
Martin Zacharias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/78108/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Separationâ€shifted scaling, a new scaling method for Lennardâ€Jones interactions in thermodynamic integration. Journal of Chemical Physics, 1994, 100, 9025-9031.	3.0	472
2	NWChem: Past, present, and future. Journal of Chemical Physics, 2020, 152, 184102.	3.0	425
3	Protein-protein docking with a reduced protein model accounting for side-chain flexibility. Protein Science, 2003, 12, 1271-1282.	7.6	318
4	Single-molecule dissection of stacking forces in DNA. Science, 2016, 353, .	12.6	180
5	A molecular mechanics/grid method for evaluation of ligand-receptor interactions. Journal of Computational Chemistry, 1995, 16, 454-464.	3.3	175
6	CHARMM-GUI supports the Amber force fields. Journal of Chemical Physics, 2020, 153, 035103.	3.0	175
7	Accounting for conformational changes during protein–protein docking. Current Opinion in Structural Biology, 2010, 20, 180-186.	5.7	141
8	Cryo-EM structure of a transthyretin-derived amyloid fibril from a patient with hereditary ATTR amyloidosis. Nature Communications, 2019, 10, 5008.	12.8	127
9	The interface of protein-protein complexes: Analysis of contacts and prediction of interactions. Cellular and Molecular Life Sciences, 2008, 65, 1059-1072.	5.4	120
10	Conformational Flexibility of the MHC Class I α1-α2 Domain in Peptide Bound and Free States: A Molecular Dynamics Simulation Study. Biophysical Journal, 2004, 87, 2203-2214.	0.5	116
11	Fully Blind Peptide-Protein Docking with pepATTRACT. Structure, 2015, 23, 1507-1515.	3.3	112
12	Multidomain structure and correlated dynamics determined by self-consistent FRET networks. Nature Methods, 2017, 14, 174-180.	19.0	110
13	Energy minimization in lowâ€frequency normal modes to efficiently allow for global flexibility during systematic protein–protein docking. Proteins: Structure, Function and Bioinformatics, 2008, 70, 794-809.	2.6	109
14	Computational prediction of protein–protein binding affinities. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2020, 10, e1448.	14.6	107
15	Enhanced sampling of peptide and protein conformations using replica exchange simulations with a peptide backbone biasing-potential. Proteins: Structure, Function and Bioinformatics, 2006, 66, 697-706.	2.6	102
16	ATTRACT: Protein-protein docking in CAPRI using a reduced protein model. Proteins: Structure, Function and Bioinformatics, 2005, 60, 252-256.	2.6	99
17	Accounting for global protein deformability during protein–protein and protein–ligand docking. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1754, 225-231.	2.3	95
18	The Architecture of Talin1 Reveals an Autoinhibition Mechanism. Cell, 2019, 179, 120-131.e13.	28.9	93

#	Article	IF	CITATIONS
19	Proteinâ^'Ligand Docking Accounting for Receptor Side Chain and Global Flexibility in Normal Modes: Evaluation on Kinase Inhibitor Cross Docking. Journal of Medicinal Chemistry, 2008, 51, 3499-3506.	6.4	86
20	Between inflammation and thrombosis: endothelial cells in COVID-19. European Respiratory Journal, 2021, 58, 2100377.	6.7	86
21	The pepATTRACT web server for blind, large-scale peptide–protein docking. Nucleic Acids Research, 2017, 45, W361-W364.	14.5	84
22	A Web Interface for Easy Flexible Protein-Protein Docking with ATTRACT. Biophysical Journal, 2015, 108, 462-465.	0.5	82
23	Rapid protein-ligand docking using soft modes from molecular dynamics simulations to account for protein deformability: Binding of FK506 to FKBP. Proteins: Structure, Function and Bioinformatics, 2004, 54, 759-767.	2.6	79
24	PEP-SiteFinder: a tool for the blind identification of peptide binding sites on protein surfaces. Nucleic Acids Research, 2014, 42, W221-W226.	14.5	79
25	Accounting for loop flexibility during protein-protein docking. Proteins: Structure, Function and Bioinformatics, 2005, 62, 956-969.	2.6	78
26	In Silico Prediction of Binding Sites on Proteins. Current Medicinal Chemistry, 2010, 17, 1550-1562.	2.4	77
27	Dynamics of Seeded AÎ ² ₄₀ -Fibril Growth from Atomistic Molecular Dynamics Simulations: Kinetic Trapping and Reduced Water Mobility in the Locking Step. Journal of the American Chemical Society, 2016, 138, 527-539.	13.7	77
28	Harmonic modes as variables to approximately account for receptor flexibility in ligand-receptor docking simulations: Application to DNA minor groove ligand complex. Journal of Computational Chemistry, 1999, 20, 287-300.	3.3	69
29	Poisson-Boltzmann analysis of the lambda repressor-operator interaction. Biophysical Journal, 1992, 63, 1280-1285.	0.5	68
30	Tapasin and other chaperones: models of the MHC class I loading complex. Biological Chemistry, 2004, 385, 763-78.	2.5	68
31	Empty peptide-receptive MHC class I molecules for efficient detection of antigen-specific T cells. Science Immunology, 2019, 4, .	11.9	64
32	Advanced replica-exchange sampling to study the flexibility and plasticity of peptides and proteins. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 847-853.	2.3	62
33	Binding site prediction and improved scoring during flexible protein–protein docking with ATTRACT. Proteins: Structure, Function and Bioinformatics, 2010, 78, 3131-3139.	2.6	61
34	Tapasin dependence of major histocompatibility complex class I molecules correlates with their conformational flexibility. FASEB Journal, 2011, 25, 3989-3998.	0.5	61
35	Free energy analysis and mechanism of base pair stacking in nicked DNA. Nucleic Acids Research, 2016, 44, gkw607.	14.5	60
36	B-DNA Under Stress: Over- and Untwisting of DNA during Molecular Dynamics Simulations. Biophysical Journal, 2006, 91, 2956-2965.	0.5	58

#	Article	IF	CITATIONS
37	Flexible docking and refinement with a coarseâ€grained protein model using ATTRACT. Proteins: Structure, Function and Bioinformatics, 2013, 81, 2167-2174.	2.6	57
38	iATTRACT: Simultaneous global and local interface optimization for protein–protein docking refinement. Proteins: Structure, Function and Bioinformatics, 2015, 83, 248-258.	2.6	57
39	Comparative molecular dynamics analysis of tapasin-dependent and -independent MHC class I alleles. Protein Science, 2006, 16, 299-308.	7.6	56
40	Folding of a DNA Hairpin Loop Structure in Explicit Solvent Using Replica-Exchange Molecular Dynamics Simulations. Biophysical Journal, 2007, 93, 3218-3228.	0.5	56
41	Prediction of Protein-Protein Interaction Sites Using Electrostatic Desolvation Profiles. Biophysical Journal, 2010, 98, 1921-1930.	0.5	55
42	A coarse-grained force field for Protein–RNA docking. Nucleic Acids Research, 2011, 39, 9118-9129.	14.5	55
43	Dipeptides promote folding and peptide binding of MHC class I molecules. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15383-15388.	7.1	55
44	The temperature dependence of the helical twist of DNA. Nucleic Acids Research, 2018, 46, 7998-8009.	14.5	55
45	Holonomic constraint contributions to free energy differences from thermodynamic integration molecular dynamics simulations. Chemical Physics Letters, 1992, 196, 297-302.	2.6	54
46	RNA Kink-Turns as Molecular Elbows: Hydration, Cation Binding, and Large-Scale Dynamics. Structure, 2006, 14, 825-835.	3.3	54
47	Simulation of the structure and dynamics of nonhelical RNA motifs. Current Opinion in Structural Biology, 2000, 10, 311-317.	5.7	51
48	DAPI binding to the DNA minor groove: a continuum solvent analysis. Journal of Molecular Recognition, 2002, 15, 209-220.	2.1	51
49	Folding simulations of Trpâ€cage mini protein in explicit solvent using biasing potential replicaâ€exchange molecular dynamics simulations. Proteins: Structure, Function and Bioinformatics, 2009, 76, 448-460.	2.6	50
50	Blind prediction of interfacial water positions in CAPRI. Proteins: Structure, Function and Bioinformatics, 2014, 82, 620-632.	2.6	50
51	Explaining the striking difference in twist-stretch coupling between DNA and RNA: A comparative molecular dynamics analysis. Nucleic Acids Research, 2015, 43, gkv1028.	14.5	50
52	Combined Conformational Search and Finite-Difference Poisson?Boltzmann Approach for Flexible Docking. Journal of Molecular Biology, 1994, 238, 455-465.	4.2	49
53	Continuum Solvent Modeling of Nonpolar Solvation:  Improvement by Separating Surface Area Dependent Cavity and Dispersion Contributions. Journal of Physical Chemistry A, 2003, 107, 3000-3004.	2.5	47
54	Evaluation of Predicted Protein–Protein Complexes by Binding Free Energy Simulations. Journal of Chemical Theory and Computation, 2019, 15, 2071-2086.	5.3	46

#	Article	IF	CITATIONS
55	Extracellular interface between APP and Nicastrin regulates Aβ length and response to γâ€secretase modulators. EMBO Journal, 2019, 38, .	7.8	45
56	ATTRACT-EM: A New Method for the Computational Assembly of Large Molecular Machines Using Cryo-EM Maps. PLoS ONE, 2012, 7, e49733.	2.5	45
57	Protein–protein docking in CAPRI using ATTRACT to account for global and local flexibility. Proteins: Structure, Function and Bioinformatics, 2007, 69, 774-780.	2.6	44
58	Minor Groove Deformability of DNA: A Molecular Dynamics Free Energy Simulation Study. Biophysical Journal, 2006, 91, 882-891.	0.5	42
59	The structure and oxidation of the eye lens chaperone αA-crystallin. Nature Structural and Molecular Biology, 2019, 26, 1141-1150.	8.2	42
60	Simulation of DNA double-strand dissociation and formation during replica-exchange molecular dynamics simulations. Physical Chemistry Chemical Physics, 2009, 11, 10589.	2.8	41
61	SAXS Data Alone can Generate High-Quality Models of Protein-Protein Complexes. Structure, 2016, 24, 1387-1397.	3.3	40
62	Structures of peptide-free and partially loaded MHC class I molecules reveal mechanisms of peptide selection. Nature Communications, 2020, 11, 1314.	12.8	40
63	Tackling the challenges posed by target flexibility in drug design. Expert Opinion on Drug Discovery, 2010, 5, 347-359.	5.0	38
64	Inversion of receptor binding preferences by mutagenesis: Free energy thermodynamic integration studies on sugar binding to L-arabinose binding proteins. Biochemistry, 1993, 32, 7428-7434.	2.5	37
65	Enhanced conformational sampling of nucleic acids by a new Hamiltonian replica exchange molecular dynamics approach. Journal of Chemical Physics, 2009, 130, 104110.	3.0	37
66	Accurate modeling of DNA conformational flexibility by a multivariate Ising model. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	35
67	Altered fibrin clot structure and dysregulated fibrinolysis contribute toÂthrombosis risk in severe COVID-19. Blood Advances, 2022, 6, 1074-1087.	5.2	35
68	Atomic resolution model of the antibody Fc interaction with the complement C1q component. Molecular Immunology, 2012, 51, 66-72.	2.2	34
69	From Aβ Filament to Fibril: Molecular Mechanism of Surface-Activated Secondary Nucleation from All-Atom MD Simulations. Journal of Physical Chemistry B, 2017, 121, 671-682.	2.6	34
70	Combining Elastic Network Analysis and Molecular Dynamics Simulations by Hamiltonian Replica Exchange. Journal of Chemical Theory and Computation, 2008, 4, 477-487.	5.3	33
71	Bulk tumour cell migration in lung carcinomas might be more common than epithelial-mesenchymal transition and be differently regulated. BMC Cancer, 2018, 18, 717.	2.6	33
72	Tethered multifluorophore motion reveals equilibrium transition kinetics of single DNA double helices. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7512-E7521.	7.1	33

#	Article	IF	CITATIONS
73	Fatal amyloid formation in a patient's antibody light chain is caused by a single point mutation. ELife, 2020, 9, .	6.0	33
74	The Impact of Prolonged Inflammation on Wound Healing. Biomedicines, 2022, 10, 856.	3.2	33
75	PTools: an opensource molecular docking library. BMC Structural Biology, 2009, 9, 27.	2.3	32
76	Protein–Ligand Docking Using Hamiltonian Replica Exchange Simulations with Soft Core Potentials. Journal of Chemical Information and Modeling, 2014, 54, 1669-1675.	5.4	32
77	A folding switch regulates interleukin 27 biogenesis and secretion of its α-subunit as a cytokine. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1585-1590.	7.1	32
78	Bovine Serum Albumin and Lysozyme Adsorption on Calcium Phosphate Particles. Advanced Engineering Materials, 2010, 12, B53.	3.5	31
79	Application of biasingâ€potential replicaâ€exchange simulations for loop modeling and refinement of proteins in explicit solvent. Proteins: Structure, Function and Bioinformatics, 2010, 78, 2809-2819.	2.6	31
80	Protein-DNA docking with a coarse-grained force field. BMC Bioinformatics, 2012, 13, 228.	2.6	31
81	Elastic Network Models of Nucleic Acids Flexibility. Journal of Chemical Theory and Computation, 2013, 9, 5460-5470.	5.3	29
82	Î ³ -Secretase Studied by Atomistic Molecular Dynamics Simulations: Global Dynamics, Enzyme Activation, Water Distribution and Lipid Binding. Frontiers in Chemistry, 2018, 6, 640.	3.6	29
83	Hamiltonian replicaâ€exchange simulations with adaptive biasing of peptide backbone and side chain dihedral angles. Journal of Computational Chemistry, 2014, 35, 150-158.	3.3	28
84	Concerted regulation of ISWI by an autoinhibitory domain and the H4 N-terminal tail. ELife, 2017, 6, .	6.0	28
85	Efficient inclusion of receptor flexibility in gridâ€based protein–ligand docking*. Journal of Computational Chemistry, 2011, 32, 3433-3439.	3.3	27
86	Exploring biomolecular dynamics and interactions using advanced sampling methods. Journal of Physics Condensed Matter, 2015, 27, 323101.	1.8	27
87	Unwinding Induced Melting of Double-Stranded DNA Studied by Free Energy Simulations. Journal of Physical Chemistry B, 2017, 121, 11019-11030.	2.6	27
88	Prediction of protein–protein complexes using replica exchange with repulsive scaling. Journal of Computational Chemistry, 2020, 41, 1436-1447.	3.3	27
89	Molecular and Spectroscopic Characterization of Green and Red Cyanine Fluorophores from the Alexa Fluor and AF Series**. ChemPhysChem, 2021, 22, 1566-1583.	2.1	27
90	Modelling ion binding to AA platform motifs in RNA: a continuum solvent study including conformational adaptation. Nucleic Acids Research, 2001, 29, 3910-3918.	14.5	26

#	Article	IF	CITATIONS
91	Elbow Flexibility of the kt38 RNA Kink-Turn Motif Investigated by Free-Energy Molecular Dynamics Simulations. Biophysical Journal, 2009, 97, 2004-2013.	0.5	26
92	Role of Tryptophan Side Chain Dynamics on the Trp-Cage Mini-Protein Folding Studied by Molecular Dynamics Simulations. PLoS ONE, 2014, 9, e88383.	2.5	26
93	Structural Modeling of γ-Secretase Aβ _{<i>n</i>} Complex Formation and Substrate Processing. ACS Chemical Neuroscience, 2019, 10, 1826-1840.	3.5	25
94	Analysis of the stability of looped-out and stacked-in conformations of an adenine bulge in DNA using a continuum model for solvent and ions. Biophysical Journal, 1997, 73, 2990-3003.	0.5	24
95	Combining coarseâ€grained nonbonded and atomistic bonded interactions for protein modeling. Proteins: Structure, Function and Bioinformatics, 2013, 81, 81-92.	2.6	24
96	Enhanced conformational sampling of carbohydrates by Hamiltonian replica-exchange simulation. Glycobiology, 2014, 24, 70-84.	2.5	24
97	Application of Enhanced Sampling Monte Carlo Methods for High-Resolution Protein-Protein Docking in Rosetta. PLoS ONE, 2015, 10, e0125941.	2.5	24
98	Multiscale Simulation of Receptor–Drug Association Kinetics: Application to Neuraminidase Inhibitors. Journal of Chemical Theory and Computation, 2017, 13, 5097-5105.	5.3	24
99	Adaptive Biasing Combined with Hamiltonian Replica Exchange to Improve Umbrella Sampling Free Energy Simulations. Journal of Chemical Theory and Computation, 2014, 10, 703-710.	5.3	23
100	RAID3 - An interleukin-6 receptor-binding aptamer with post-selective modification-resistant affinity. RNA Biology, 2015, 12, 1043-1053.	3.1	23
101	Optical control of a receptor-linked guanylyl cyclase using a photoswitchable peptidic hormone. Chemical Science, 2017, 8, 4644-4653.	7.4	23
102	Molecular mechanism of amyloidogenic mutations in hypervariable regions of antibody light chains. Journal of Biological Chemistry, 2021, 296, 100334.	3.4	22
103	The Antibody Light-Chain Linker Is Important for Domain Stability and Amyloid Formation. Journal of Molecular Biology, 2015, 427, 3572-3586.	4.2	21
104	Uncovering the Binding Mode of \hat{I}^3 -Secretase Inhibitors. ACS Chemical Neuroscience, 2019, 10, 3398-3403.	3.5	21
105	How methyl–sugar interactions determine DNA structure and flexibility. Nucleic Acids Research, 2019, 47, 1132-1140.	14.5	21
106	Tumuc1: A New Accurate DNA Force Field Consistent with High-Level Quantum Chemistry. Journal of Chemical Theory and Computation, 2021, 17, 7096-7105.	5.3	21
107	Folding of Trp-cage Mini Protein Using Temperature and Biasing Potential Replica—Exchange Molecular Dynamics Simulations. International Journal of Molecular Sciences, 2009, 10, 1121-1137.	4.1	20
108	Influence of 8-Oxoguanosine on the Fine Structure of DNA Studied with Biasing-Potential Replica Exchange Simulations. Biophysical Journal, 2013, 104, 1089-1097.	0.5	20

#	Article	IF	CITATIONS
109	gp130 activation is regulated by D2–D3 interdomain connectivity. Biochemical Journal, 2013, 450, 487-496.	3.7	20
110	Structure and target interaction of a G-quadruplex RNA-aptamer. RNA Biology, 2016, 13, 973-987.	3.1	20
111	Fragment-based modelling of single stranded RNA bound to RNA recognition motif containing proteins. Nucleic Acids Research, 2016, 44, 4565-4580.	14.5	20
112	A Stable Mutant Predisposes Antibody Domains to Amyloid Formation through Specific Non-Native Interactions. Journal of Molecular Biology, 2016, 428, 1315-1332.	4.2	20
113	Determinants of the assembly and function of antibody variable domains. Scientific Reports, 2017, 7, 12276.	3.3	20
114	Prognostic value of cyclin A2 and B1 expression in lung carcinoids. Pathology, 2019, 51, 481-486.	0.6	20
115	Efficient Refinement and Free Energy Scoring of Predicted Protein–Protein Complexes Using Replica Exchange with Repulsive Scaling. Journal of Chemical Information and Modeling, 2020, 60, 5552-5562.	5.4	20
116	Base-Pairing and Base-Stacking Contributions to Double-Stranded DNA Formation. Journal of Physical Chemistry B, 2020, 124, 10345-10352.	2.6	20
117	Refinement of protein cores and protein–peptide interfaces using a potential scaling approach. Protein Engineering, Design and Selection, 2005, 18, 465-476.	2.1	19
118	How to Efficiently Include Receptor Flexibility During Computational Docking. Current Computer-Aided Drug Design, 2008, 4, 143-153.	1.2	19
119	How global DNA unwinding causes non-uniform stress distribution and melting of DNA. PLoS ONE, 2020, 15, e0232976.	2.5	19
120	The dynamics of Î ³ -secretase and its substrates. Seminars in Cell and Developmental Biology, 2020, 105, 86-101.	5.0	19
121	Binding Site Identification and Flexible Docking of Single Stranded RNA to Proteins Using a Fragment-Based Approach. PLoS Computational Biology, 2016, 12, e1004697.	3.2	19
122	Influence of a fluorobenzene nucleobase analogue on the conformational flexibility of RNA studied by molecular dynamics simulations. Nucleic Acids Research, 2004, 32, 6304-6311.	14.5	18
123	Hydration in Discrete Water. A Mean Field, Cellular Automata Based Approach to Calculating Hydration Free Energies. Journal of Physical Chemistry B, 2010, 114, 8667-8675.	2.6	18
124	ATTRACT and PTOOLS: Open Source Programs for Protein–Protein Docking. Methods in Molecular Biology, 2012, 819, 221-232.	0.9	18
125	Efficient calculation of relative binding free energies by umbrella sampling perturbation. Journal of Computational Chemistry, 2014, 35, 2256-2262.	3.3	18
126	Evaluation of Generalized Born Model Accuracy for Absolute Binding Free Energy Calculations. Journal of Physical Chemistry B, 2014, 118, 7467-7474.	2.6	18

#	Article	IF	CITATIONS
127	Coupling between side chain interactions and binding pocket flexibility in HLA-B*44:02 molecules investigated by molecular dynamics simulations. Molecular Immunology, 2015, 63, 312-319.	2.2	18
128	Origin of Ion Specificity of Telomeric DNA G-Quadruplexes Investigated by Free-Energy Simulations. Biophysical Journal, 2017, 112, 2280-2290.	0.5	18
129	Proteinâ€protein and peptideâ€protein docking and refinement using ATTRACT in CAPRI. Proteins: Structure, Function and Bioinformatics, 2017, 85, 391-398.	2.6	18
130	Occurrence of SARS-CoV-2 in the intraocular milieu. Experimental Eye Research, 2020, 201, 108273.	2.6	18
131	Covalent dye attachment influences the dynamics and conformational properties of flexible peptides. PLoS ONE, 2017, 12, e0177139.	2.5	18
132	Effect of 8-Oxoguanine on DNA Structure and Deformability. Journal of Physical Chemistry B, 2013, 117, 11617-11622.	2.6	17
133	Substrate Binding Specifically Modulates Domain Arrangements in Adenylate Kinase. Biophysical Journal, 2015, 109, 1978-1985.	0.5	17
134	Comparison of molecular dynamics and harmonic mode calculations on RNA. Biopolymers, 2000, 54, 547-560.	2.4	16
135	Rapid in silico Design of Potential Cyclic Peptide Binders Targeting Protein-Protein Interfaces. Frontiers in Chemistry, 2020, 8, 573259.	3.6	16
136	Compensatory Mechanisms in Temperature Dependence of DNA Double Helical Structure: Bending and Elongation. Journal of Chemical Theory and Computation, 2020, 16, 2857-2863.	5.3	16
137	Efficient evaluation of sampling quality of molecular dynamics simulations by clustering of dihedral torsion angles and Sammon mapping. Journal of Computational Chemistry, 2009, 30, 479-492.	3.3	15
138	A Residue-specific Shift in Stability and Amyloidogenicity of Antibody Variable Domains. Journal of Biological Chemistry, 2014, 289, 26829-26846.	3.4	15
139	Monte Carlo replica-exchange based ensemble docking of protein conformations. Proteins: Structure, Function and Bioinformatics, 2017, 85, 924-937.	2.6	15
140	Modeling large protein–glycosaminoglycan complexes using a fragmentâ€based approach. Journal of Computational Chemistry, 2019, 40, 1429-1439.	3.3	15
141	Specificity of AMPylation of the human chaperone BiP is mediated by TPR motifs of FICD. Nature Communications, 2021, 12, 2426.	12.8	15
142	Cryo-EM demonstrates the in vitro proliferation of an ex vivo amyloid fibril morphology by seeding. Nature Communications, 2022, 13, 85.	12.8	15
143	Combining geometric pocket detection and desolvation properties to detect putative ligand binding sites on proteins. Journal of Structural Biology, 2012, 180, 546-550.	2.8	14
144	Cryo-EM Data Are Superior to Contact and Interface Information in Integrative Modeling. Biophysical Journal, 2016, 110, 785-797.	0.5	14

#	Article	IF	CITATIONS
145	How Mutations Perturb \hat{l}^3 -Secretase Active Site Studied by Free Energy Simulations. ACS Chemical Neuroscience, 2020, 11, 3321-3332.	3.5	14
146	Rapid Antigen Test for Postmortem Evaluation of SARS-CoV-2 Carriage. Emerging Infectious Diseases, 2021, 27, 1734-1737.	4.3	14
147	Modeling Protein–Glycosaminoglycan Complexes: Does the Size Matter?. Journal of Chemical Information and Modeling, 2021, 61, 4475-4485.	5.4	14
148	An Integrative Approach to the Study of Filamentous Oligomeric Assemblies, with Application to RecA. PLoS ONE, 2015, 10, e0116414.	2.5	14
149	Accelerated flexible protein-ligand docking using Hamiltonian replica exchange with a repulsive biasing potential. PLoS ONE, 2017, 12, e0172072.	2.5	14
150	Role of the closing base pair for d(GCA) hairpin stability: free energy analysis and folding simulations. Nucleic Acids Research, 2011, 39, 8271-8280.	14.5	13
151	Stabilization of duplex DNA and RNA by dangling ends studied by free energy simulations. Biopolymers, 2014, 101, 418-427.	2.4	13
152	Adenylylation of Tyr77 stabilizes Rab1b GTPase in an active state: A molecular dynamics simulation analysis. Scientific Reports, 2016, 6, 19896.	3.3	13
153	Both DNA global deformation and repair enzyme contacts mediate flipping of thymine dimer damage. Scientific Reports, 2017, 7, 41324.	3.3	13
154	Global deformation facilitates flipping of damaged 8-oxo-guanine and guanine in DNA. Nucleic Acids Research, 2016, 44, gkw827.	14.5	12
155	From monomer to fibril: Abetaâ€∎myloid binding to Aducanumab antibody studied by molecular dynamics simulation. Proteins: Structure, Function and Bioinformatics, 2020, 88, 1592-1606.	2.6	12
156	Altered Hinge Conformations in APP Transmembrane Helix Mutants May Affect Enzyme–Substrate Interactions of γ-Secretase. ACS Chemical Neuroscience, 2020, 11, 4426-4433.	3.5	12
157	Coarseâ€grained and atomic resolution biomolecular docking with the ATTRACT approach. Proteins: Structure, Function and Bioinformatics, 2020, 88, 1018-1028.	2.6	12
158	Proteolysis of Rab32 by Salmonella GtgE induces an inactive GTPase conformation. IScience, 2021, 24, 101940.	4.1	12
159	Structural Architecture of the Nucleosome Remodeler ISWI Determined from Cross-Linking, Mass Spectrometry, SAXS, and Modeling. Structure, 2018, 26, 282-294.e6.	3.3	11
160	Scoring optimisation of unbound protein–protein docking including protein binding site predictions. Journal of Molecular Recognition, 2012, 25, 15-23.	2.1	10
161	Role of tyrosine hotâ€spot residues at the interface of colicin E9 and immunity protein 9: A comparative free energy simulation study. Proteins: Structure, Function and Bioinformatics, 2013, 81, 461-468.	2.6	10
162	Hamiltonian replica exchange combined with elastic network analysis to enhance global domain motions in atomistic molecular dynamics simulations. Proteins: Structure, Function and Bioinformatics, 2014, 82, 3410-3419.	2.6	10

#	Article	IF	CITATIONS
163	An Interspecies Analysis Reveals Molecular Construction Principles of Interleukin 27. Journal of Molecular Biology, 2019, 431, 2383-2393.	4.2	10
164	The N-Terminal Segment of the Voltage-Dependent Anion Channel: A Possible Membrane-Bound Intermediate in Pore Unbinding. Journal of Molecular Biology, 2019, 431, 223-243.	4.2	10
165	ReFlexIn: A Flexible Receptor Protein-Ligand Docking Scheme Evaluated on HIV-1 Protease. PLoS ONE, 2012, 7, e48008.	2.5	10
166	An internal docking site stabilizes substrate binding to γ-secretase: Analysis by molecular dynamics simulations. Biophysical Journal, 2022, 121, 2330-2344.	0.5	10
167	Rationalizing perhydrolase activity of aryl-esterase and subtilisin Carlsberg mutants by molecular dynamics simulations of the second tetrahedral intermediate state. Theoretical Chemistry Accounts, 2010, 125, 375-386.	1.4	9
168	Free energy calculations elucidate substrate binding, gating mechanism, and toleranceâ€promoting mutations in herbicide target 4â€hydroxyphenylpyruvate dioxygenase. Protein Science, 2019, 28, 1048-1058.	7.6	9
169	Mechanism of collagen folding propagation studied by Molecular Dynamics simulations. PLoS Computational Biology, 2021, 17, e1009079.	3.2	9
170	Update of the ATTRACT force field for the prediction of protein-protein binding affinity. Journal of Computational Chemistry, 2017, 38, 1887-1890.	3.3	9
171	Protein-Protein Complexes. , 2010, , .		9
172	Structural dynamics in the evolution of a bilobed protein scaffold. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	9
173	Reengineering of subtilisin Carlsberg for oxidative resistance. Biological Chemistry, 2013, 394, 79-87.	2.5	8
174	Comparative Molecular Dynamics Analysis of RNase-S Complex Formation. Biophysical Journal, 2017, 113, 1466-1474.	0.5	8
175	A single residue switch reveals principles of antibody domain integrity. Journal of Biological Chemistry, 2018, 293, 17107-17118.	3.4	8
176	Phosphorylation of Ser111 in Rab8a Modulates Rabin8-Dependent Activation by Perturbation of Side Chain Interaction Networks. Biochemistry, 2019, 58, 3546-3554.	2.5	8
177	Atomic Resolution Insight into Sac7d Protein Binding to DNA and Associated Global Changes by Molecular Dynamics Simulations. Angewandte Chemie - International Edition, 2019, 58, 5967-5972.	13.8	8
178	Molecular mechanism of Be ²⁺ -ion binding to HLA-DP2: tetrahedral coordination, conformational changes and multi-ion binding. Physical Chemistry Chemical Physics, 2020, 22, 799-810.	2.8	8
179	Evaluation of replica exchange with repulsive scaling approach for docking glycosaminoglycans. Journal of Computational Chemistry, 2021, 42, 1040-1053.	3.3	8
180	Molecular and Spectroscopic Characterization of Green and Red Cyanine Fluorophores from the Alexa Fluor and AF Series. ChemPhysChem, 2021, 22, 1546-1546.	2.1	8

#	Article	IF	CITATIONS
181	A Compact Native 24-Residue Supersecondary Structure Derived from the Villin Headpiece Subdomain. Biophysical Journal, 2015, 108, 678-686.	0.5	7
182	Influence of a cis,syn yclobutane pyrimidine dimer damage on DNA conformation studied by molecular dynamics simulations. Biopolymers, 2015, 103, 215-222.	2.4	7
183	Rapid Alchemical Free Energy Calculation Employing a Generalized Born Implicit Solvent Model. Journal of Physical Chemistry B, 2015, 119, 968-975.	2.6	7
184	Rapid Design of Knowledge-Based Scoring Potentials for Enrichment of Near-Native Geometries in Protein-Protein Docking. PLoS ONE, 2017, 12, e0170625.	2.5	7
185	Transient helicity in intrinsically disordered Axin-1 studied by NMR spectroscopy and molecular dynamics simulations. PLoS ONE, 2017, 12, e0174337.	2.5	7
186	Reflex testing in non-small cell lung carcinoma using DNA- and RNA-based next-generation sequencing—a single-center experience. Translational Lung Cancer Research, 2021, 10, 4221-4234.	2.8	7
187	Redirecting catalysis from proteolysis to perhydrolysis in subtilisin Carlsberg. Journal of Biotechnology, 2013, 167, 279-286.	3.8	6
188	Binding-induced functional-domain motions in the Argonaute characterized by adaptive advanced sampling. PLoS Computational Biology, 2021, 17, e1009625.	3.2	6
189	Dissociation of β2m from MHC class I triggers formation of noncovalent transient heavy chain dimers. Journal of Cell Science, 2022, 135, .	2.0	6
190	ADAMTS4-specific MR probe to assess aortic aneurysms in vivo using synthetic peptide libraries. Nature Communications, 2022, 13, .	12.8	6
191	Explicit solvent repulsive scaling replica exchange molecular dynamics (<scp>RSâ€REMD</scp>) in molecular modeling of proteinâ€glycosaminoglycan complexes. Journal of Computational Chemistry, 2022, 43, 1633-1640.	3.3	6
192	Path Dependence of Free Energy Components in Thermodynamic Integration. Molecular Simulation, 1995, 14, 417-423.	2.0	5
193	Regulatory Implications of Non-Trivial Splicing: Isoform 3 of Rab1A Shows Enhanced Basal Activity and Is Not Controlled by Accessory Proteins. Journal of Molecular Biology, 2016, 428, 1544-1557.	4.2	5
194	Ligand binding and global adaptation of the GlnPQ substrate binding domain 2 revealed by molecular dynamics simulations. Protein Science, 2020, 29, 2482-2494.	7.6	5
195	Perspectives of Drug Design that Targets RNA. Anti-Infective Agents in Medicinal Chemistry, 2003, 2, 161-172.	0.9	5
196	Improving the Potential of Mean Force and Nonequilibrium Pulling Simulations by Simultaneous Alchemical Modifications. Journal of Chemical Theory and Computation, 2022, 18, 3873-3893.	5.3	5
197	Theoretical studies of nucleic acids folding. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2014, 4, 116-126.	14.6	4
198	Thermodynamics and Kinetics of Nucleobase Stacking Oligomerization Revealed by Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2017, 13, 3005-3011.	5.3	4

#	Article	IF	CITATIONS
199	Global Dynamics of Yeast Hsp90 Middle and C-Terminal Dimer Studied by Advanced Sampling Simulations. Frontiers in Molecular Biosciences, 2019, 6, 93.	3.5	4
200	Controlling Protein Crystallization by Free Energy Guided Design of Interactions at Crystal Contacts. Crystals, 2021, 11, 588.	2.2	4
201	Molecular insights on CALX-CBD12 interdomain dynamics from MD simulations, RDCs, and SAXS. Biophysical Journal, 2021, 120, 3664-3675.	0.5	4
202	Molecular rationale for the impairment of the MexAB-OprM efflux pump by a single mutation in MexA. Computational and Structural Biotechnology Journal, 2022, 20, 252-260.	4.1	4
203	Orientation Dependence of DNA Blunt-End Stacking Studied by Free-Energy Simulations. Journal of Physical Chemistry B, 2021, 125, 13850-13857.	2.6	4
204	Effect O6â€guanine alkylation on DNA flexibility studied by comparative molecular dynamics simulations. Biopolymers, 2015, 103, 23-32.	2.4	3
205	Predicting Allosteric Changes from Conformational Ensembles. Structure, 2017, 25, 393-394.	3.3	3
206	Folding and Unfolding of the Short Light-Triggered β-Hairpin Peptide AzoChignolin Occurs within 100 ns. Journal of Physical Chemistry B, 2020, 124, 5113-5121.	2.6	3
207	Targeting Telomeres: Molecular Dynamics and Free Energy Simulation of Gold-Carbene Binding to DNA. Biophysical Journal, 2021, 120, 101-108.	0.5	3
208	Computational Tools for Accurate Binding Free-Energy Prediction. Methods in Molecular Biology, 2022, 2385, 255-292.	0.9	3
209	Active site geometry stabilization of a presenilin homolog by the lipid bilayer promotes intramembrane proteolysis. ELife, 2022, 11, .	6.0	3
210	Scoring and Refinement of predicted Protein–Protein Complexes. , 2010, , 236-271.		2
211	Computational Antigenic Epitope Prediction by Calculating Electrostatic Desolvation Penalties of Protein Surfaces. Methods in Molecular Biology, 2014, 1184, 365-374.	0.9	2
212	Rapid approximate calculation of water binding free energies in the whole hydration domain of (bio)macromolecules. Journal of Computational Chemistry, 2016, 37, 1711-1724.	3.3	2
213	Analysis of amyloidogenic transthyretin mutations using continuum solvent free energy calculations. Proteins: Structure, Function and Bioinformatics, 2022, 90, 2080-2090.	2.6	2
214	Application of biasing-potential replica exchange simulations for loop modeling and refinement of proteins in explicit solvent. Journal of Cheminformatics, 2011, 3, .	6.1	1
215	Free Energy Calculations of Ligand–Protein Binding. , 2015, , 313-335.		1
216	Fast and accurate grid representations for atomâ€based docking with partner flexibility. Journal of Computational Chemistry, 2017, 38, 1538-1546.	3.3	1

#	Article	IF	CITATIONS
217	Dynamics of the full-length yeast Hsp90 dimer. European Physical Journal: Special Topics, 2019, 227, 1693-1704.	2.6	1
218	Atomic Resolution Insight into Sac7d Protein Binding to DNA and Associated Global Changes by Molecular Dynamics Simulations. Angewandte Chemie, 2019, 131, 6028-6033.	2.0	1
219	Match_Motif: A rapid computational tool to assist in protein–protein interaction design. Protein Science, 2022, 31, 147-157.	7.6	1
220	Rapid Rational Design of Cyclic Peptides Mimicking Protein–Protein Interfaces. Methods in Molecular Biology, 2022, 2405, 231-244.	0.9	1
221	Nearest-Neighbor dsDNA Stability Analysis Using Alchemical Free-Energy Simulations. Journal of Physical Chemistry B, 2022, , .	2.6	1
222	Adv. Eng. Mater. 1-2/2010. Advanced Engineering Materials, 2010, 12, NA-NA.	3.5	0
223	Influence of a Ser111â€phosphorylation on Rab1b GTPase conformational dynamics studied by advanced sampling simulations. Proteins: Structure, Function and Bioinformatics, 2021, 89, 1324-1332.	2.6	Ο
224	Development and Application of a Fully Blind Flexible Peptide-protein Docking Protocol, pepATTRACT. Bio-protocol, 2016, 6, .	0.4	0
225	Application of the ATTRACT Coarse-Grained Docking and Atomistic Refinement for Predicting Peptide-Protein Interactions. Methods in Molecular Biology, 2017, 1561, 49-68.	0.9	Ο
226	Prediction of protein–protein complex structures by docking. , 2020, , 59-85.		0
227	How global DNA unwinding causes non-uniform stress distribution and melting of DNA. , 2020, 15, e0232976.		Ο
228	How global DNA unwinding causes non-uniform stress distribution and melting of DNA. , 2020, 15, e0232976.		0
229	How global DNA unwinding causes non-uniform stress distribution and melting of DNA. , 2020, 15, e0232976.		Ο
230	How global DNA unwinding causes non-uniform stress distribution and melting of DNA. , 2020, 15, e0232976.		0