Samik Jhulki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7812272/publications.pdf

Version: 2024-02-01

331670 361022 1,478 35 21 35 citations h-index g-index papers 39 39 39 2071 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Controlled nâ€Doping of Naphthaleneâ€Diimideâ€Based 2D Polymers. Advanced Materials, 2022, 34, e2101932.	21.0	13
2	Stability of FeF ₃ -Based Sodium-Ion Batteries in Nonflammable Ionic Liquid Electrolytes at Room and Elevated Temperatures. ACS Applied Materials & Samp; Interfaces, 2022, 14, 33447-33456.	8.0	5
3	Atom-economic synthesis of Magnéli phase Ti4O7 microspheres for improved sulfur cathodes for Li–S batteries. Nano Energy, 2021, 79, 105428.	16.0	49
4	Porous flexible frameworks: origins of flexibility and applications. Materials Horizons, 2021, 8, 700-727.	12.2	48
5	Reactivity of an air-stable dihydrobenzoimidazole n-dopant with organic semiconductor molecules. CheM, 2021, 7, 1050-1065.	11.7	40
6	Strain-Induced Transformation of Bulk Alloys to Zinc Nanowires. Chemistry of Materials, 2021, 33, 5368-5376.	6.7	1
7	Minimizing Long-Chain Polysulfide Formation in Li-S Batteries by Using Localized Low Concentration Highly Fluorinated Electrolytes. Journal of the Electrochemical Society, 2021, 168, 090543.	2.9	8
8	Highly air-stable, n-doped conjugated polymers achieved by dimeric organometallic dopants. Journal of Materials Chemistry C, 2021, 9, 4105-4111.	5.5	7
9	A Naphthalene Diimide Covalent Organic Framework: Comparison of Cathode Performance in Lithium-Ion Batteries with Amorphous Cross-linked and Linear Analogues, and Its Use in Aqueous Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 350-356.	5.1	20
10	Humidity Sensing through Reversible Isomerization of a Covalent Organic Framework. Journal of the American Chemical Society, 2020, 142, 783-791.	13.7	190
11	Rapid Synthesis of High Surface Area Imine‣inked 2D Covalent Organic Frameworks by Avoiding Pore Collapse During Isolation. Advanced Materials, 2020, 32, e1905776.	21.0	125
12	New Mechanistic Insights into the Formation of Imine-Linked Two-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 18637-18644.	13.7	87
13	Electron transport in a sequentially doped naphthalene diimide polymer. Materials Advances, 2020, 1, 1829-1834.	5.4	14
14	Thermal Management Enables Bright and Stable Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2020, 32, e2000752.	21.0	126
15	Solution-Processable, Crystalline π-Conjugated Two-Dimensional Polymers with High Charge Carrier Mobility. CheM, 2020, 6, 2035-2045.	11.7	44
16	Phosphorescent and TADF polymers and dendrimers in solution-processed self-host organic light-emitting diodes: structure analysis and design perspectives. Materials Chemistry Frontiers, 2019, 3, 1699-1721.	5.9	30
17	Understanding the Effects of Molecular Dopant on nâ€Type Organic Thermoelectric Properties. Advanced Energy Materials, 2019, 9, 1900817.	19.5	118
18	Nitrogen-Free Bifunctional Bianthryl Leads to Stable White-Light Emission in Bilayer and Multilayer OLED Devices. ACS Omega, 2018, 3, 1416-1424.	3.5	4

#	Article	IF	Citations
19	Small molecular hole-transporting materials (HTMs) in organic light-emitting diodes (OLEDs): structural diversity and classification. Journal of Materials Chemistry C, 2018, 6, 8280-8325.	5.5	84
20	Tri- and tetraarylanthracenes with novel \hat{l}_{ν} , $\ddot{l}_{\tau}^{\dagger}$ and $\ddot{l}_{\tau}^{\dagger}$ topologies as blue-emissive and fluorescent host materials in organic light-emitting diodes (OLEDs). New Journal of Chemistry, 2017, 41, 4510-4517.	2.8	6
21	Carbo[5]helicene <i>versus</i> planar phenanthrene as a scaffold for organic materials in OLEDs: the electroluminescence of anthracene-functionalized emissive materials. New Journal of Chemistry, 2017, 41, 14730-14737.	2.8	10
22	Helicenes as Allâ€inâ€One Organic Materials for Application in OLEDs: Synthesis and Diverse Applications of Carbo―and Aza[5]helical Diamines. Chemistry - A European Journal, 2016, 22, 9375-9386.	3.3	41
23	Diverse Metal–Organic Materials (MOMs) Based on 9,9′-Bianthryl-Dicarboxylic Acid Linker: Luminescence Properties and CO ₂ Capture. Crystal Growth and Design, 2016, 16, 2024-2032.	3.0	19
24	Deep blue-emissive bifunctional (hole-transporting + emissive) materials with CIE _y â^1/4 0.06 based on a â€~U'-shaped phenanthrene scaffold for application in organic light-emitting diodes. Journal of Materials Chemistry C, 2016, 4, 9310-9315.	5.5	21
25	Benzophenone-imbedded benzoyltriptycene with high triplet energy for application as a universal host material in phosphorescent organic light-emitting diodes (PhOLEDs). New Journal of Chemistry, 2016, 40, 6854-6859.	2.8	14
26	Holeâ€Transporting Materials Based on Twisted Bimesitylenes for Stable Perovskite Solar Cells with High Efficiency. ChemSusChem, 2016, 9, 274-279.	6.8	48
27	Benzophenones as Generic Host Materials for Phosphorescent Organic Light-Emitting Diodes. ACS Applied Materials & Diodes. ACS Applied Materials & Diodes. ACS	8.0	43
28	Twisted biaryl-amines as novel host materials for green-emissive phosphorescent organic light-emitting diodes (PhOLEDs). RSC Advances, 2015, 5, 101169-101176.	3.6	6
29	Amorphous Host Materials Based on Tröger's Base Scaffold for Application in Phosphorescent Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2015, 7, 3298-3305.	8.0	41
30	Organic amorphous hole-transporting materials based on Tr $\tilde{A}\P$ ger's Base: alternatives to NPB. RSC Advances, 2015, 5, 26806-26810.	3.6	22
31	Bifunctional organic materials for OLEDs based on Tröger's base: Subtle structural changes and significant differences in electroluminescence. Organic Electronics, 2014, 15, 3766-3772.	2.6	22
32	Facile organocatalytic domino oxidation of diols to lactones by in situ-generated TetMe-IBX. Tetrahedron, 2014, 70, 2286-2293.	1.9	23
33	Catalytic and Chemoselective Oxidation of Activated Alcohols and Direct Conversion of Diols to Lactones with In Situâ€Generated Bisâ€IBX Catalyst. European Journal of Organic Chemistry, 2013, 2013, 2445-2452.	2.4	43
34	Oxidation of benzyl alcohols, benzyl halides, and alkylbenzenes with oxone. Tetrahedron, 2012, 68, 9763-9768.	1.9	36
35	<i>Twist</i> Does a <i>Twist</i> to the Reactivity: Stoichiometric and Catalytic Oxidations with <i>Twisted</i> Tetramethyl-IBX. Journal of Organic Chemistry, 2011, 76, 9593-9601.	3.2	69