
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7812325/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Engineering disulfide bridges to dissect antimicrobial and chemotactic activities of human β-defensin 3.<br>Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8880-8885.     | 7.1  | 413       |
| 2  | αâ€Đefensins in human innate immunity. Immunological Reviews, 2012, 245, 84-112.                                                                                                                                       | 6.0  | 359       |
| 3  | Human α-Defensin 6 Promotes Mucosal Innate Immunity Through Self-Assembled Peptide Nanonets.<br>Science, 2012, 337, 477-481.                                                                                           | 12.6 | 337       |
| 4  | Structural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX.<br>Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4665-4670.                | 7.1  | 334       |
| 5  | Antibacterial Activity and Specificity of the Six Human $\hat{I}\pm$ -Defensins. Antimicrobial Agents and Chemotherapy, 2005, 49, 269-275.                                                                             | 3.2  | 297       |
| 6  | Human α-defensins block papillomavirus infection. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1516-1521.                                                               | 7.1  | 245       |
| 7  | Human α- and β-Defensins Block Multiple Steps in Herpes Simplex Virus Infection. Journal of Immunology, 2006, 177, 8658-8666.                                                                                          | 0.8  | 236       |
| 8  | Antimicrobial Characterization of Human β-Defensin 3 Derivatives. Antimicrobial Agents and Chemotherapy, 2003, 47, 2804-2809.                                                                                          | 3.2  | 235       |
| 9  | Human β-Defensins Suppress Human Immunodeficiency Virus Infection: Potential Role in Mucosal<br>Protection. Journal of Virology, 2005, 79, 14318-14329.                                                                | 3.4  | 227       |
| 10 | The Structure of Human Macrophage Inflammatory Protein-3î±/CCL20. Journal of Biological Chemistry,<br>2002, 277, 37647-37654.                                                                                          | 3.4  | 210       |
| 11 | Crystal structures of human αâ€defensins HNP4, HD5, and HD6. Protein Science, 2006, 15, 2749-2760.                                                                                                                     | 7.6  | 193       |
| 12 | D-peptide inhibitors of the p53–MDM2 interaction for targeted molecular therapy of malignant<br>neoplasms. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107,<br>14321-14326. | 7.1  | 191       |
| 13 | Functional interaction of human neutrophil peptideâ€1 with the cell wall precursor lipid II. FEBS<br>Letters, 2010, 584, 1543-1548.                                                                                    | 2.8  | 180       |
| 14 | Chiral Protein Supraparticles for Tumor Suppression and Synergistic Immunotherapy: An Enabling<br>Strategy for Bioactive Supramolecular Chirality Construction. Nano Letters, 2020, 20, 5844-5852.                     | 9.1  | 176       |
| 15 | Binding of amino acid side-chains to S 1 cavities of serine proteinases 1 1Edited by R. Huber. Journal of<br>Molecular Biology, 1997, 266, 441-461.                                                                    | 4.2  | 166       |
| 16 | Dying and Necrotic Neutrophils Are Anti-Inflammatory Secondary to the Release of α-Defensins. Journal of Immunology, 2009, 183, 2122-2132.                                                                             | 0.8  | 141       |
| 17 | Toward Understanding the Cationicity of Defensins. Journal of Biological Chemistry, 2007, 282, 19653-19665.                                                                                                            | 3.4  | 127       |
| 18 | Induction of group A <i>Streptococcus</i> virulence by a human antimicrobial peptide. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16755-16760.                         | 7.1  | 119       |

| #  | Article                                                                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Systematic Mutational Analysis of Peptide Inhibition of the p53–MDM2/MDMX Interactions. Journal of<br>Molecular Biology, 2010, 398, 200-213.                                                                                                                                                                      | 4.2  | 116       |
| 20 | Defensins: A Double-Edged Sword in Host Immunity. Frontiers in Immunology, 2020, 11, 764.                                                                                                                                                                                                                         | 4.8  | 114       |
| 21 | Self-Assembled Peptide–Lanthanide Nanoclusters for Safe Tumor Therapy: Overcoming and Utilizing<br>Biological Barriers to Peptide Drug Delivery. ACS Nano, 2018, 12, 2017-2026.                                                                                                                                   | 14.6 | 110       |
| 22 | Insight into the Mechanisms of Adenovirus Capsid Disassembly from Studies of Defensin<br>Neutralization. PLoS Pathogens, 2010, 6, e1000959.                                                                                                                                                                       | 4.7  | 109       |
| 23 | A Novel Role for Defensins in Intestinal Homeostasis: Regulation of IL-1Î <sup>2</sup> Secretion. Journal of Immunology, 2007, 179, 1245-1253.                                                                                                                                                                    | 0.8  | 108       |
| 24 | Mitochondrial Dysfunction in Obesity-Associated Nonalcoholic Fatty Liver Disease: The Protective<br>Effects of Pomegranate with Its Active Component Punicalagin. Antioxidants and Redox Signaling,<br>2014, 21, 1557-1570.                                                                                       | 5.4  | 104       |
| 25 | Through the Looking Glass, Mechanistic Insights from Enantiomeric Human Defensins. Journal of<br>Biological Chemistry, 2009, 284, 29180-29192.                                                                                                                                                                    | 3.4  | 103       |
| 26 | A novel method to synthesize cyclic peptides. Tetrahedron Letters, 1998, 39, 3911-3914.                                                                                                                                                                                                                           | 1.4  | 96        |
| 27 | Self-Assembling Myristoylated Human α-Defensin 5 as a Next-Generation Nanobiotics Potentiates<br>Therapeutic Efficacy in Bacterial Infection. ACS Nano, 2018, 12, 5284-5296.                                                                                                                                      | 14.6 | 96        |
| 28 | Multivalent Binding of Carbohydrates by the Human α-Defensin, HD5. Journal of Immunology, 2009, 183,<br>480-490.                                                                                                                                                                                                  | 0.8  | 91        |
| 29 | A Leftâ€Handed Solution to Peptide Inhibition of the p53–MDM2 Interaction. Angewandte Chemie -<br>International Edition, 2010, 49, 3649-3652.                                                                                                                                                                     | 13.8 | 91        |
| 30 | Defensins in innate immunity. Current Opinion in Hematology, 2014, 21, 37-42.                                                                                                                                                                                                                                     | 2.5  | 91        |
| 31 | Probing Intermolecular Main Chain Hydrogen Bonding in Serine Proteinaseâ^'Protein Inhibitor<br>Complexes:  Chemical Synthesis of Backbone-Engineered Turkey Ovomucoid Third Domain. Biochemistry,<br>1997, 36, 673-679.                                                                                           | 2.5  | 88        |
| 32 | <i>Neisseria gonorrhoeae</i> -Induced Human Defensins 5 and 6 Increase HIV Infectivity: Role in<br>Enhanced Transmission. Journal of Immunology, 2008, 180, 6176-6185.                                                                                                                                            | 0.8  | 87        |
| 33 | Human neutrophil αâ€defensin 4 inhibits HIVâ€1 infection in vitro. FEBS Letters, 2005, 579, 162-166.                                                                                                                                                                                                              | 2.8  | 86        |
| 34 | Retrocyclins Kill Bacilli and Germinating Spores of Bacillus anthracis and Inactivate Anthrax Lethal<br>Toxin. Journal of Biological Chemistry, 2006, 281, 32755-32764.                                                                                                                                           | 3.4  | 79        |
| 35 | Differential Roles of Chemokines CCL2 and CCL7 in Monocytosis and Leukocyte Migration during West<br>Nile Virus Infection. Journal of Immunology, 2015, 195, 4306-4318.                                                                                                                                           | 0.8  | 78        |
| 36 | Water molecules participate in proteinaseâ€inhibitor interactions: Crystal structures of<br>Leu <sup>18</sup> , Ala <sup>18</sup> , and Gly <sup>18</sup> variants of turkey ovomucoid inhibitor<br>third domain complexed with <i>Streptomyces griseus</i> proteinase B. Protein Science, 1995, 4,<br>1985-1997. | 7.6  | 77        |

WUYUAN LU

| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Cervicovaginal Secretions Contribute to Innate Resistance to Herpes Simplex Virus Infection. Journal of Infectious Diseases, 2005, 192, 1731-1740.                                                                 | 4.0  | 76        |
| 38 | Structureâ€dependent functional properties of human defensin 5. FEBS Letters, 2007, 581, 515-520.                                                                                                                  | 2.8  | 76        |
| 39 | The Membrane-Bound Structure and Topology of a Human α-Defensin Indicate a Dimer Pore Mechanism for Membrane Disruption. Biochemistry, 2010, 49, 9770-9782.                                                        | 2.5  | 76        |
| 40 | Multifaceted Mechanisms of HIV-1 Entry Inhibition by Human α-Defensin. Journal of Biological<br>Chemistry, 2012, 287, 28821-28838.                                                                                 | 3.4  | 74        |
| 41 | Reconstruction of the Conserved β-Bulge in Mammalian Defensins Using d-Amino Acids. Journal of<br>Biological Chemistry, 2005, 280, 32921-32929.                                                                    | 3.4  | 73        |
| 42 | Apamin as a Template for Structureâ€Based Rational Design of Potent Peptide Activators of p53.<br>Angewandte Chemie - International Edition, 2009, 48, 8712-8715.                                                  | 13.8 | 72        |
| 43 | An Ultrahigh Affinity <scp>d</scp> -Peptide Antagonist Of MDM2. Journal of Medicinal Chemistry, 2012, 55, 6237-6241.                                                                                               | 6.4  | 71        |
| 44 | Human Defensins Facilitate Local Unfolding of Thermodynamically Unstable Regions of Bacterial<br>Protein Toxins. Immunity, 2014, 41, 709-721.                                                                      | 14.3 | 71        |
| 45 | Inhibition of pathologic retinal neovascularization by Â-defensins. Blood, 2005, 106, 3831-3838.                                                                                                                   | 1.4  | 70        |
| 46 | Turning a Scorpion Toxin into an Antitumor Miniprotein. Journal of the American Chemical Society,<br>2008, 130, 13546-13548.                                                                                       | 13.7 | 69        |
| 47 | Defensins enable macrophages to inhibit the intracellular proliferation of Listeria monocytogenes.<br>Cellular Microbiology, 2011, 13, 635-651.                                                                    | 2.1  | 68        |
| 48 | Functional Determinants of Human Enteric α-Defensin HD5. Journal of Biological Chemistry, 2012, 287,<br>21615-21627.                                                                                               | 3.4  | 68        |
| 49 | Neutrophil-derived alpha defensins control inflammation by inhibiting macrophage mRNA translation.<br>Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4350-4355.       | 7.1  | 66        |
| 50 | Binding of amino acid side chains to preformed cavities: Interaction of serine proteinases with turkey ovomucoid third domains with coded and noncoded P <sub>1</sub> residues. Protein Science, 1993, 2, 786-799. | 7.6  | 65        |
| 51 | Productive Folding of Human Neutrophil α-Defensins in Vitro without the Pro-peptide. Journal of the<br>American Chemical Society, 2003, 125, 2402-2403.                                                            | 13.7 | 65        |
| 52 | Human Defensins: Synthesis and Structural Properties. Current Pharmaceutical Design, 2007, 13, 3096-3118.                                                                                                          | 1.9  | 65        |
| 53 | Limitations of Peptide Retro-inverso Isomerization in Molecular Mimicry. Journal of Biological<br>Chemistry, 2010, 285, 19572-19581.                                                                               | 3.4  | 65        |
| 54 | A nano-predator of pathological MDMX construct by clearable supramolecular gold(I)-thiol-peptide complexes achieves safe and potent anti-tumor activity. Theranostics, 2021, 11, 6833-6846.                        | 10.0 | 65        |

WUYUAN LU

| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Human defensins 5 and 6 enhance HIV-1 infectivity through promoting HIV attachment. Retrovirology, 2011, 8, 45.                                                                                                                  | 2.0  | 61        |
| 56 | Critical Determinants of Human α-Defensin 5 Activity against Non-enveloped Viruses. Journal of<br>Biological Chemistry, 2012, 287, 24554-24562.                                                                                  | 3.4  | 61        |
| 57 | Biosynthetic phage display: a novel protein engineering tool combining chemical and genetic diversity.<br>Chemistry and Biology, 2000, 7, 263-274.                                                                               | 6.0  | 60        |
| 58 | Selfâ€Assembly of Therapeutic Peptide into Stimuliâ€Responsive Clustered Nanohybrids for<br>Cancerâ€Targeted Therapy. Advanced Functional Materials, 2019, 29, 1807736.                                                          | 14.9 | 59        |
| 59 | Comparative Total Syntheses of Turkey Ovomucoid Third Domain by Both Stepwise Solid Phase Peptide<br>Synthesis and Native Chemical Ligation. Journal of the American Chemical Society, 1996, 118, 8518-8523.                     | 13.7 | 58        |
| 60 | Role of HIV-1 matrix protein p17 variants in lymphoma pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14331-14336.                                                     | 7.1  | 58        |
| 61 | Selective arginines are important for the antibacterial activity and host cell interaction of human<br>αâ€defensin 5. FEBS Letters, 2009, 583, 2507-2512.                                                                        | 2.8  | 57        |
| 62 | Stapled RGD Peptide Enables Glioma-Targeted Drug Delivery by Overcoming Multiple Barriers. ACS<br>Applied Materials & Interfaces, 2017, 9, 17745-17756.                                                                          | 8.0  | 57        |
| 63 | Lanthanide-doped nanoparticles conjugated with an anti-CD33 antibody and a p53-activating peptide for acute myeloid leukemia therapy. Biomaterials, 2018, 167, 132-142.                                                          | 11.4 | 56        |
| 64 | Human α-Defensins Inhibit Hemolysis Mediated by Cholesterol-Dependent Cytolysins. Infection and<br>Immunity, 2009, 77, 4028-4040.                                                                                                | 2.2  | 54        |
| 65 | Trp-26 Imparts Functional Versatility to Human α-Defensin HNP1. Journal of Biological Chemistry, 2010,<br>285, 16275-16285.                                                                                                      | 3.4  | 54        |
| 66 | Binding characteristics of the Lactobacillus brevis ATCC 8287 surface layer to extracellular matrix proteins. FEMS Microbiology Letters, 2006, 260, 210-215.                                                                     | 1.8  | 52        |
| 67 | The Conserved Salt Bridge in Human α-Defensin 5 Is Required for Its Precursor Processing and<br>Proteolytic Stability. Journal of Biological Chemistry, 2008, 283, 21509-21518.                                                  | 3.4  | 52        |
| 68 | A stapled peptide antagonist of MDM2 carried by polymeric micelles sensitizes glioblastoma to temozolomide treatment through p53 activation. Journal of Controlled Release, 2015, 218, 29-35.                                    | 9.9  | 51        |
| 69 | Turning Defense into Offense: Defensin Mimetics as Novel Antibiotics Targeting Lipid II. PLoS<br>Pathogens, 2013, 9, e1003732.                                                                                                   | 4.7  | 50        |
| 70 | Interferon-Induced Transmembrane Protein 3 Blocks Fusion of Diverse Enveloped Viruses by Altering<br>Mechanical Properties of Cell Membranes. ACS Nano, 2021, 15, 8155-8170.                                                     | 14.6 | 50        |
| 71 | A novel conotoxin from Conus striatus, μ-SIIIA, selectively blocking rat tetrodotoxin-resistant sodium<br>channels. Toxicon, 2006, 47, 122-132.                                                                                  | 1.6  | 49        |
| 72 | Predicting the reactivity of proteins from their sequence alone: Kazal family of protein inhibitors of serine proteinases. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 1410-1415. | 7.1  | 49        |

| #  | Article                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Why Is the Arg5-Glu13 Salt Bridge Conserved in Mammalian α-Defensins?. Journal of Biological Chemistry, 2005, 280, 43039-43047.                                                                                                               | 3.4  | 48        |
| 74 | Defensins: The natural peptide antibiotic. Advanced Drug Delivery Reviews, 2021, 179, 114008.                                                                                                                                                 | 13.7 | 48        |
| 75 | Human Enteric α-Defensin 5 Promotes Shigella Infection by Enhancing Bacterial Adhesion and Invasion.<br>Immunity, 2018, 48, 1233-1244.e6.                                                                                                     | 14.3 | 47        |
| 76 | Amino acid sequences of ovomucoid third domain from 25 additional species of birds. The Protein<br>Journal, 1990, 9, 715-725.                                                                                                                 | 1.1  | 45        |
| 77 | CCR6 ligands inhibit HIV by inducing APOBEC3G. Blood, 2010, 115, 1564-1571.                                                                                                                                                                   | 1.4  | 45        |
| 78 | Sometimes It Takes Two to Tango. Journal of Biological Chemistry, 2012, 287, 8944-8953.                                                                                                                                                       | 3.4  | 45        |
| 79 | Mirror image proteins. Current Opinion in Chemical Biology, 2014, 22, 56-61.                                                                                                                                                                  | 6.1  | 45        |
| 80 | Toxins and derivatives in molecular pharmaceutics: Drug delivery and targeted therapy. Advanced<br>Drug Delivery Reviews, 2015, 90, 101-118.                                                                                                  | 13.7 | 45        |
| 81 | Arg15-Lys17-Arg18 turkey ovomucoid third domain inhibits human furin. Journal of Biological<br>Chemistry, 1993, 268, 14583-5.                                                                                                                 | 3.4  | 45        |
| 82 | Defensins Potentiate a Neutralizing Antibody Response to Enteric Viral Infection. PLoS Pathogens, 2016, 12, e1005474.                                                                                                                         | 4.7  | 44        |
| 83 | Total chemical synthesis of N-myristoylated HIV-1 matrix protein p17: Structural and mechanistic implications of p17 myristoylation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11587-11592. | 7.1  | 43        |
| 84 | Resonance Assignment and Three-Dimensional Structure Determination of a Human α-Defensin, HNP-1, by<br>Solid-State NMR. Journal of Molecular Biology, 2010, 397, 408-422.                                                                     | 4.2  | 43        |
| 85 | Functional consequences of retro-inverso isomerization of a miniature protein inhibitor of the p53–MDM2 interaction. Bioorganic and Medicinal Chemistry, 2013, 21, 4045-4050.                                                                 | 3.0  | 43        |
| 86 | Dithiocarbamate-inspired side chain stapling chemistry for peptide drug design. Chemical Science, 2019,<br>10, 1522-1530.                                                                                                                     | 7.4  | 43        |
| 87 | Structural and Functional Analysis of the Pro-Domain of Human Cathelicidin, LL-37. Biochemistry, 2013, 52, 1547-1558.                                                                                                                         | 2.5  | 42        |
| 88 | Turning a Luffa Protein into a Self-Assembled Biodegradable Nanoplatform for Multitargeted Cancer<br>Therapy. ACS Nano, 2018, 12, 11664-11677.                                                                                                | 14.6 | 40        |
| 89 | N-terminal proteolytic processing by cathepsin G converts RANTES/CCL5 and related analogs into a truncated 4-68 variant. Journal of Leukocyte Biology, 2006, 80, 1395-1404.                                                                   | 3.3  | 38        |
| 90 | Soluble factors from T cells inhibiting X4 strains of HIV are a mixture of β chemokines and RNases.<br>Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5411-5416.                                 | 7.1  | 38        |

| #   | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Delineation of Interfaces on Human Alpha-Defensins Critical for Human Adenovirus and Human<br>Papillomavirus Inhibition. PLoS Pathogens, 2014, 10, e1004360.                                                                                       | 4.7  | 38        |
| 92  | BmBKTx1, a Novel Ca2+-activated K+ Channel Blocker Purified from the Asian Scorpion Buthus martensi<br>Karsch. Journal of Biological Chemistry, 2004, 279, 34562-34569.                                                                            | 3.4  | 37        |
| 93  | Curcumin analog 1, 5-bis (2-trifluoromethylphenyl)-1, 4-pentadien-3-one exhibits enhanced ability on<br>Nrf2 activation and protection against acrolein-induced ARPE-19 cell toxicity. Toxicology and Applied<br>Pharmacology, 2013, 272, 726-735. | 2.8  | 37        |
| 94  | Deciphering the Role of the Electrostatic Interactions Involving Gly70 in Eglin C by Total Chemical Protein Synthesis. Biochemistry, 2000, 39, 3575-3584.                                                                                          | 2.5  | 35        |
| 95  | Interrogation of MDM2 Phosphorylation in p53 Activation Using Native Chemical Ligation: The<br>Functional Role of Ser17 Phosphorylation in MDM2 Reexamined. Journal of the American Chemical<br>Society, 2012, 134, 6855-6864.                     | 13.7 | 35        |
| 96  | Peptide-Induced Self-Assembly of Therapeutics into a Well-Defined Nanoshell with Tumor-Triggered Shape and Charge Switch. Chemistry of Materials, 2018, 30, 7034-7046.                                                                             | 6.7  | 35        |
| 97  | Human Defensins Inhibit SARS-CoV-2 Infection by Blocking Viral Entry. Viruses, 2021, 13, 1246.                                                                                                                                                     | 3.3  | 35        |
| 98  | Coordination of MYH DNA glycosylase and APE1 endonuclease activities via physical interactions. DNA Repair, 2013, 12, 1043-1052.                                                                                                                   | 2.8  | 33        |
| 99  | Pro-inflammatory and pro-apoptotic properties of Human Defensin 5. Biochemical and Biophysical Research Communications, 2013, 436, 557-562.                                                                                                        | 2.1  | 33        |
| 100 | A lanthanide-peptide-derived bacterium-like nanotheranostic with high tumor-targeting, -imaging and<br>-killing properties. Biomaterials, 2019, 206, 13-24.                                                                                        | 11.4 | 33        |
| 101 | Preclinical Evaluation of Synthetic â <sup>~,</sup> 2 RANTES as a Candidate Vaginal Microbicide To Target CCR5.<br>Antimicrobial Agents and Chemotherapy, 2006, 50, 1497-1509.                                                                     | 3.2  | 31        |
| 102 | Impact of Pro Segments on the Folding and Function of Human Neutrophil α-Defensins. Journal of<br>Molecular Biology, 2007, 368, 537-549.                                                                                                           | 4.2  | 31        |
| 103 | Molecular basis for epitope recognition by non-neutralizing anti-gp41 antibody F240. Scientific Reports, 2016, 6, 36685.                                                                                                                           | 3.3  | 31        |
| 104 | The Beta Subunit of Hemoglobin (HBB2/HBB) Suppresses Neuroblastoma Growth and Metastasis.<br>Cancer Research, 2017, 77, 14-26.                                                                                                                     | 0.9  | 31        |
| 105 | Multiple pathways of amino terminal processing produce two truncated variants of RANTES/CCL5.<br>Journal of Leukocyte Biology, 2005, 78, 442-452.                                                                                                  | 3.3  | 30        |
| 106 | Invariant Gly Residue Is Important for α-Defensin Folding, Dimerization, and Function. Journal of<br>Biological Chemistry, 2012, 287, 18900-18912.                                                                                                 | 3.4  | 30        |
| 107 | IFN-ε protects primary macrophages against HIV infection. JCI Insight, 2016, 1, e88255.                                                                                                                                                            | 5.0  | 30        |
| 108 | A tetrameric protein scaffold as a nano-carrier of antitumor peptides for cancer therapy.<br>Biomaterials, 2019, 204, 1-12.                                                                                                                        | 11.4 | 30        |

| #   | Article                                                                                                                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | CCL7 Is a Negative Regulator of Cutaneous Inflammation Following Leishmania major Infection.<br>Frontiers in Immunology, 2019, 9, 3063.                                                                                                                                                                                                                       | 4.8  | 29        |
| 110 | Single, Double and Quadruple Alanine Substitutions at Oligomeric Interfaces Identify Hydrophobicity<br>as the Key Determinant of Human Neutrophil Alpha Defensin HNP1 Function. PLoS ONE, 2013, 8, e78937.                                                                                                                                                    | 2.5  | 29        |
| 111 | Resurrecting a p53 peptide activator - An enabling nanoengineering strategy for peptide therapeutics.<br>Journal of Controlled Release, 2020, 325, 293-303.                                                                                                                                                                                                   | 9.9  | 28        |
| 112 | The Antimicrobial Peptide Human Beta-Defensin 2 Inhibits Biofilm Production of Pseudomonas aeruginosa Without Compromising Metabolic Activity. Frontiers in Immunology, 2020, 11, 805.                                                                                                                                                                        | 4.8  | 28        |
| 113 | Probing intermolecular backbone H-bonding in serine proteinase-protein inhibitor complexes.<br>Chemistry and Biology, 1999, 6, 419-427.                                                                                                                                                                                                                       | 6.0  | 27        |
| 114 | Effects of the terminal charges in human neutrophil α-defensin 2 on its bactericidal and membrane activity. Peptides, 2005, 26, 2377-2383.                                                                                                                                                                                                                    | 2.4  | 26        |
| 115 | Contribution of peptide bonds to inhibitor-protease binding: crystal structures of the turkey ovomucoid third domain backbone variants OMTKY3-Pro18I and OMTKY3-Î"[COO]-Leu18I in complex with Streptomyces griseus proteinase B (SGPB) and the structure of the free inhibitor, OMTKY3-Î"[CH2NH2+]-Asp19I. Journal of Molecular Biology. 2001. 305. 839-849. | 4.2  | 25        |
| 116 | Chemically synthesized human survivin does not inhibit caspaseâ€3. Protein Science, 2008, 17, 1624-1629.                                                                                                                                                                                                                                                      | 7.6  | 25        |
| 117 | Mucosal Human Defensins 5 and 6 Antagonize the Anti-HIV Activity of Candidate Polyanion<br>Microbicides. Journal of Innate Immunity, 2011, 3, 208-212.                                                                                                                                                                                                        | 3.8  | 24        |
| 118 | Total Chemical Synthesis of Human Psoriasin by Native Chemical Ligationâ€. Biochemistry, 2005, 44,<br>14688-14694.                                                                                                                                                                                                                                            | 2.5  | 23        |
| 119 | Molecular and functional characterization of bovine β-defensin-1. Veterinary Immunology and<br>Immunopathology, 2006, 113, 181-190.                                                                                                                                                                                                                           | 1.2  | 23        |
| 120 | Structural evaluation of a nanobody targeting complement receptor Vsig4 and its cross reactivity.<br>Immunobiology, 2017, 222, 807-813.                                                                                                                                                                                                                       | 1.9  | 23        |
| 121 | Human Beta Defensin 2 Selectively Inhibits HIV-1 in Highly Permissive CCR6+CD4+ T Cells. Viruses, 2017,<br>9, 111.                                                                                                                                                                                                                                            | 3.3  | 23        |
| 122 | Total chemical synthesis of bovine pancreatic trypsin inhibitor by native chemical ligation. FEBS<br>Letters, 1998, 429, 31-35.                                                                                                                                                                                                                               | 2.8  | 22        |
| 123 | Molecular Determinants for the Interaction of Human Neutrophil α Defensin 1 with its Propeptide.<br>Journal of Molecular Biology, 2008, 381, 1281-1291.                                                                                                                                                                                                       | 4.2  | 22        |
| 124 | Integrin α4β7 Expression Increases HIV Susceptibility in Activated Cervical CD4+ T Cells by an HIV<br>Attachment-Independent Mechanism. Journal of Acquired Immune Deficiency Syndromes (1999), 2015, 69,<br>509-518.                                                                                                                                         | 2.1  | 22        |
| 125 | A Hierarchical Peptide–Lanthanide Framework To Accurately Redress Intracellular Carcinogenic<br>Protein–Protein Interaction. Nano Letters, 2019, 19, 7918-7926.                                                                                                                                                                                               | 9.1  | 22        |
| 126 | Tanshinones: First-in-Class Inhibitors of the Biogenesis of the Type 3 Secretion System Needle of<br><i>Pseudomonas aeruginosa</i> for Antibiotic Therapy. ACS Central Science, 2019, 5, 1278-1288.                                                                                                                                                           | 11.3 | 21        |

| #   | Article                                                                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Solution Structure of BmBKTx1, a New BKCa1Channel Blocker from the Chinese ScorpionButhus<br>martensiKarschâ€,‡. Biochemistry, 2004, 43, 3764-3771.                                                                                                                                                        | 2.5  | 20        |
| 128 | Human Defensins: Turning Defense into Offense?. Infectious Disorders - Drug Targets, 2007, 7, 67-70.                                                                                                                                                                                                       | 0.8  | 20        |
| 129 | Peptide Activators of the p53 Tumor Suppressor. Current Pharmaceutical Design, 2011, 17, 603-609.                                                                                                                                                                                                          | 1.9  | 20        |
| 130 | Sub-Inhibitory Concentrations of Human α-defensin Potentiate Neutralizing Antibodies against HIV-1 gp41 Pre-Hairpin Intermediates in the Presence of Serum. PLoS Pathogens, 2013, 9, e1003431.                                                                                                             | 4.7  | 20        |
| 131 | Identification of amino acid residues critical for the B cell growth-promoting activity of HIV-1 matrix protein p17 variants. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 13-24.                                                                                                         | 2.4  | 20        |
| 132 | Inhibition of SARS-CoV-2 Infection by Human Defensin HNP1 and Retrocyclin RC-101. Journal of Molecular Biology, 2022, 434, 167225.                                                                                                                                                                         | 4.2  | 19        |
| 133 | The metastatic microenvironment: Lungâ€derived factors control the viability of neuroblastoma lung metastasis. International Journal of Cancer, 2013, 133, 2296-2306.                                                                                                                                      | 5.1  | 18        |
| 134 | The Î,-defensin retrocyclin 101 inhibits TLR4- and TLR2-dependent signaling and protects mice against influenza infection. Journal of Leukocyte Biology, 2017, 102, 1103-1113.                                                                                                                             | 3.3  | 18        |
| 135 | Human Enteric Defensin 5 Promotes <i>Shigella</i> Infection of Macrophages. Infection and Immunity, 2019, 88, .                                                                                                                                                                                            | 2.2  | 18        |
| 136 | Crystal structure of a cyclic form of bovine pancreatic trypsin inhibitor. FEBS Letters, 2001, 509, 90-94.                                                                                                                                                                                                 | 2.8  | 17        |
| 137 | Structures of thymus and activation-regulated chemokine (TARC). Acta Crystallographica Section D:<br>Biological Crystallography, 2003, 59, 1165-1173.                                                                                                                                                      | 2.5  | 17        |
| 138 | Nanodefensin-encased hydrogel with dual bactericidal and pro-regenerative functions for advanced wound therapy. Theranostics, 2021, 11, 3642-3660.                                                                                                                                                         | 10.0 | 17        |
| 139 | Deleterious effects of βâ€branched residues in the S <sub>1</sub> specificity pocket of <i>Streptomyces<br/>griseus</i> proteinase B (SGPB): Crystal structures of the turkey ovomucoid third domain variants<br>lle18l, Val18l, Thr18l, and Ser18l in complex with SGPB. Protein Science, 2000, 9, 83-94. | 7.6  | 16        |
| 140 | Topology of the disulfide bonds in the antiviral lectin scytovirin. Protein Science, 2010, 19, 1649-1661.                                                                                                                                                                                                  | 7.6  | 16        |
| 141 | Human defensin-inspired discovery of peptidomimetic antibiotics. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117283119.                                                                                                                                  | 7.1  | 16        |
| 142 | Rattusin, an Intestinal α-Defensin-Related Peptide in Rats with a Unique Cysteine Spacing Pattern and<br>Salt-Insensitive Antibacterial Activities. Antimicrobial Agents and Chemotherapy, 2013, 57, 1823-1831.                                                                                            | 3.2  | 15        |
| 143 | Anti-HIV Activity of Human Defensin 5 in Primary CD4+ T Cells under Serum-Deprived Conditions Is a Consequence of Defensin-Mediated Cytotoxicity. PLoS ONE, 2013, 8, e76038.                                                                                                                               | 2.5  | 15        |
| 144 | A single amino acid substitution confers B-cell clonogenic activity to the HIV-1 matrix protein p17.<br>Scientific Reports, 2017, 7, 6555.                                                                                                                                                                 | 3.3  | 15        |

| #   | Article                                                                                                                                                                             | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Design of ultrahigh-affinity and dual-specificity peptide antagonists of MDM2 and MDMX for P53 activation and tumor suppression. Acta Pharmaceutica Sinica B, 2021, 11, 2655-2669.  | 12.0 | 15        |
| 146 | Functional intersection of Human Defensin 5 with the TNF receptor pathway. FEBS Letters, 2014, 588, 1906-1912.                                                                      | 2.8  | 14        |
| 147 | Potential role of autophagy in the bactericidal activity of human PMNs forBacillus anthracis.<br>Pathogens and Disease, 2015, 73, ftv080.                                           | 2.0  | 14        |
| 148 | Human Alpha-Defensin HNP1 Increases HIV Traversal of the Epithelial Barrier: A Potential Role in STI-Mediated Enhancement of HIV Transmission. Viral Immunology, 2015, 28, 609-615. | 1.3  | 14        |
| 149 | Retrocyclins neutralize bacterial toxins by potentiating their unfolding. Biochemical Journal, 2015, 467, 311-320.                                                                  | 3.7  | 14        |
| 150 | Angiogenic, lymphangiogenic and adipogenic effects of HIV-1 matrix protein p17. Pathogens and Disease, 2015, 73, ftv062.                                                            | 2.0  | 14        |
| 151 | Functional synergism of Human Defensin 5 and Human Defensin 6. Biochemical and Biophysical Research Communications, 2015, 467, 967-972.                                             | 2.1  | 14        |
| 152 | Cellular aspartyl proteases promote the unconventional secretion of biologically active HIV-1 matrix protein p17. Scientific Reports, 2016, 6, 38027.                               | 3.3  | 14        |
| 153 | Defining the Native Disulfide Topology in the Somatomedin B Domain of Human Vitronectin. Journal of<br>Biological Chemistry, 2007, 282, 5318-5326.                                  | 3.4  | 13        |
| 154 | Human intelectin-1 (ITLN1) genetic variation and intestinal expression. Scientific Reports, 2021, 11, 12889.                                                                        | 3.3  | 13        |
| 155 | Testing of the Additivity-Based Protein Sequence to Reactivity Algorithmâ€. Biochemistry, 2003, 42,<br>6460-6466.                                                                   | 2.5  | 12        |
| 156 | Structure of the scorpion toxin BmBKTtx1 solved from single wavelength anomalous scattering of sulfur. Journal of Structural Biology, 2004, 145, 289-294.                           | 2.8  | 12        |
| 157 | A novel short-chain peptide BmKX from the chinese scorpion Buthus martensi karsch, sequencing, gene cloning and structure determination. Toxicon, 2005, 45, 309-319.                | 1.6  | 12        |
| 158 | Total chemical synthesis of human T ell leukemia virus type 1 protease via native chemical ligation.<br>Biopolymers, 2010, 94, 487-494.                                             | 2.4  | 12        |
| 159 | Human Beta-Defensin 2 and 3 Inhibit HIV-1 Replication in Macrophages. Frontiers in Cellular and Infection Microbiology, 2021, 11, 535352.                                           | 3.9  | 12        |
| 160 | Rapid identification of dual p53-MDM2/MDMX interaction inhibitors through virtual screening and hit-based substructure search. RSC Advances, 2017, 7, 9989-9997.                    | 3.6  | 11        |
| 161 | Crystal structure of master biofilm regulator CsgD regulatory domain reveals an atypical receiver domain. Protein Science, 2017, 26, 2073-2082.                                     | 7.6  | 11        |
| 162 | Systematic mutational analysis of human neutrophil α-defensin HNP4. Biochimica Et Biophysica Acta -<br>Biomembranes, 2019, 1861, 835-844.                                           | 2.6  | 11        |

| #   | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | The first semi-synthetic serine protease made by native chemical ligation. Protein Expression and Purification, 2003, 29, 185-192.                                                                                                             | 1.3 | 10        |
| 164 | Antimicrobial peptides. Seminars in Cell and Developmental Biology, 2019, 88, 105-106.                                                                                                                                                         | 5.0 | 10        |
| 165 | Thermodynamic instability of viral proteins is a pathogen-associated molecular pattern targeted by human defensins. Scientific Reports, 2016, 6, 32499.                                                                                        | 3.3 | 10        |
| 166 | Co-Encapsulating the Fusogenic Peptide INF7 and Molecular Imaging Probes in Liposomes Increases Intracellular Signal and Probe Retention. PLoS ONE, 2015, 10, e0120982.                                                                        | 2.5 | 10        |
| 167 | Mutations that mimic phosphorylation of the HIVâ€1 matrix protein do not perturb the myristyl switch.<br>Protein Science, 2007, 16, 1793-1797.                                                                                                 | 7.6 | 8         |
| 168 | <scp>D</scp> â€Peptideâ€Based Drug Discovery Aided by Chemical Protein Synthesis. Israel Journal of Chemistry, 2011, 51, 868-875.                                                                                                              | 2.3 | 8         |
| 169 | Total chemical synthesis of dengue 2 virus capsid protein via native chemical ligation: Role of the conserved salt-bridge. Bioorganic and Medicinal Chemistry, 2013, 21, 3443-3449.                                                            | 3.0 | 8         |
| 170 | Critical determinants of human neutrophil peptide 1 for enhancing host epithelial adhesion of <i>Shigella flexneri</i> . Cellular Microbiology, 2019, 21, e13069.                                                                              | 2.1 | 8         |
| 171 | Defensins versus pathogens: an unfolding story. Oncotarget, 2015, 6, 28533-28534.                                                                                                                                                              | 1.8 | 7         |
| 172 | Key Determinants of Human α-Defensin 5 and 6 for Enhancement of HIV Infectivity. Viruses, 2017, 9, 244.                                                                                                                                        | 3.3 | 6         |
| 173 | Mechanism through Which Retrocyclin Targets Flavivirus Multiplication. Journal of Virology, 2021, 95, e0056021.                                                                                                                                | 3.4 | 6         |
| 174 | Differential Susceptibility of Bacteria to Mouse Paneth Cell a-Defensins under Anaerobic Conditions.<br>Antibiotics, 2014, 3, 493-508.                                                                                                         | 3.7 | 5         |
| 175 | Reexamination of the recognition preference of the specificity pocket of the Abl SH3 domain. Journal of Molecular Recognition, 2003, 16, 131-138.                                                                                              | 2.1 | 4         |
| 176 | Total chemical synthesis of human interferon alphaâ€⊋b via native chemical ligation. Journal of Peptide<br>Science, 2015, 21, 554-560.                                                                                                         | 1.4 | 4         |
| 177 | Evolution toward beta common chain receptor usage links the matrix proteins of HIV-1 and its<br>ancestors to human erythropoietin. Proceedings of the National Academy of Sciences of the United<br>States of America, 2021, 118, e2021366118. | 7.1 | 4         |
| 178 | Functional evolution within a protein superfamily. Proteins: Structure, Function and Bioinformatics, 2006, 63, 697-708.                                                                                                                        | 2.6 | 2         |
| 179 | Crystallization and preliminary X-ray studies of thymus and activation-regulated chemokine (TARC).<br>Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 163-165.                                                         | 2.5 | 1         |
| 180 | Additivityâ€based design of the strongest possible turkey ovomucoid third domain inhibitors for<br>porcine pancreatic elastase (PPE) and <i>Streptomyces griseus</i> protease B (SGPB). FEBS Letters, 2013,<br>587, 3021-3026.                 | 2.8 | 1         |

| #   | Article                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Design of peptide inhibitors for furin based on the C-terminal fragment of histone H1.2. Acta<br>Biochimica Et Biophysica Sinica, 2008, 40, 848-854. | 2.0 | 0         |