005474.	4.7	44
46	Cellular aspartyl proteases promote the unconventional secretion of biologically active HIV-1 matrix protein p17. Scientific Reports, 2016, 6, 38027.	3.3	14
47	Neutrophil-derived alpha defensins control inflammation by inhibiting macrophage mRNA translation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4350-4355.	7.1	66
48	Molecular basis for epitope recognition by non-neutralizing anti-gp41 antibody F240. Scientific Reports, 2016, 6, 36685.	3.3	31
49	Thermodynamic instability of viral proteins is a pathogen-associated molecular pattern targeted by human defensins. Scientific Reports, 2016, 6, 32499.	3.3	10
50	Integrin $\hat{1}\pm4\hat{1}^2$ 7 Expression Increases HIV Susceptibility in Activated Cervical CD4+ T Cells by an HIV Attachment-Independent Mechanism. Journal of Acquired Immune Deficiency Syndromes (1999), 2015, 69, 509-518.	2.1	22
51	Role of HIV-1 matrix protein p17 variants in lymphoma pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14331-14336.	7.1	58
52	Potential role of autophagy in the bactericidal activity of human PMNs forBacillus anthracis. Pathogens and Disease, 2015, 73, ftv080.	2.0	14
53	Human Alpha-Defensin HNP1 Increases HIV Traversal of the Epithelial Barrier: A Potential Role in STI-Mediated Enhancement of HIV Transmission. Viral Immunology, 2015, 28, 609-615.	1.3	14
54	Retrocyclins neutralize bacterial toxins by potentiating their unfolding. Biochemical Journal, 2015, 467, 311-320.	3.7	14

#	Article	IF	Citations
55	Toxins and derivatives in molecular pharmaceutics: Drug delivery and targeted therapy. Advanced Drug Delivery Reviews, 2015, 90, 101-118.	13.7	45
56	Total chemical synthesis of human interferon alphaâ€2b via native chemical ligation. Journal of Peptide Science, 2015, 21, 554-560.	1.4	4
57	Angiogenic, lymphangiogenic and adipogenic effects of HIV-1 matrix protein p17. Pathogens and Disease, 2015, 73, ftv062.	2.0	14
58	Functional synergism of Human Defensin 5 and Human Defensin 6. Biochemical and Biophysical Research Communications, 2015, 467, 967-972.	2.1	14
59	A stapled peptide antagonist of MDM2 carried by polymeric micelles sensitizes glioblastoma to temozolomide treatment through p53 activation. Journal of Controlled Release, 2015, 218, 29-35.	9.9	51
60	Differential Roles of Chemokines CCL2 and CCL7 in Monocytosis and Leukocyte Migration during West Nile Virus Infection. Journal of Immunology, 2015, 195, 4306-4318.	0.8	78
61	Co-Encapsulating the Fusogenic Peptide INF7 and Molecular Imaging Probes in Liposomes Increases Intracellular Signal and Probe Retention. PLoS ONE, 2015, 10, e0120982.	2.5	10
62	Defensins versus pathogens: an unfolding story. Oncotarget, 2015, 6, 28533-28534.	1.8	7
63	Differential Susceptibility of Bacteria to Mouse Paneth Cell a-Defensins under Anaerobic Conditions. Antibiotics, 2014, 3, 493-508.	3.7	5
64	Delineation of Interfaces on Human Alpha-Defensins Critical for Human Adenovirus and Human Papillomavirus Inhibition. PLoS Pathogens, 2014, 10, e1004360.	4.7	38
65	Defensins in innate immunity. Current Opinion in Hematology, 2014, 21, 37-42.	2.5	91
66	Functional intersection of Human Defensin 5 with the TNF receptor pathway. FEBS Letters, 2014, 588, 1906-1912.	2.8	14
67	Mitochondrial Dysfunction in Obesity-Associated Nonalcoholic Fatty Liver Disease: The Protective Effects of Pomegranate with Its Active Component Punicalagin. Antioxidants and Redox Signaling, 2014, 21, 1557-1570.	5.4	104
68	Human Defensins Facilitate Local Unfolding of Thermodynamically Unstable Regions of Bacterial Protein Toxins. Immunity, 2014, 41, 709-721.	14.3	71
69	Mirror image proteins. Current Opinion in Chemical Biology, 2014, 22, 56-61.	6.1	45
70	Curcumin analog 1, 5-bis (2-trifluoromethylphenyl)-1, 4-pentadien-3-one exhibits enhanced ability on Nrf2 activation and protection against acrolein-induced ARPE-19 cell toxicity. Toxicology and Applied Pharmacology, 2013, 272, 726-735.	2.8	37
71	The metastatic microenvironment: Lungâ€derived factors control the viability of neuroblastoma lung metastasis. International Journal of Cancer, 2013, 133, 2296-2306.	5.1	18
72	Coordination of MYH DNA glycosylase and APE1 endonuclease activities via physical interactions. DNA Repair, 2013, 12, 1043-1052.	2.8	33

#	Article	IF	Citations
73	Pro-inflammatory and pro-apoptotic properties of Human Defensin 5. Biochemical and Biophysical Research Communications, 2013, 436, 557-562.	2.1	33
74	Additivityâ€based design of the strongest possible turkey ovomucoid third domain inhibitors for porcine pancreatic elastase (PPE) and <i>Streptomyces griseus</i> protease B (SGPB). FEBS Letters, 2013, 587, 3021-3026.	2.8	1
75	Structural and Functional Analysis of the Pro-Domain of Human Cathelicidin, LL-37. Biochemistry, 2013, 52, 1547-1558.	2.5	42
76	Total chemical synthesis of dengue 2 virus capsid protein via native chemical ligation: Role of the conserved salt-bridge. Bioorganic and Medicinal Chemistry, 2013, 21, 3443-3449.	3.0	8
77	Functional consequences of retro-inverso isomerization of a miniature protein inhibitor of the p53–MDM2 interaction. Bioorganic and Medicinal Chemistry, 2013, 21, 4045-4050.	3.0	43
78	Turning Defense into Offense: Defensin Mimetics as Novel Antibiotics Targeting Lipid II. PLoS Pathogens, 2013, 9, e1003732.	4.7	50
79	Sub-Inhibitory Concentrations of Human \hat{l}_{\pm} -defensin Potentiate Neutralizing Antibodies against HIV-1 gp41 Pre-Hairpin Intermediates in the Presence of Serum. PLoS Pathogens, 2013, 9, e1003431.	4.7	20
80	Rattusin, an Intestinal \hat{l} ±-Defensin-Related Peptide in Rats with a Unique Cysteine Spacing Pattern and Salt-Insensitive Antibacterial Activities. Antimicrobial Agents and Chemotherapy, 2013, 57, 1823-1831.	3.2	15
81	Anti-HIV Activity of Human Defensin 5 in Primary CD4+ T Cells under Serum-Deprived Conditions Is a Consequence of Defensin-Mediated Cytotoxicity. PLoS ONE, 2013, 8, e76038.	2.5	15
82	Single, Double and Quadruple Alanine Substitutions at Oligomeric Interfaces Identify Hydrophobicity as the Key Determinant of Human Neutrophil Alpha Defensin HNP1 Function. PLoS ONE, 2013, 8, e78937.	2.5	29
83	Soluble factors from T cells inhibiting X4 strains of HIV are a mixture of \hat{l}^2 chemokines and RNases. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5411-5416.	7.1	38
84	Invariant Gly Residue Is Important for \hat{l}_{\pm} -Defensin Folding, Dimerization, and Function. Journal of Biological Chemistry, 2012, 287, 18900-18912.	3.4	30
85	Sometimes It Takes Two to Tango. Journal of Biological Chemistry, 2012, 287, 8944-8953.	3.4	45
86	Critical Determinants of Human \hat{l} ±-Defensin 5 Activity against Non-enveloped Viruses. Journal of Biological Chemistry, 2012, 287, 24554-24562.	3.4	61
87	Functional Determinants of Human Enteric α-Defensin HD5. Journal of Biological Chemistry, 2012, 287, 21615-21627.	3.4	68
88	Human α-Defensin 6 Promotes Mucosal Innate Immunity Through Self-Assembled Peptide Nanonets. Science, 2012, 337, 477-481.	12.6	337
89	Multifaceted Mechanisms of HIV-1 Entry Inhibition by Human α-Defensin. Journal of Biological Chemistry, 2012, 287, 28821-28838.	3.4	74
90	Interrogation of MDM2 Phosphorylation in p53 Activation Using Native Chemical Ligation: The Functional Role of Ser17 Phosphorylation in MDM2 Reexamined. Journal of the American Chemical Society, 2012, 134, 6855-6864.	13.7	35

#	Article	IF	CITATIONS
91	An Ultrahigh Affinity <scp>d</scp> -Peptide Antagonist Of MDM2. Journal of Medicinal Chemistry, 2012, 55, 6237-6241.	6.4	71
92	αâ€Defensins in human innate immunity. Immunological Reviews, 2012, 245, 84-112.	6.0	359
93	Defensins enable macrophages to inhibit the intracellular proliferation of Listeria monocytogenes. Cellular Microbiology, 2011, 13, 635-651.	2.1	68
94	<scp>D</scp> â€Peptideâ€Based Drug Discovery Aided by Chemical Protein Synthesis. Israel Journal of Chemistry, 2011, 51, 868-875.	2.3	8
95	Human defensins 5 and 6 enhance HIV-1 infectivity through promoting HIV attachment. Retrovirology, 2011, 8, 45.	2.0	61
96	Peptide Activators of the p53 Tumor Suppressor. Current Pharmaceutical Design, 2011, 17, 603-609.	1.9	20
97	Mucosal Human Defensins 5 and 6 Antagonize the Anti-HIV Activity of Candidate Polyanion Microbicides. Journal of Innate Immunity, 2011, 3, 208-212.	3.8	24
98	CCR6 ligands inhibit HIV by inducing APOBEC3G. Blood, 2010, 115, 1564-1571.	1.4	45
99	Functional interaction of human neutrophil peptideâ€1 with the cell wall precursor lipid II. FEBS Letters, 2010, 584, 1543-1548.	2.8	180
100	A Leftâ€Handed Solution to Peptide Inhibition of the p53–MDM2 Interaction. Angewandte Chemie - International Edition, 2010, 49, 3649-3652.	13.8	91
101	Total chemical synthesis of human Tâ€cell leukemia virus type 1 protease via native chemical ligation. Biopolymers, 2010, 94, 487-494.	2.4	12
102	Topology of the disulfide bonds in the antiviral lectin scytovirin. Protein Science, 2010, 19, 1649-1661.	7.6	16
103	Trp-26 Imparts Functional Versatility to Human α-Defensin HNP1. Journal of Biological Chemistry, 2010, 285, 16275-16285.	3.4	54
104	Limitations of Peptide Retro-inverso Isomerization in Molecular Mimicry. Journal of Biological Chemistry, 2010, 285, 19572-19581.	3.4	65
105	Insight into the Mechanisms of Adenovirus Capsid Disassembly from Studies of Defensin Neutralization. PLoS Pathogens, 2010, 6, e1000959.	4.7	109
106	Resonance Assignment and Three-Dimensional Structure Determination of a Human α-Defensin, HNP-1, by Solid-State NMR. Journal of Molecular Biology, 2010, 397, 408-422.	4.2	43
107	Systematic Mutational Analysis of Peptide Inhibition of the p53–MDM2/MDMX Interactions. Journal of Molecular Biology, 2010, 398, 200-213.	4.2	116
108	The Membrane-Bound Structure and Topology of a Human α-Defensin Indicate a Dimer Pore Mechanism for Membrane Disruption. Biochemistry, 2010, 49, 9770-9782.	2.5	76

#	Article	IF	CITATIONS
109	D-peptide inhibitors of the p53–MDM2 interaction for targeted molecular therapy of malignant neoplasms. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14321-14326.	7.1	191
110	Through the Looking Glass, Mechanistic Insights from Enantiomeric Human Defensins. Journal of Biological Chemistry, 2009, 284, 29180-29192.	3 . 4	103
111	Multivalent Binding of Carbohydrates by the Human \hat{l}_{\pm} -Defensin, HD5. Journal of Immunology, 2009, 183, 480-490.	0.8	91
112	Dying and Necrotic Neutrophils Are Anti-Inflammatory Secondary to the Release of \hat{l}_{\pm} -Defensins. Journal of Immunology, 2009, 183, 2122-2132.	0.8	141
113	Human \hat{l}_{\pm} -Defensins Inhibit Hemolysis Mediated by Cholesterol-Dependent Cytolysins. Infection and Immunity, 2009, 77, 4028-4040.	2.2	54
114	Selective arginines are important for the antibacterial activity and host cell interaction of human αâ€defensin 5. FEBS Letters, 2009, 583, 2507-2512.	2.8	57
115	Apamin as a Template for Structureâ€Based Rational Design of Potent Peptide Activators of p53. Angewandte Chemie - International Edition, 2009, 48, 8712-8715.	13.8	72
116	Structural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4665-4670.	7.1	334
117	Chemically synthesized human survivin does not inhibit caspaseâ€3. Protein Science, 2008, 17, 1624-1629.	7.6	25
118	Molecular Determinants for the Interaction of Human Neutrophil \hat{l}_{\pm} Defensin 1 with its Propeptide. Journal of Molecular Biology, 2008, 381, 1281-1291.	4.2	22
119	Turning a Scorpion Toxin into an Antitumor Miniprotein. Journal of the American Chemical Society, 2008, 130, 13546-13548.	13.7	69
120	Induction of group A <i>Streptococcus </i> virulence by a human antimicrobial peptide. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16755-16760.	7.1	119
121	<i>Neisseria gonorrhoeae</i> -Induced Human Defensins 5 and 6 Increase HIV Infectivity: Role in Enhanced Transmission. Journal of Immunology, 2008, 180, 6176-6185.	0.8	87
122	The Conserved Salt Bridge in Human α-Defensin 5 Is Required for Its Precursor Processing and Proteolytic Stability. Journal of Biological Chemistry, 2008, 283, 21509-21518.	3.4	52
123	Design of peptide inhibitors for furin based on the C-terminal fragment of histone H1.2. Acta Biochimica Et Biophysica Sinica, 2008, 40, 848-854.	2.0	0
124	Defining the Native Disulfide Topology in the Somatomedin B Domain of Human Vitronectin. Journal of Biological Chemistry, 2007, 282, 5318-5326.	3.4	13
125	A Novel Role for Defensins in Intestinal Homeostasis: Regulation of IL- $1\hat{l}^2$ Secretion. Journal of Immunology, 2007, 179, 1245-1253.	0.8	108
126	Human Defensins: Synthesis and Structural Properties. Current Pharmaceutical Design, 2007, 13, 3096-3118.	1.9	65

#	Article	IF	CITATIONS
127	Human Defensins: Turning Defense into Offense?. Infectious Disorders - Drug Targets, 2007, 7, 67-70.	0.8	20
128	Toward Understanding the Cationicity of Defensins. Journal of Biological Chemistry, 2007, 282, 19653-19665.	3.4	127
129	Impact of Pro Segments on the Folding and Function of Human Neutrophil α-Defensins. Journal of Molecular Biology, 2007, 368, 537-549.	4.2	31
130	Structureâ€dependent functional properties of human defensin 5. FEBS Letters, 2007, 581, 515-520.	2.8	76
131	Mutations that mimic phosphorylation of the HIVâ€1 matrix protein do not perturb the myristyl switch. Protein Science, 2007, 16, 1793-1797.	7.6	8
132	Molecular and functional characterization of bovine \hat{l}^2 -defensin-1. Veterinary Immunology and Immunopathology, 2006, 113, 181-190.	1.2	23
133	A novel conotoxin from Conus striatus, î¼-SIIIA, selectively blocking rat tetrodotoxin-resistant sodium channels. Toxicon, 2006, 47, 122-132.	1.6	49
134	Functional evolution within a protein superfamily. Proteins: Structure, Function and Bioinformatics, 2006, 63, 697-708.	2.6	2
135	Binding characteristics of the Lactobacillus brevis ATCC 8287 surface layer to extracellular matrix proteins. FEMS Microbiology Letters, 2006, 260, 210-215.	1.8	52
136	Crystal structures of human αâ€defensins HNP4, HD5, and HD6. Protein Science, 2006, 15, 2749-2760.	7.6	193
137	Human \hat{l}_{\pm} -defensins block papillomavirus infection. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1516-1521.	7.1	245
138	N-terminal proteolytic processing by cathepsin G converts RANTES/CCL5 and related analogs into a truncated 4-68 variant. Journal of Leukocyte Biology, 2006, 80, 1395-1404.	3.3	38
139	Human \hat{l}_{\pm} - and \hat{l}^2 -Defensins Block Multiple Steps in Herpes Simplex Virus Infection. Journal of Immunology, 2006, 177, 8658-8666.	0.8	236
140	Preclinical Evaluation of Synthetic \hat{a}^2 RANTES as a Candidate Vaginal Microbicide To Target CCR5. Antimicrobial Agents and Chemotherapy, 2006, 50, 1497-1509.	3.2	31
141	Retrocyclins Kill Bacilli and Germinating Spores of Bacillus anthracis and Inactivate Anthrax Lethal Toxin. Journal of Biological Chemistry, 2006, 281, 32755-32764.	3.4	79
142	Inhibition of pathologic retinal neovascularization by Â-defensins. Blood, 2005, 106, 3831-3838.	1.4	70
143	Multiple pathways of amino terminal processing produce two truncated variants of RANTES/CCL5. Journal of Leukocyte Biology, 2005, 78, 442-452.	3.3	30
144	Why Is the Arg5-Glu13 Salt Bridge Conserved in Mammalian α-Defensins?. Journal of Biological Chemistry, 2005, 280, 43039-43047.	3.4	48

#	Article	IF	CITATIONS
145	Cervicovaginal Secretions Contribute to Innate Resistance to Herpes Simplex Virus Infection. Journal of Infectious Diseases, 2005, 192, 1731-1740.	4.0	76
146	Human \hat{I}^2 -Defensins Suppress Human Immunodeficiency Virus Infection: Potential Role in Mucosal Protection. Journal of Virology, 2005, 79, 14318-14329.	3.4	227
147	Reconstruction of the Conserved \hat{l}^2 -Bulge in Mammalian Defensins Using d-Amino Acids. Journal of Biological Chemistry, 2005, 280, 32921-32929.	3.4	73
148	Antibacterial Activity and Specificity of the Six Human \hat{l}_{\pm} -Defensins. Antimicrobial Agents and Chemotherapy, 2005, 49, 269-275.	3.2	297
149	Total Chemical Synthesis of Human Psoriasin by Native Chemical Ligationâ€. Biochemistry, 2005, 44, 14688-14694.	2.5	23
150	Human neutrophil αâ€defensin 4 inhibits HIVâ€1 infection in vitro. FEBS Letters, 2005, 579, 162-166.	2.8	86
151	Effects of the terminal charges in human neutrophil \hat{l} ±-defensin 2 on its bactericidal and membrane activity. Peptides, 2005, 26, 2377-2383.	2.4	26
152	A novel short-chain peptide BmKX from the chinese scorpion Buthus martensi karsch, sequencing, gene cloning and structure determination. Toxicon, 2005, 45, 309-319.	1.6	12
153	BmBKTx1, a Novel Ca2+-activated K+ Channel Blocker Purified from the Asian Scorpion Buthus martensi Karsch. Journal of Biological Chemistry, 2004, 279, 34562-34569.	3.4	37
154	Total chemical synthesis of N-myristoylated HIV-1 matrix protein p17: Structural and mechanistic implications of p17 myristoylation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11587-11592.	7.1	43
155	Solution Structure of BmBKTx1, a New BKCa1Channel Blocker from the Chinese ScorpionButhus martensiKarschâ€,‡. Biochemistry, 2004, 43, 3764-3771.	2.5	20
156	Structure of the scorpion toxin BmBKTtx1 solved from single wavelength anomalous scattering of sulfur. Journal of Structural Biology, 2004, 145, 289-294.	2.8	12
157	Reexamination of the recognition preference of the specificity pocket of the Abl SH3 domain. Journal of Molecular Recognition, 2003, 16, 131-138.	2.1	4
158	Crystallization and preliminary X-ray studies of thymus and activation-regulated chemokine (TARC). Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 163-165.	2.5	1
159	Structures of thymus and activation-regulated chemokine (TARC). Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 1165-1173.	2.5	17
160	Testing of the Additivity-Based Protein Sequence to Reactivity Algorithmâ€. Biochemistry, 2003, 42, 6460-6466.	2.5	12
161	Productive Folding of Human Neutrophil $\hat{l}\pm$ -Defensins in Vitro without the Pro-peptide. Journal of the American Chemical Society, 2003, 125, 2402-2403.	13.7	65
162	The first semi-synthetic serine protease made by native chemical ligation. Protein Expression and Purification, 2003, 29, 185-192.	1.3	10

#	Article	IF	Citations
163	Engineering disulfide bridges to dissect antimicrobial and chemotactic activities of human \hat{l}^2 -defensin 3. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8880-8885.	7.1	413
164	Antimicrobial Characterization of Human \hat{l}^2 -Defensin 3 Derivatives. Antimicrobial Agents and Chemotherapy, 2003, 47, 2804-2809.	3.2	235
165	The Structure of Human Macrophage Inflammatory Protein-3α/CCL20. Journal of Biological Chemistry, 2002, 277, 37647-37654.	3.4	210
166	Contribution of peptide bonds to inhibitor-protease binding: crystal structures of the turkey ovomucoid third domain backbone variants OMTKY3-Pro18I and OMTKY3-Î ⁻ [COO]-Leu18I in complex with Streptomyces griseus proteinase B (SGPB) and the structure of the free inhibitor, OMTKY3-Î ⁻ [CH2NH2+]-Asp19I. Journal of Molecular Biology, 2001, 305, 839-849.	4.2	25
167	Crystal structure of a cyclic form of bovine pancreatic trypsin inhibitor. FEBS Letters, 2001, 509, 90-94.	2.8	17
168	Predicting the reactivity of proteins from their sequence alone: Kazal family of protein inhibitors of serine proteinases. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 1410-1415.	7.1	49
169	Biosynthetic phage display: a novel protein engineering tool combining chemical and genetic diversity. Chemistry and Biology, 2000, 7, 263-274.	6.0	60
170	Deciphering the Role of the Electrostatic Interactions Involving Gly70 in Eglin C by Total Chemical Protein Synthesis. Biochemistry, 2000, 39, 3575-3584.	2.5	35
171	Deleterious effects of βâ€branched residues in the S ₁ specificity pocket of <i>Streptomyces griseus</i> proteinase B (SGPB): Crystal structures of the turkey ovomucoid third domain variants lle18I, Val18I, Thr18I, and Ser18I in complex with SGPB. Protein Science, 2000, 9, 83-94.	7.6	16
172	Probing intermolecular backbone H-bonding in serine proteinase-protein inhibitor complexes. Chemistry and Biology, 1999, 6, 419-427.	6.0	27
173	A novel method to synthesize cyclic peptides. Tetrahedron Letters, 1998, 39, 3911-3914.	1.4	96
174	Total chemical synthesis of bovine pancreatic trypsin inhibitor by native chemical ligation. FEBS Letters, 1998, 429, 31-35.	2.8	22
175	Probing Intermolecular Main Chain Hydrogen Bonding in Serine Proteinaseâ^'Protein Inhibitor Complexes:  Chemical Synthesis of Backbone-Engineered Turkey Ovomucoid Third Domain. Biochemistry, 1997, 36, 673-679.	2.5	88
176	Binding of amino acid side-chains to S 1 cavities of serine proteinases 1 1Edited by R. Huber. Journal of Molecular Biology, 1997, 266, 441-461.	4.2	166
177	Comparative Total Syntheses of Turkey Ovomucoid Third Domain by Both Stepwise Solid Phase Peptide Synthesis and Native Chemical Ligation. Journal of the American Chemical Society, 1996, 118, 8518-8523.	13.7	58
178	Water molecules participate in proteinaseâ€inhibitor interactions: Crystal structures of Leu ¹⁸ , Ala ¹⁸ , and Gly ¹⁸ variants of turkey ovomucoid inhibitor third domain complexed with <i>Streptomyces griseus</i> proteinase B. Protein Science, 1995, 4, 1985-1997.	7.6	77
179	Binding of amino acid side chains to preformed cavities: Interaction of serine proteinases with turkey ovomucoid third domains with coded and noncoded P ₁ residues. Protein Science, 1993, 2, 786-799.	7.6	65
180	Arg15-Lys17-Arg18 turkey ovomucoid third domain inhibits human furin. Journal of Biological Chemistry, 1993, 268, 14583-5.	3 . 4	45

#	Article	IF	CITATIONS
181	Amino acid sequences of ovomucoid third domain from 25 additional species of birds. The Protein Journal, 1990, 9, 715-725.	1.1	45