Hui Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7812250/publications.pdf

Version: 2024-02-01

			257450	2	23800
	54	2,647	24		46
pa	apers	citations	h-index		g-index
	- 4	- 4	- 4		4000
	54	54	54		4202
al	l docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Fishing for drugs. ELife, 2022, 11, .	6.0	O
2	\hat{l}_{\pm} -Ketoglutarate-Mediated DNA Demethylation Sustains T-Acute Lymphoblastic Leukemia upon TCA Cycle Targeting. Cancers, 2022, 14, 2983.	3.7	9
3	The multifaceted role of protein kinase CK2 in high-risk acute lymphoblastic leukemia. Haematologica, 2021, 106, 1461-1465.	3.5	3
4	Tipping the Scales With Zebrafish to Understand Adaptive Tumor Immunity. Frontiers in Cell and Developmental Biology, 2021, 9, 660969.	3.7	16
5	Metabolic Enzyme DLST Promotes Tumor Aggression and Reveals a Vulnerability to OXPHOS Inhibition in High-Risk Neuroblastoma. Cancer Research, 2021, 81, 4417-4430.	0.9	31
6	Failure to Guard: Mitochondrial Protein Quality Control in Cancer. International Journal of Molecular Sciences, 2021, 22, 8306.	4.1	8
7	DLST-dependence dictates metabolic heterogeneity in TCA-cycle usage among triple-negative breast cancer. Communications Biology, 2021, 4, 1289.	4.4	30
8	Unraveling the regulatory role of endoplasmic-reticulum-associated degradation in tumor immunity. Critical Reviews in Biochemistry and Molecular Biology, 2020, 55, 322-353.	5.2	2
9	Cross organelle stress response disruption promotes gentamicin-induced proteotoxicity. Cell Death and Disease, 2020, 11, 217.	6.3	17
10	In Vivo Targeting of Xenografted Human Cancer Cells with Functionalized Fluorescent Silica Nanoparticles in Zebrafish. Journal of Visualized Experiments, 2020, , .	0.3	3
11	Direct Phosphorylation and Stabilization of MYC by Aurora B Kinase Promote T-cell Leukemogenesis. Cancer Cell, 2020, 37, 200-215.e5.	16.8	63
12	Targeting RICTOR Sensitizes SMAD4-Negative Colon Cancer to Irinotecan. Molecular Cancer Research, 2020, 18, 414-423.	3.4	12
13	Glutamine Anabolism Plays a Critical Role in Pancreatic Cancer by Coupling Carbon and Nitrogen Metabolism. Cell Reports, 2019, 29, 1287-1298.e6.	6.4	105
14	Promoter demethylation of the asparagine synthetase gene is required for ATF4-dependent adaptation to asparagine depletion. Journal of Biological Chemistry, 2019, 294, 18674-18684.	3.4	26
15	Ultrabright fluorescent silica nanoparticles for <i>in vivo</i> targeting of xenografted human tumors and cancer cells in zebrafish. Nanoscale, 2019, 11, 22316-22327.	5.6	19
16	Ultrabright fluorescent cellulose acetate nanoparticles for imaging tumors through systemic and topical applications. Materials Today, 2019, 23, 16-25.	14.2	20
17	Data on ultrabright fluorescent cellulose acetate nanoparticles for imaging tumors through systemic and topical applications. Data in Brief, 2019, 22, 383-391.	1.0	10
18	The emerging role and targetability of the TCA cycle in cancer metabolism. Protein and Cell, 2018, 9, 216-237.	11.0	345

#	Article	IF	CITATIONS
19	Towards Resolving the Pro- and Anti-Tumor Effects of the Aryl Hydrocarbon Receptor. International Journal of Molecular Sciences, 2018, 19, 1388.	4.1	45
20	SHQ1 regulation of RNA splicing is required for T-lymphoblastic leukemia cell survival. Nature Communications, 2018, 9, 4281.	12.8	24
21	Functional and genomic analyses reveal therapeutic potential of targeting \hat{I}^2 -catenin/CBP activity in head and neck cancer. Genome Medicine, 2018, 10, 54.	8.2	43
22	UFD1 contributes to MYC-mediated leukemia aggressiveness through suppression of the proapoptotic unfolded protein response. Leukemia, 2018, 32, 2339-2351.	7.2	24
23	CK2 inhibitor CX-4945 destabilizes NOTCH1 and synergizes with JQ1 against human T-acute lymphoblastic leukemic cells. Haematologica, 2017, 102, e17-e21.	3 . 5	15
24	Aberrant activation of the GIMAP enhancer by oncogenic transcription factors in T-cell acute lymphoblastic leukemia. Leukemia, 2017, 31, 1798-1807.	7.2	28
25	Zebrafish B Cell Development without a Pre–B Cell Stage, Revealed by CD79 Fluorescence Reporter Transgenes. Journal of Immunology, 2017, 199, 1706-1715.	0.8	40
26	Efficient transgenesis mediated by pigmentation rescue in zebrafish. BioTechniques, 2016, 60, 13-20.	1.8	6
27	Zebrafish Models of Human Leukemia: Technological Advances and Mechanistic Insights. Advances in Experimental Medicine and Biology, 2016, 916, 335-369.	1.6	19
28	The TCA cycle transferase DLST is important for MYC-mediated leukemogenesis. Leukemia, 2016, 30, 1365-1374.	7.2	44
29	Abstract 1180: The TCA cycle transferase DLST is critical for MYC-mediated leukemogenesis. , 2016, , .		1
30	Hypoxia-induced expression of phosducin-like 3 regulates expression of VEGFR-2 and promotes angiogenesis. Angiogenesis, 2015, 18, 449-462.	7.2	42
31	The c-Cbl Ubiquitin Ligase Regulates Nuclear \hat{l}^2 -Catenin and Angiogenesis by Its Tyrosine Phosphorylation Mediated through the Wnt Signaling Pathway. Journal of Biological Chemistry, 2015, 290, 12537-12546.	3.4	37
32	The Zebrafish as a Tool to Cancer Drug Discovery. Austin Journal of Pharmacology and Therapeutics, 2015, 3, 1069.	0.0	19
33	Loss of function <i>tp53</i> mutations do not accelerate the onset of <i>myc</i> ê€induced Tâ€cell acute lymphoblastic leukaemia in the zebrafish. British Journal of Haematology, 2014, 166, 84-90.	2.5	16
34	BCL2-specific inhibitor ABT-199 synergizes strongly with cytarabine against the early immature LOUCY cell line but not more-differentiated T-ALL cell lines. Leukemia, 2014, 28, 1145-1148.	7. 2	38
35	A Genetic Screen In Zebrafish Identified Dlst As a Potential Therapeutic Target For Human Acute T-Lymphoblastic Leukemia. Blood, 2013, 122, 1273-1273.	1.4	0
36	Notch signaling expands a pre-malignant pool of T-cell acute lymphoblastic leukemia clones without affecting leukemia-propagating cell frequency. Leukemia, 2012, 26, 2069-2078.	7.2	64

#	Article	IF	Citations
37	Activated ALK Collaborates with MYCN in Neuroblastoma Pathogenesis. Cancer Cell, 2012, 21, 362-373.	16.8	294
38	Abstract 4252: Activated ALK collaborates with MYCN in neuroblastoma pathogenesis. , 2012, , .		0
39	Pten mediates Myc oncogene dependence in a conditional zebrafish model of T cell acute lymphoblastic leukemia. Journal of Experimental Medicine, 2011, 208, 1595-1603.	8.5	104
40	Abstract 4296: Activated ALK accelerates the onset of neuroblastoma in MYCN-transgenic zebrafish. , $2011, , .$		0
41	Pten mediates Myc oncogene dependence in a conditional zebrafish model of T cell acute lymphoblastic leukemia. Journal of Cell Biology, 2011, 194, i4-i4.	5.2	1
42	T-Lymphoblastic Lymphoma Cells Express High Levels of BCL2, S1P1, and ICAM1, Leading to a Blockade of Tumor Cell Intravasation. Cancer Cell, 2010, 18, 353-366.	16.8	141
43	C. elegans CAND-1 regulates cullin neddylation, cell proliferation and morphogenesis in specific tissues. Developmental Biology, 2010, 346, 113-126.	2.0	32
44	Construction and application of a zebrafish array comparative genomic hybridization platform. Genes Chromosomes and Cancer, 2009, 48, 155-170.	2.8	21
45	Heat-shock induction of T-cell lymphoma/leukaemia in conditional Cre/lox-regulated transgenic zebrafish. British Journal of Haematology, 2007, 138, 169-175.	2.5	115
46	C. elegans CUL-4 Prevents Rereplication by Promoting the Nuclear Export of CDC-6 via a CKI-1-Dependent Pathway. Current Biology, 2007, 17, 966-972.	3.9	44
47	A Tamoxifen-Dependent Conditional Model of MYC-Induced T Cell Acute Lymphoblastic Leukemia in the Zebrafish Blood, 2007, 110, 2808-2808.	1.4	0
48	Emi1 Is Required for Normal Cell Cycle Progression in Zebrafish Myelopoiesis and Likely Functions as a Haploinsufficient Tumor Suppressor on Chromosome 6q in Human Leukmias Blood, 2006, 108, 1405-1405.	1.4	0
49	Bcl2 Accelerates Onset but Not Progression of MYC-Induced T-Cell Leukemia in Transgenic Zebrafish Blood, 2006, 108, 1829-1829.	1.4	0
50	Cre/lox-regulated transgenic zebrafish model with conditional myc-induced T cell acute lymphoblastic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6068-6073.	7.1	244
51	CUL-4 ubiquitin ligase maintains genome stability by restraining DNA-replication licensing. Nature, 2003, 423, 885-889.	27.8	285
52	Preventing DNA Re-Replication: Divergent Safeguards in Yeast and Metazoa. Cell Cycle, 2003, 2, 430-433.	2.6	12
53	Preventing DNA re-replicationdivergent safeguards in yeast and metazoa. Cell Cycle, 2003, 2, 431-4.	2.6	10
54	CUL-2 is required for the G1-to-S-phase transition and mitotic chromosome condensation in Caenorhabditis elegans. Nature Cell Biology, 1999, 1, 486-492.	10.3	120