Siawoosh Mohammadi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7808904/publications.pdf

Version: 2024-02-01

67 papers

3,178 citations

32 h-index 52 g-index

79 all docs

79 docs citations

79 times ranked 4613 citing authors

#	Article	IF	Citations
1	Finding the best clearing approach - Towards 3D wide-scale multimodal imaging of aged human brain tissue. Neurolmage, 2022, 247, 118832.	4.2	7
2	Towards a representative reference for MRI-based human axon radius assessment using light microscopy. NeuroImage, 2022, 249, 118906.	4.2	2
3	Towards in vivo g-ratio mapping using MRI: Unifying myelin and diffusion imaging. Journal of Neuroscience Methods, 2021, 348, 108990.	2.5	40
4	Quantitative magnetic resonance imaging of brain anatomy and in vivo histology. Nature Reviews Physics, 2021, 3, 570-588.	26.6	115
5	The Influence of Radio-Frequency Transmit Field Inhomogeneities on the Accuracy of G-ratio Weighted Imaging. Frontiers in Neuroscience, 2021, 15, 674719.	2.8	5
6	Reducing Susceptibility Distortion Related Image Blurring in Diffusion MRI EPI Data. Frontiers in Neuroscience, 2021, 15, 706473.	2.8	5
7	Longitudinal changes of spinal cord grey and white matter following spinal cord injury. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 1222-1230.	1.9	20
8	Example dataset for the hMRI toolbox. Data in Brief, 2019, 25, 104132.	1.0	24
9	Biophysically motivated efficient estimation of the spatially isotropic component from a single gradientâ€recalled echo measurement. Magnetic Resonance in Medicine, 2019, 82, 1804-1811.	3.0	10
10	Traumatic and nontraumatic spinal cord injury: pathological insights from neuroimaging. Nature Reviews Neurology, 2019, 15, 718-731.	10.1	125
11	hMRI – A toolbox for quantitative MRI in neuroscience and clinical research. NeuroImage, 2019, 194, 191-210.	4.2	161
12	In vivo evidence of remote neural degeneration in the lumbar enlargement after cervical injury. Neurology, 2019, 92, e1367-e1377.	1.1	29
13	Dynamic changes in white matter microstructure in anorexia nervosa: findings from a longitudinal study. Psychological Medicine, 2019, 49, 1555-1564.	4.5	33
14	Dorsal and ventral horn atrophy is associated with clinical outcome after spinal cord injury. Neurology, 2018, 90, e1510-e1522.	1.1	44
15	Microstructural imaging of human neocortex in vivo. Neurolmage, 2018, 182, 184-206.	4.2	101
16	Four in vivo <i>g</i> â€ratioâ€weighted imaging methods: Comparability and repeatability at the group level. Human Brain Mapping, 2018, 39, 24-41.	3.6	34
17	Neurodegeneration in the Spinal Ventral Horn Prior to Motor Impairment in Cervical Spondylotic Myelopathy. Journal of Neurotrauma, 2017, 34, 2329-2334.	3.4	30
18	The efficiency of retrospective artifact correction methods in improving the statistical power of between-group differences in spinal cord DTI. NeuroImage, 2017, 158, 296-307.	4.2	25

#	Article	IF	Citations
19	NODDI-DTI: Estimating Neurite Orientation and Dispersion Parameters from a Diffusion Tensor in Healthy White Matter. Frontiers in Neuroscience, 2017, 11, 720.	2.8	54
20	Local striatal reward signals can be predicted from corticostriatal connectivity. NeuroImage, 2017, 159, 9-17.	4.2	15
21	Voxel-based analysis of grey and white matter degeneration in cervical spondylotic myelopathy. Scientific Reports, 2016, 6, 24636.	3.3	52
22	Synthetic quantitative MRI through relaxometry modelling. NMR in Biomedicine, 2016, 29, 1729-1738.	2.8	25
23	Embodied neurology: an integrative framework for neurological disorders. Brain, 2016, 139, 1855-1861.	7.6	39
24	Vascular autorescaling of fMRI (VasA fMRI) improves sensitivity of population studies: A pilot study. Neurolmage, 2016, 124, 794-805.	4.2	33
25	A general linear relaxometry model of R $<$ sub $>$ 1 $<$ /sub $>$ using imaging data. Magnetic Resonance in Medicine, 2015, 73, 1309-1314.	3.0	90
26	Local but not long-range microstructural differences of the ventral temporal cortex in developmental prosopagnosia. Neuropsychologia, 2015, 78, 195-206.	1.6	67
27	Deficits in tongue motor control are linked to microstructural brain damage in multiple sclerosis: a pilot study. BMC Neurology, 2015, 15, 190.	1.8	4
28	Advances in MRI-based computational neuroanatomy. Current Opinion in Neurology, 2015, 28, 313-322.	3.6	166
29	Whole-Brain In-vivo Measurements of the Axonal G-Ratio in a Group of 37 Healthy Volunteers. Frontiers in Neuroscience, 2015, 9, 441.	2.8	97
30	POAS4SPM: A Toolbox for SPM to Denoise Diffusion MRI Data. Neuroinformatics, 2015, 13, 19-29.	2.8	12
31	Structure predicts function: Combining non-invasive electrophysiology with in-vivo histology. Neurolmage, 2015, 108, 377-385.	4.2	23
32	Estimating the apparent transverse relaxation time (R2*) from images with different contrasts (ESTATICS) reduces motion artifacts. Frontiers in Neuroscience, 2014, 8, 278.	2.8	68
33	A new method for joint susceptibility artefact correction and super-resolution for dMRI. , 2014, , .		2
34	Adaptive smoothing of multi-shell diffusion weighted magnetic resonance data by msPOAS. Neurolmage, 2014, 95, 90-105.	4.2	36
35	High-resolution diffusion kurtosis imaging at 3T enabled by advanced post-processing. Frontiers in Neuroscience, 2014, 8, 427.	2.8	22
36	Voxelâ€Based Statistical Analysis of Fractional Anisotropy and Mean Diffusivity in Patients with Unilateral Temporal Lobe Epilepsy of Unknown Cause. Journal of Neuroimaging, 2013, 23, 352-359.	2.0	31

#	Article	lF	Citations
37	Grasping multiple sclerosis: do quantitative motor assessments provide a link between structure and function?. Journal of Neurology, 2013, 260, 407-414.	3.6	10
38	The impact of post-processing on spinal cord diffusion tensor imaging. NeuroImage, 2013, 70, 377-385.	4.2	59
39	Retrospective correction of physiological noise in DTI using an extended tensor model and peripheral measurements. Magnetic Resonance in Medicine, 2013, 70, 358-369.	3.0	32
40	Hyperelastic Susceptibility Artifact Correction of DTI in SPM. Informatik Aktuell, 2013, , 344-349.	0.6	21
41	Progression of microstructural putamen alterations in a case of symptomatic recurrent seizures using diffusion tensor imaging. Seizure: the Journal of the British Epilepsy Association, 2012, 21, 478-481.	2.0	12
42	Early microstructural white matter changes in patients with HIV: A diffusion tensor imaging study. BMC Neurology, 2012, 12, 23.	1.8	51
43	The effect of local perturbation fields on human DTI: Characterisation, measurement and correction. Neurolmage, 2012, 60, 562-570.	4.2	33
44	Volume Estimation of the Thalamus Using Freesurfer and Stereology: Consistency between Methods. Neuroinformatics, 2012, 10, 341-350.	2.8	77
45	Correction of vibration artifacts in DTI using phaseâ€encoding reversal (COVIPER). Magnetic Resonance in Medicine, 2012, 68, 882-889.	3.0	40
46	The Influence of Spatial Registration on Detection of Cerebral Asymmetries Using Voxel-Based Statistics of Fractional Anisotropy Images and TBSS. PLoS ONE, 2012, 7, e36851.	2.5	36
47	Can the Language-dominant Hemisphere Be Predicted by Brain Anatomy?. Journal of Cognitive Neuroscience, 2011, 23, 2013-2029.	2.3	61
48	G-CSF Prevents the Progression of Structural Disintegration of White Matter Tracts in Amyotrophic Lateral Sclerosis: A Pilot Trial. PLoS ONE, 2011, 6, e17770.	2.5	39
49	Microstructural and volumetric abnormalities of the putamen in juvenile myoclonic epilepsy. Epilepsia, 2011, 52, 1715-1724.	5.1	76
50	Sex-Dependent Influences of Obesity on Cerebral White Matter Investigated by Diffusion-Tensor Imaging. PLoS ONE, 2011, 6, e18544.	2.5	121
51	A novel splice site mutation in the <i>SPG7</i> gene causing widespread fiber damage in homozygous and heterozygous subjects. Movement Disorders, 2010, 25, 413-420.	3.9	25
52	Specific pattern of early whiteâ€matter changes in pure hereditary spastic paraplegia. Movement Disorders, 2010, 25, 1986-1992.	3.9	37
53	Correcting eddy current and motion effects by affine wholeâ€brain registrations: Evaluation of threeâ€dimensional distortions and comparison with slicewise correction. Magnetic Resonance in Medicine, 2010, 64, 1047-1056.	3.0	129
54	Serum C-reactive protein is linked to cerebral microstructural integrity and cognitive function. Neurology, 2010, 74, 1022-1029.	1.1	196

#	Article	IF	CITATIONS
55	Individual white matter fractional anisotropy analysis on patients with MRI negative partial epilepsy. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, 136-139.	1.9	18
56	Neuroimaging in Susac's syndrome: Focus on DTI. Journal of the Neurological Sciences, 2010, 299, 92-96.	0.6	24
57	Integrity of the hippocampus and surrounding white matter is correlated with language training success in aphasia. Neurolmage, 2010, 53, 283-290.	4.2	93
58	Gelastic seizures: A case of lateral frontal lobe epilepsy and review of the literature. Epilepsy and Behavior, 2009, 15, 249-253.	1.7	35
59	Diffusion tensor imaging demonstrates fiber impairment in Susac's syndrome. Journal of the Neurological Sciences, 2009, 283, 254.	0.6	0
60	Diffusion tensor imaging in a case of Kearns–Sayre syndrome: Striking brainstem involvement as a possible cause of oculomotor symptoms. Journal of the Neurological Sciences, 2009, 281, 110-112.	0.6	9
61	Transient lesion in the splenium related to antiepileptic drug: Case report and new pathophysiological insights. Seizure: the Journal of the British Epilepsy Association, 2008, 17, 654-657.	2.0	25
62	Pattern and progression of white-matter changes in a case of posterior cortical atrophy using diffusion tensor imaging. Journal of Neurology, Neurosurgery and Psychiatry, 2008, 80, 432-436.	1.9	22
63	Nerve fiber impairment of anterior thalamocortical circuitry in juvenile myoclonic epilepsy. Neurology, 2008, 71, 1981-1985.	1.1	126
64	DIFFUSION TENSOR IMAGING DEMONSTRATES FIBER IMPAIRMENT IN SUSAC SYNDROME. Neurology, 2008, 70, 1867-1869.	1.1	50
65	Diffusion-Tensor Imaging at 3 T. Investigative Radiology, 2007, 42, 338-345.	6.2	49
66	Interhemispheric Dissociation of Language Regions in a Healthy Subject. Archives of Neurology, 2006, 63, 1344.	4.5	14
67	Confinement-induced depletion of the enhancedg-factor in quantum wires. Physical Review B, 2005, 72,	3.2	6