Jianwen Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7808407/publications.pdf

Version: 2024-02-01

279 15,321 69 109
papers citations h-index g-index

285 285 285 14884 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Enhanced Biological Imaging via Aggregation-Induced Emission Active Porous Organic Cages. ACS Nano, 2022, 16, 2355-2368.	7.3	21
2	Machine Learning-Enabled Prediction and High-Throughput Screening of Polymer Membranes for Pervaporation Separation. ACS Applied Materials & Interfaces, 2022, 14, 8427-8436.	4.0	22
3	Free-standing homochiral 2D monolayers by exfoliation of molecular crystals. Nature, 2022, 602, 606-611.	13.7	60
4	Growing single crystals of two-dimensional covalent organic frameworks enabled by intermediate tracing study. Nature Communications, 2022, 13, 1370.	5.8	60
5	Metallated porphyrinic metalâ^organic frameworks for CO2 conversion to HCOOH: A computational screening and mechanistic study. Molecular Catalysis, 2022, 527, 112407.	1.0	9
6	Recent development in machine learning of polymer membranes for liquid separation. Molecular Systems Design and Engineering, 2022, 7, 856-872.	1.7	7
7	Microscopic insight into anion conduction in covalentâ^'organic framework membranes: A molecular simulation study. Journal of Membrane Science, 2022, , 120754.	4.1	9
8	Accelerating Discovery of High Fractional Free Volume Polymers from a Data-Driven Approach. ACS Applied Materials & Data-Driven Approach. ACS Applied Materials & Data-Driven Approach. ACS	4.0	8
9	Confinementâ€Driven Enantioselectivity in 3D Porous Chiral Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2021, 60, 6086-6093.	7.2	48
10	Crystalline Câ€"C and Câ•€ Bond-Linked Chiral Covalent Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 369-381.	6.6	117
11	Highly Stable Zr(IV)-Based Metal–Organic Frameworks for Chiral Separation in Reversed-Phase Liquid Chromatography. Journal of the American Chemical Society, 2021, 143, 390-398.	6.6	103
12	Confinementâ€Driven Enantioselectivity in 3D Porous Chiral Covalent Organic Frameworks. Angewandte Chemie, 2021, 133, 6151-6158.	1.6	7
13	In silico screening and design strategies of ethaneâ€selective metal–organic frameworks for ethane/ethylene separation. AICHE Journal, 2021, 67, e17025.	1.8	44
14	Towards complex systems and devices: general discussion. Faraday Discussions, 2021, 225, 431-441.	1.6	0
15	Concluding remarks: Cooperative phenomena in framework materials. Faraday Discussions, 2021, 225, 442-454.	1.6	2
16	Metalâ^'Organic Frameworks for Liquid Phase Applications. Advanced Science, 2021, 8, 2003143.	5.6	21
17	Metal–Organic Frameworks for Xylene Separation: From Computational Screening to Machine Learning. Journal of Physical Chemistry C, 2021, 125, 7839-7848.	1.5	25
18	Highly Selective CO 2 Conversion to Methanol in a Bifunctional Zeolite Catalytic Membrane Reactor. Angewandte Chemie, 2021, 133, 18437-18442.	1.6	1

#	Article	IF	Citations
19	Highly Selective CO ₂ Conversion to Methanol in a Bifunctional Zeolite Catalytic Membrane Reactor. Angewandte Chemie - International Edition, 2021, 60, 18289-18294.	7.2	35
20	Hydrogen Adsorption in Metal–Organic Framework MIL-101(Cr)—Adsorbate Densities and Enthalpies from Sorption, Neutron Scattering, In Situ X-ray Diffraction, Calorimetry, and Molecular Simulations. ACS Applied Energy Materials, 2021, 4, 7839-7847.	2.5	2
21	Highly porous nanofiber-supported monolayer graphene membranes for ultrafast organic solvent nanofiltration. Science Advances, 2021, 7, eabg6263.	4.7	75
22	Molecular Simulation Study on Molecularly Mixed Porous Organic Cage/Polymer Composite Membranes for Water Desalination and Solvent Recovery. ACS Applied Nano Materials, 2021, 4, 10378-10388.	2.4	13
23	Materials breaking the rules: general discussion. Faraday Discussions, 2021, 225, 255-270.	1.6	0
24	Novel computational tools: general discussion. Faraday Discussions, 2021, 225, 341-357.	1.6	1
25	Rapid Screening of Metal–Organic Frameworks for Propane/Propylene Separation by Synergizing Molecular Simulation and Machine Learning. ACS Applied Materials & Interfaces, 2021, 13, 53454-53467.	4.0	48
26	Transforming CO ₂ into Methanol with N-Heterocyclic Carbene-Stabilized Coinage Metal Hydrides Immobilized in a Metal–Organic Framework UiO-68. ACS Applied Materials & Diterfaces, 2021, 13, 58723-58736.	4.0	18
27	Nanostructural Control Enables Optimized Photoacoustic–Fluorescence–Magnetic Resonance Multimodal Imaging and Photothermal Therapy of Brain Tumor. Advanced Functional Materials, 2020, 30, 1907077.	7.8	41
28	Selfâ€Assembly of Highly Stable Zirconium(IV) Coordination Cages with Aggregation Induced Emission Molecular Rotors for Liveâ€Cell Imaging. Angewandte Chemie, 2020, 132, 10237-10245.	1.6	19
29	Selfâ€Assembly of Highly Stable Zirconium(IV) Coordination Cages with Aggregation Induced Emission Molecular Rotors for Liveâ€Cell Imaging. Angewandte Chemie - International Edition, 2020, 59, 10151-10159.	7.2	99
30	Organic Small Molecule Based Photothermal Agents with Molecular Rotors for Malignant Breast Cancer Therapy. Advanced Functional Materials, 2020, 30, 1907093.	7.8	84
31	Porous organic cages as synthetic water channels. Nature Communications, 2020, 11, 4927.	5.8	43
32	Machine Learning for Polymer Swelling in Liquids. ACS Applied Polymer Materials, 2020, 2, 3576-3586.	2.0	19
33	Intercalation of Metal Ions into Ti ₃ C ₂ T <i>_x</i> MXene Electrodes for Highâ€Arealâ€Capacitance Microsupercapacitors with Neutral Multivalent Electrolytes. Advanced Functional Materials, 2020, 30, 2003721.	7.8	61
34	Computational design of a metal-based frustrated Lewis pair on defective UiO-66 for CO ₂ hydrogenation to methanol. Journal of Materials Chemistry A, 2020, 8, 22802-22815.	5.2	27
35	Atomistic Simulation Study of Polyarylate/Zeolitic-Imidazolate Framework Mixed-Matrix Membranes for Water Desalination. ACS Applied Nano Materials, 2020, 3, 10022-10031.	2.4	23
36	All-in-One Molecular Aggregation-Induced Emission Theranostics: Fluorescence Image Guided and Mitochondria Targeted Chemo- and Photodynamic Cancer Cell Ablation. Chemistry of Materials, 2020, 32, 4681-4691.	3.2	73

#	Article	IF	Citations
37	Dipeptide membranes for CO2 separation: A molecular simulation study. Fluid Phase Equilibria, 2020, 515, 112570.	1.4	5
38	A Highly Rigid and Conjugated Microporous Polymer Membrane for Solvent Permeation and Biofuel Purification: A Molecular Simulation Study. ACS Sustainable Chemistry and Engineering, 2020, 8, 2892-2900.	3.2	14
39	POC/PIM-1 mixed-matrix membranes for water desalination: A molecular simulation study. Journal of Membrane Science, 2020, 608, 118173.	4.1	22
40	Water Permeation through Conical Nanopores: Complex Interplay between Surface Roughness and Chemistry. Advanced Theory and Simulations, 2020, 3, 2000025.	1.3	6
41	Molecular simulations of liquid separations in polymer membranes. Current Opinion in Chemical Engineering, 2020, 28, 66-74.	3.8	22
42	Functional UiO-66 for the removal of sulfur-containing compounds in gas and liquid mixtures: A molecular simulation study. Chemical Engineering Journal, 2019, 356, 737-745.	6.6	15
43	Effects of functionalization on the nanofiltration performance of PIM-1: Molecular simulation investigation. Journal of Membrane Science, 2019, 591, 117357.	4.1	17
44	Chiral Phosphoric Acids in Metal–Organic Frameworks with Enhanced Acidity and Tunable Catalytic Selectivity. Angewandte Chemie - International Edition, 2019, 58, 14748-14757.	7.2	50
45	Boosting Enantioselectivity of Chiral Organocatalysts with Ultrathin Two-Dimensional Metal–Organic Framework Nanosheets. Journal of the American Chemical Society, 2019, 141, 17685-17695.	6.6	128
46	Formation of CH ₄ Hydrate in a Mesoporous Metal–Organic Framework MIL-101: Mechanistic Insights from Microsecond Molecular Dynamics Simulations. Journal of Physical Chemistry Letters, 2019, 10, 7002-7008.	2.1	35
47	Microporous benzimidazole-linked polymer and its derivatives for organic solvent nanofiltration. Polymer, 2019, 185, 121932.	1.8	10
48	Chiral Phosphoric Acids in Metal–Organic Frameworks with Enhanced Acidity and Tunable Catalytic Selectivity. Angewandte Chemie, 2019, 131, 14890-14899.	1.6	16
49	Post-synthesis of a covalent organic framework nanofiltration membrane for highly efficient water treatment. Journal of Materials Chemistry A, 2019, 7, 24205-24210.	5.2	101
50	Molecular design of chiral zirconium metal–organic frameworks for asymmetric transfer hydrogenation of imines. Catalysis Science and Technology, 2019, 9, 4888-4897.	2.1	9
51	A molecular simulation study for efficient separation of 2,5-furandiyldimethanamine by a microporous polyarylate membrane. Polymer, 2019, 175, 8-14.	1.8	7
52	Enhancing water permeation through alumina membranes by changing from cylindrical to conical nanopores. Nanoscale, 2019, 11, 9869-9878.	2.8	25
53	Identifying the best metal–organic frameworks and unravelling different mechanisms for the separation of pentane isomers. Molecular Systems Design and Engineering, 2019, 4, 609-615.	1.7	8
54	Chiral BINOL-Based Covalent Organic Frameworks for Enantioselective Sensing. Journal of the American Chemical Society, 2019, 141, 7081-7089.	6.6	245

#	Article	IF	Citations
55	Computational screening of metalâ^'organic frameworks for CO2 separation. Current Opinion in Green and Sustainable Chemistry, 2019, 16, 57-64.	3.2	15
56	Molecular Design of Microporous Polymer Membranes for the Upgrading of Natural Gas. Journal of Physical Chemistry C, 2019, 123, 6607-6615.	1.5	17
57	A molecular simulation protocol for swelling and organic solvent nanofiltration of polymer membranes. Journal of Membrane Science, 2019, 573, 639-646.	4.1	50
58	Computational Design of 2D Covalent-Organic Framework Membranes for Organic Solvent Nanofiltration. ACS Sustainable Chemistry and Engineering, 2019, 7, 1734-1744.	3.2	52
59	A molecular simulation protocol for membrane pervaporation. Journal of Membrane Science, 2019, 572, 676-682.	4.1	22
60	Hydrophobic Shielding of Outer Surface: Enhancing the Chemical Stability of Metal–Organic Polyhedra. Angewandte Chemie, 2019, 131, 1053-1057.	1.6	8
61	Restriction of Molecular Rotors in Ultrathin Two-Dimensional Covalent Organic Framework Nanosheets for Sensing Signal Amplification. Chemistry of Materials, 2019, 31, 146-160.	3.2	125
62	Hydrophobic Shielding of Outer Surface: Enhancing the Chemical Stability of Metal–Organic Polyhedra. Angewandte Chemie - International Edition, 2019, 58, 1041-1045.	7.2	45
63	CO2 cycloaddition with propylene oxide to form propylene carbonate on a copper metal-organic framework: A density functional theory study. Molecular Catalysis, 2019, 463, 37-44.	1.0	28
64	Porous organic cages embedded in a lipid membrane for water desalination: A molecular simulation study. Journal of Membrane Science, 2019, 573, 177-183.	4.1	24
65	Methanol-to-olefin conversion in ABC-6 zeolite cavities: unravelling the role of cavity shape and size from density functional theory calculations. Physical Chemistry Chemical Physics, 2018, 20, 14322-14330.	1.3	8
66	Confinement of Aggregation-Induced Emission Molecular Rotors in Ultrathin Two-Dimensional Porous Organic Nanosheets for Enhanced Molecular Recognition. Journal of the American Chemical Society, 2018, 140, 4035-4046.	6.6	119
67	Dipeptide Crystals as Reverse Osmosis Membranes for Water Desalination: Atomistic Simulation. Journal of Physical Chemistry C, 2018, 122, 6026-6032.	1.5	13
68	Efficient Removal of Pb ²⁺ from Aqueous Solution by an Ionic Covalent–Organic Framework: Molecular Simulation Study. Industrial & Engineering Chemistry Research, 2018, 57, 6477-6482.	1.8	33
69	High-throughput computational screening of metal-organic framework membranes for upgrading of natural gas. Journal of Membrane Science, 2018, 551, 47-54.	4.1	7 3
70	Amorphous Porous Organic Cage Membranes for Water Desalination. Journal of Physical Chemistry C, 2018, 122, 1732-1740.	1.5	25
71	Catalytic amino acid production from biomass-derived intermediates. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5093-5098.	3.3	168
72	Water desalination and biofuel dehydration through a thin membrane of polymer of intrinsic microporosity: Atomistic simulation study. Journal of Membrane Science, 2018, 545, 49-56.	4.1	55

#	Article	IF	Citations
73	Frontispiece: Highâ∈Flux Highâ∈Selectivity Metalâ∈"Organic Framework MILâ∈160 Membrane for Xylene Isomer Separation by Pervaporation. Angewandte Chemie - International Edition, 2018, 57, .	7.2	0
74	Hochflussâ€HochselektivitÃඎ€MOFâ€Membran: Geträerte MILâ€160â€Schicht fÃ⅓r die Trennung der Xylolisomere durch Pervaporation. Angewandte Chemie, 2018, 130, 15580-15584.	1.6	14
7 5	Frontispiz: Hochflussâ€Hochselektivitäsâ€MOFâ€Membran: Geträerte MILâ€160â€Schicht fÃ⅓r die Trennung o Xylolisomere durch Pervaporation. Angewandte Chemie, 2018, 130, .	der 1.6	О
76	Molecular Simulation and Analysis of Sorption Process toward Theoretical Prediction for Liquid Permeation through Membranes. Journal of Physical Chemistry B, 2018, 122, 12211-12218.	1.2	7
77	Highâ€Flux Highâ€Selectivity Metal–Organic Framework MILâ€160 Membrane for Xylene Isomer Separation by Pervaporation. Angewandte Chemie - International Edition, 2018, 57, 15354-15358.	7.2	101
78	Design and self-assembly of hexahedral coordination cages for cascade reactions. Nature Communications, 2018, 9, 4423.	5.8	85
79	Zeolitic Imidazolate Framework Membranes for Organic Solvent Nanofiltration: A Molecular Simulation Exploration. ACS Applied Materials & Simulation Exploration. ACS Applied Materials & Simulation Exploration.	4.0	26
80	Computational Characterization of Ultrathin Polymer Membranes in Liquids. Macromolecules, 2018, 51, 7169-7177.	2.2	37
81	Computational screening of hydrophobic metal–organic frameworks for the separation of H ₂ S and CO ₂ from natural gas. Journal of Materials Chemistry A, 2018, 6, 18898-18905.	5.2	84
82	Solvent nanofiltration through polybenzimidazole membranes: Unravelling the role of pore size from molecular simulations. Journal of Membrane Science, 2018, 564, 782-787.	4.1	18
83	Decomposition of CH ₄ hydrate: effects of temperature and salt from molecular simulations. Molecular Simulation, 2018, 44, 1220-1228.	0.9	18
84	Chiral NH-Controlled Supramolecular Metallacycles. Journal of the American Chemical Society, 2017, 139, 1554-1564.	6.6	122
85	Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation. Nature Communications, 2017, 8, 14460.	5.8	382
86	Water Desalination through a Zeolitic Imidazolate Framework Membrane by Electro- and Thermo-Osmosis: Which Could Be More Efficient?. ChemistrySelect, 2017, 2, 3981-3986.	0.7	5
87	What are the key factors governing the nucleation of CO ₂ hydrate?. Physical Chemistry Chemical Physics, 2017, 19, 15657-15661.	1.3	7 5
88	Computational design of 2D functional covalent–organic framework membranes for water desalination. Environmental Science: Water Research and Technology, 2017, 3, 735-743.	1.2	69
89	Porous organic cage membranes for water desalination: a simulation exploration. Physical Chemistry Chemical Physics, 2017, 19, 18178-18185.	1.3	25
90	Molecular Design of Zirconium Tetrazolate Metal–Organic Frameworks for CO ₂ Capture. Crystal Growth and Design, 2017, 17, 543-549.	1.4	36

#	Article	IF	CITATIONS
91	1D-2D-3D Transformation Synthesis of Hierarchical Metal–Organic Framework Adsorbent for Multicomponent Alkane Separation. Journal of the American Chemical Society, 2017, 139, 819-828.	6.6	62
92	Ultrathin two-dimensional porous organic nanosheets with molecular rotors for chemical sensing. Nature Communications, 2017, 8, 1142.	5.8	152
93	CH ₄ Hydrate Formation between Silica and Graphite Surfaces: Insights from Microsecond Molecular Dynamics Simulations. Langmuir, 2017, 33, 11956-11967.	1.6	80
94	High-Throughput Computational Screening of Metal–Organic Frameworks for Thiol Capture. Journal of Physical Chemistry C, 2017, 121, 22208-22215.	1.5	38
95	Ethanolamine Purification by Nanofiltration through PIM-1 and Carbon Membranes: A Molecular Simulation Study. Journal of Physical Chemistry C, 2017, 121, 20539-20545.	1.5	11
96	Dipeptides Embedded in a Lipid Bilayer Membrane as Synthetic Water Channels. Langmuir, 2017, 33, 11490-11495.	1.6	4
97	Molecular Dynamics Phenomena of Water in the Metalorganic Framework MIL-100(Al), as Revealed by Pulsed Field Gradient NMR and Atomistic Simulation. Journal of Physical Chemistry C, 2017, 121, 18065-18074.	1.5	25
98	Seawater Pervaporation through Zeolitic Imidazolate Framework Membranes: Atomistic Simulation Study. ACS Applied Materials & Samp; Interfaces, 2016, 8, 13392-13399.	4.0	72
99	High-throughput computational screening of 137953 metal–organic frameworks for membrane separation of a CO ₂ /N ₂ /CH ₄ mixture. Journal of Materials Chemistry A, 2016, 4, 15904-15912.	5.2	99
100	pH-Sensitive Vesicles Formed by Amphiphilic Grafted Copolymers with Tunable Membrane Permeability for Drug Loading/Release: A Multiscale Simulation Study. Macromolecules, 2016, 49, 6084-6094.	2.2	58
101	Molecular Insights into the Nucleation and Growth of CH ₄ and CO ₂ Mixed Hydrates from Microsecond Simulations. Journal of Physical Chemistry C, 2016, 120, 25225-25236.	1.5	84
102	A helical peptide confined in metal-organic frameworks: Microscopic insight from molecular simulation. Microporous and Mesoporous Materials, 2016, 232, 138-142.	2.2	7
103	Modulated Hydrothermal Synthesis of UiO-66(Hf)-Type Metal–Organic Frameworks for Optimal Carbon Dioxide Separation. Inorganic Chemistry, 2016, 55, 1134-1141.	1.9	161
104	Synthesis and seawater desalination of molecular sieving zeolitic imidazolate framework membranes. Desalination, 2016, 385, 75-82.	4.0	137
105	In silico screening of 4764 computation-ready, experimental metal–organic frameworks for CO ₂ separation. Journal of Materials Chemistry A, 2016, 4, 2105-2114.	5.2	109
106	Design of amine-functionalized metal–organic frameworks for CO ₂ separation: the more amine, the better?. Chemical Communications, 2016, 52, 974-977.	2.2	76
107	Ibuprofen loading and release in amphiphilic peptide FA32 and its derivatives: a coarse-grained molecular dynamics simulation study. Molecular Simulation, 2016, 42, 679-687.	0.9	9

Porous Materials: Submicrometer-Sized ZIF-71 Filled Organophilic Membranes for Improved Bioethanol Recovery: Mechanistic Insights by Monte Carlo Simulation and FTIR Spectroscopy (Adv. Funct. Mater.) Tj ETQq0 0 0 18 BT /Overlock 10 T

7

108

#	Article	IF	CITATIONS
109	Glucose recovery from aqueous solutions by adsorption in metal–organic framework MIL-101: a molecular simulation study. Scientific Reports, 2015, 5, 12821.	1.6	11
110	Biofuel purification in GME zeolitic–imidazolate frameworks: From <i>ab initio</i> calculations to molecular simulations. AICHE Journal, 2015, 61, 2763-2775.	1.8	22
111	Computational Amphiphilic Materials for Drug Delivery. Frontiers in Materials, 2015, 2, .	1.2	24
112	Submicrometerâ€Sized ZIFâ€₹1 Filled Organophilic Membranes for Improved Bioethanol Recovery: Mechanistic Insights by Monte Carlo Simulation and FTIR Spectroscopy. Advanced Functional Materials, 2015, 25, 516-525.	7.8	94
113	CO ₂ capture in rht metal–organic frameworks: multiscale modeling from molecular simulation to breakthrough prediction. Journal of Materials Chemistry A, 2015, 3, 16327-16336.	5.2	20
114	Water Desalination through Zeolitic Imidazolate Framework Membranes: Significant Role of Functional Groups. Langmuir, 2015, 31, 13230-13237.	1.6	108
115	Cellulose dissolution and regeneration in ionic liquids: A computational perspective. Chemical Engineering Science, 2015, 121, 180-189.	1.9	111
116	CO2 capture in cation-exchanged metal–organic frameworks: Holistic modeling from molecular simulation to process optimization. Chemical Engineering Science, 2015, 124, 70-78.	1.9	44
117	Molecular insights into the self-assembly of short amphiphilic peptides FmDn and FmKn. RSC Advances, 2014, 4, 60741-60748.	1.7	9
118	Mechanistic insight into highly efficient gas permeation and separation in a shape-persistent ladder polymer membrane. Physical Chemistry Chemical Physics, 2014, 16, 6075.	1.3	49
119	Synthesis of highly hydrophobic and permselective metal–organic framework Zn(BDC)(TED)0.5 membranes for H2/CO2 separation. Journal of Membrane Science, 2014, 454, 126-132.	4.1	55
120	Enhancement of CO ₂ uptake in iso-reticular Co based zeolitic imidazolate frameworks via metal replacement. CrystEngComm, 2014, 16, 4677-4680.	1.3	32
121	Covalent-organic framework as a template to assemble carbon nanotubes into a high-density membrane: computational demonstration. Nanoscale, 2014, 6, 772-777.	2.8	4
122	Molecular simulations in metal–organic frameworks for diverse potential applications. Molecular Simulation, 2014, 40, 516-536.	0.9	31
123	Self-Assembly of Amphiphilic Peptide (AF)6H5K15 Derivatives: Roles of Hydrophilic and Hydrophobic Residues. Journal of Physical Chemistry B, 2014, 118, 2683-2692.	1.2	21
124	A Combinatorial Approach towards Waterâ€Stable Metalâ€"Organic Frameworks for Highly Efficient Carbon Dioxide Separation. ChemSusChem, 2014, 7, 2791-2795.	3.6	82
125	Adsorption and Diffusion of CO ₂ and CH ₄ in Zeolitic Imidazolate Framework-8: Effect of Structural Flexibility. Journal of Physical Chemistry C, 2014, 118, 8788-8794.	1.5	132
126	"Click―extended nitrogen-rich metal–organic frameworks and their high performance in CO2-selective capture. Chemical Communications, 2014, 50, 4683.	2.2	61

#	Article	IF	Citations
127	Systematic Investigation of Nitrile Based Ionic Liquids for CO ₂ Capture: A Combination of Molecular Simulation and <i>ab Initio</i> Calculation. Journal of Physical Chemistry C, 2014, 118, 3110-3118.	1.5	44
128	Engineering chiral porous metal-organic frameworks for enantioselective adsorption and separation. Nature Communications, 2014, 5, 4406.	5 . 8	221
129	Biofuel purification in zeolitic imidazolate frameworks: the significant role of functional groups. Physical Chemistry Chemical Physics, 2014, 16, 9643-9655.	1.3	57
130	Crucial role of blocking inaccessible cages in the simulation of gas adsorption in a paddle-wheel metal–organic framework. RSC Advances, 2013, 3, 16152.	1.7	15
131	Self-Assembly of Amphiphilic Peptide (AF) < sub > 6 < / sub > H < sub > 5 < / sub > K < sub > 15 < / sub > : Coarse-Grained Molecular Dynamics Simulation. Journal of Physical Chemistry B, 2013, 117, 9690-9698.	1.2	39
132	Adsorption of C ₁ –C ₄ Alcohols in Zeolitic Imidazolate Framework-8: Effects of Force Fields, Atomic Charges, and Framework Flexibility. Journal of Physical Chemistry C, 2013, 117, 25628-25635.	1.5	70
133	Ag nanoprisms with Ag2S attachment. Scientific Reports, 2013, 3, 2177.	1.6	61
134	Engineering nanostructured materials for sustainable future. Asia-Pacific Journal of Chemical Engineering, 2013, 8, 203-204.	0.8	0
135	Thermal Conductivity of Zeolitic Imidazolate Framework-8: A Molecular Simulation Study. Journal of Physical Chemistry C, 2013, 117, 18441-18447.	1.5	117
136	lonic Liquid Membranes Supported by Hydrophobic and Hydrophilic Metalâ€"Organic Frameworks for CO ₂ Capture. Journal of Physical Chemistry C, 2013, 117, 5792-5799.	1.5	79
137	Functionalized metal–organic framework MIL-101 for CO2 capture: multi-scale modeling from ab initio calculation and molecular simulation to breakthrough prediction. CrystEngComm, 2013, 15, 10358.	1.3	36
138	Cellulose regeneration from a cellulose/ionic liquid mixture: the role of anti-solvents. RSC Advances, 2013, 3, 12794.	1.7	68
139	CO ₂ capture in poly(ionic liquid) membranes: atomistic insight into the role of anions. Physical Chemistry Chemical Physics, 2013, 15, 651-658.	1.3	55
140	Liquid Chromatographic Separation in Metal–Organic Framework MIL-101: A Molecular Simulation Study. Langmuir, 2013, 29, 1650-1656.	1.6	17
141	Sorption-Induced Structural Transition of Zeolitic Imidazolate Framework-8: A Hybrid Molecular Simulation Study. Journal of the American Chemical Society, 2013, 135, 3722-3728.	6.6	160
142	A Rationally Designed Nitrogen-Rich Metal-Organic Framework and Its Exceptionally High CO2 and H2 Uptake Capability. Scientific Reports, 2013, 3, 1149.	1.6	122
143	Propylene/Propane Separation Using SiCHA. Industrial & Engineering Chemistry Research, 2013, 52, 3877-3892.	1.8	41
144	Atomistic insight into micro-phase separation and gas diffusion in PEO–PBT multiblock copolymers. Molecular Simulation, 2013, 39, 902-907.	0.9	4

#	Article	IF	CITATIONS
145	Molecular insight into cellulose regeneration from a cellulose/ionic liquid mixture: effects of water concentration and temperature. RSC Advances, 2013, 3, 4425.	1.7	48
146	Self-Templated Free-Radical Polymerization To Form Tactic Chains in Confined Environment. Journal of Physical Chemistry B, 2013, 117, 7826-7832.	1.2	1
147	Bovine pancreatic trypsin inhibitor crystals with different morphologies: a molecular dynamics simulation study. Molecular Simulation, 2012, 38, 112-118.	0.9	1
148	CO ₂ Adsorption in Mono-, Di- and Trivalent Cation-Exchanged Metal–Organic Frameworks: A Molecular Simulation Study. Langmuir, 2012, 28, 3903-3910.	1.6	39
149	Development of a force field for zeolitic imidazolate framework-8 with structural flexibility. Journal of Chemical Physics, 2012, 136, 244703.	1.2	67
150	A homochiral metal–organic framework membrane for enantioselective separation. Chemical Communications, 2012, 48, 7022.	2.2	139
151	Ion Exchange in Metal–Organic Framework for Water Purification: Insight from Molecular Simulation. Journal of Physical Chemistry C, 2012, 116, 6925-6931.	1.5	77
152	Metal–Organic Framework/Polymer Mixed-Matrix Membranes for H ₂ /CO ₂ Separation: A Fully Atomistic Simulation Study. Journal of Physical Chemistry C, 2012, 116, 19268-19277.	1.5	72
153	Crowding effect on DNA melting: a molecular thermodynamic model with explicit solvent. Physical Chemistry Chemical Physics, 2012, 14, 15400.	1.3	10
154	Recent development of in silico molecular modeling for gas and liquid separations in metal–organic frameworks. Current Opinion in Chemical Engineering, 2012, 1, 138-144.	3.8	19
155	Recovery of Dimethyl Sulfoxide from Aqueous Solutions by Highly Selective Adsorption in Hydrophobic Metal–Organic Frameworks. Langmuir, 2012, 28, 15305-15312.	1.6	22
156	A highly permeable and selective zeolitic imidazolate framework ZIF-95 membrane for H2/CO2 separation. Chemical Communications, 2012, 48, 10981.	2.2	197
157	Metal–organic framework supported ionic liquid membranes for CO2 capture: anion effects. Physical Chemistry Chemical Physics, 2012, 14, 5785.	1.3	113
158	Dendritic Ptâ€"Cu bimetallic nanocrystals with a high electrocatalytic activity toward methanol oxidation. Materials Chemistry and Physics, 2012, 132, 244-247.	2.0	37
159	pH-sensitive drug loading/releasing in amphiphilic copolymer PAE–PEG: Integrating molecular dynamics and dissipative particle dynamics simulations. Journal of Controlled Release, 2012, 162, 185-193.	4.8	157
160	Fluorinated Metal–Organic Frameworks: Advantageous for Higher H ₂ and CO ₂ Adsorption or Not?. Chemistry - A European Journal, 2012, 18, 688-694.	1.7	101
161	DNA Melting in Slit Pores: A Reaction Density Functional Theory. Journal of Physical Chemistry B, 2011, 115, 1848-1855.	1.2	4
162	Effects of Residual Solvent on Membrane Structure and Gas Permeation in a Polymer of Intrinsic Microporosity: Insight from Atomistic Simulation. Journal of Physical Chemistry C, 2011, 115, 11233-11239.	1.5	32

#	Article	IF	Citations
163	Corresponding States Theory for the Freezing of Ionic Liquids. Industrial & Engineering Chemistry Research, 2011, 50, 234-238.	1.8	2
164	Cation Characterization and CO2Capture in Li+-Exchanged Metalâ^Organic Frameworks: From First-Principles Modeling to Molecular Simulationâ€. Industrial & Engineering Chemistry Research, 2011, 50, 62-68.	1.8	43
165	Biofuel purification by pervaporation and vapor permeation in metal–organic frameworks: a computational study. Energy and Environmental Science, 2011, 4, 2107.	15.6	48
166	Amino functionalized zeolitic tetrazolate framework (ZTF) with high capacity for storage of carbon dioxide. Chemical Communications, 2011, 47, 2011-2013.	2.2	218
167	Gas Permeation and Separation in Functionalized Polymers of Intrinsic Microporosity: A Combination of Molecular Simulations and Ab Initio Calculations. Journal of Physical Chemistry C, 2011, 115, 14123-14130.	1.5	61
168	Molecular simulations for energy, environmental and pharmaceutical applications of nanoporous materials: from zeolites, metal–organic frameworks to protein crystals. Chemical Society Reviews, 2011, 40, 3599.	18.7	130
169	Zeolitic imidazolate framework-8 as a reverse osmosis membrane for water desalination: Insight from molecular simulation. Journal of Chemical Physics, 2011, 134, 134705.	1.2	182
170	Effects of polydisperse crowders on aggregation reactions: A molecular thermodynamic analysis. Journal of Chemical Physics, 2011, 134, 064704.	1.2	10
171	Ionic Liquid/Metal–Organic Framework Composite for CO ₂ Capture: A Computational Investigation. Journal of Physical Chemistry C, 2011, 115, 21736-21742.	1.5	114
172	Structural Isomerism and Effect of Fluorination on Gas Adsorption in Copper-Tetrazolate Based Metal Organic Frameworks. Chemistry of Materials, 2011, 23, 2908-2916.	3.2	79
173	Synthesis and Capacitive Properties of Manganese Oxide Nanosheets Dispersed on Functionalized Graphene Sheets. Journal of Physical Chemistry C, 2011, 115, 6448-6454.	1.5	365
174	A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes. Energy and Environmental Science, 2011, 4, 4009.	15.6	741
175	Mechanistic understanding of interactions between cellulose and ionic liquids: A molecular simulation study. Polymer, 2011, 52, 5904-5911.	1.8	46
176	Experimental and computational approach of understanding the gas adsorption in amino functionalized interpenetrated metal organic frameworks (MOFs). Journal of Materials Chemistry, 2011, 21, 17737.	6.7	54
177	An experimental evaluation and molecular simulation of high temperature gas adsorption on nanoporous carbon. Carbon, 2011, 49, 117-125.	5.4	24
178	Enantioselective adsorption and diffusion of S-/R-glycidol in homochiral zeolites: A molecular simulation study. Journal of Membrane Science, 2011, 367, 63-70.	4.1	19
179	Characterization of hexavalent chromium interaction with Sargassum by X-ray absorption fine structure spectroscopy, X-ray photoelectron spectroscopy, and quantum chemistry calculation. Journal of Colloid and Interface Science, 2011, 356, 741-748.	5.0	39
180	Synthesis, characterization and capacitive performance of hydrous manganese dioxide nanostructures. Nanotechnology, 2011, 22, 125703.	1.3	39

#	Article	IF	CITATIONS
181	Assessment of biomolecular force fields for molecular dynamics simulations in a protein crystal. Journal of Computational Chemistry, 2010, 31, 371-380.	1.5	42
182	Highly Porous Ionic rht Metalâ [*] Organic Framework for H2 and CO2 Storage and Separation: A Molecular Simulation Study. Langmuir, 2010, 26, 11196-11203.	1.6	72
183	A Bioâ€Metal–Organic Framework for Highly Selective CO ₂ Capture: A Molecular Simulation Study. ChemSusChem, 2010, 3, 982-988.	3. 6	95
184	Molecular dynamics and dissipative particle dynamics simulations for the miscibility of poly(ethylene) Tj ETQq0	0 0 _{[g} BT /0	Overlock 10 Tf 171
185	Mechanistic understanding of CO2-induced plasticization of a polyimide membrane: A combination of experiment and simulation study. Polymer, 2010, 51, 4439-4447.	1.8	67
186	A density functional theory for Yukawa chain fluids in a nanoslit. Molecular Simulation, 2010, 36, 291-301.	0.9	2
187	Synthesis and capacitive properties of carbonaceous sphere@MnO ₂ rattle-type hollow structures. Journal of Materials Research, 2010, 25, 1476-1484.	1.2	21
188	A Highly Hydrophobic Metalâ^'Organic Framework Zn(BDC)(TED)0.5 for Adsorption and Separation of CH3OH/H2O and CO2/CH4: An Integrated Experimental and Simulation Study. Journal of Physical Chemistry C, 2010, 114, 6602-6609.	1.5	94
189	Molecular Computations of Adsorption in Nanoporous Materials. , 2010, , 69-100.		2
190	CO ₂ -Induced Microstructure Transition of Surfactant in Aqueous Solution: Insight from Molecular Dynamics Simulation. Journal of Physical Chemistry B, 2010, 114, 6344-6349.	1.2	12
191	Template Synthesis of Tubular Ruthenium Oxides for Supercapacitor Applications. Journal of Physical Chemistry C, 2010, 114, 13608-13613.	1.5	144
192	Molecular Thermodynamic Model for DNA Melting in Ionic and Crowded Solutions. Journal of Physical Chemistry B, 2010, 114, 9905-9911.	1.2	8
193	Polymers of intrinsic microporosity for gas permeation: a molecular simulation study. Molecular Simulation, 2010, 36, 992-1003.	0.9	49
194	Molecular Understanding for the Adsorption of Water and Alcohols in Hydrophilic and Hydrophobic Zeolitic Metalâ^'Organic Frameworks. Journal of Physical Chemistry C, 2010, 114, 11542-11550.	1.5	111
195	Density Functional Theory for Adsorption of Gas Mixtures in Metalâ^'Organic Frameworks. Journal of Physical Chemistry B, 2010, 114, 2820-2827.	1.2	65
196	Metalâ^'Organic Framework MIL-101 for Adsorption and Effect of Terminal Water Molecules: From Quantum Mechanics to Molecular Simulation. Langmuir, 2010, 26, 8743-8750.	1.6	113
197	Charged ⟨i⟩soc⟨ i⟩ metalâ€organic framework for highâ€efficacy H⟨sub⟩2⟨ sub⟩ adsorption and syngas purification: Atomistic simulation study. AlCHE Journal, 2009, 55, 2422-2432.	1.8	55
198	Reply to comment on "Exploration of heavy metal ions transmembrane flux enhancement across a supported liquid membrane by appropriate carrier selection―[Chemical Science Engineering 62 (2007) 6032–6039]. Chemical Engineering Science, 2009, 64, 613.	1.9	0

#	Article	IF	Citations
199	Exchange of heavy metal ions in titanosilicate Na-ETS-10 membrane from molecular dynamics simulations. Journal of Membrane Science, 2009, 335, 89-95.	4.1	16
200	Reply to the Rebuttal "Rebuttal to the Reply to comment on â€Exploration of heavy metal ions transmembrane flux enhancement across a supported liquid membrane by appropriate carrier selection'―[Chem. Eng. Sci. 62 (2007) 6032–6039]. Chemical Engineering Science, 2009, 64, 616.	1.9	0
201	Separation of amino acids in glucose isomerase crystal: Insight from molecular dynamics simulations. Journal of Chromatography A, 2009, 1216, 5122-5129.	1.8	11
202	Development of a Density Functional Theory in Three-Dimensional Nanoconfined Space: H ₂ Storage in Metalâ^'Organic Frameworks. Journal of Physical Chemistry B, 2009, 113, 12326-12331.	1.2	50
203	Chiral Separation of Racemic Phenylglycines in Thermolysin Crystal: A Molecular Simulation Study. Journal of Physical Chemistry B, 2009, 113, 15851-15857.	1.2	12
204	Atomistic Insight into Adsorption, Mobility, and Vibration of Water in Ion-Exchanged Zeolite-like Metalâ^'Organic Frameworks. ACS Nano, 2009, 3, 2563-2572.	7.3	28
205	Molecular Insight into Adsorption and Diffusion of Alkane Isomer Mixtures in Metalâ^'Organic Frameworks. Journal of Physical Chemistry B, 2009, 113, 9129-9136.	1.2	48
206	Force Field for Molecular Dynamics Studies of Glycine/Water Mixtures in Crystal/Solution Environments. Journal of Physical Chemistry B, 2009, 113, 752-758.	1.2	19
207	Unprecedentedly High Selective Adsorption of Gas Mixtures in <i>rho</i> Zeolite-like Metalâ [^] Organic Framework: A Molecular Simulation Study. Journal of the American Chemical Society, 2009, 131, 11417-11425.	6.6	202
208	Unraveling the Energetics and Dynamics of Ibuprofen in Mesoporous Metalâ^'Organic Frameworks. Journal of Physical Chemistry C, 2009, 113, 18287-18291.	1.5	97
209	Molecular Simulations for Adsorptive Separation of CO ₂ /CH ₄ Mixture in Metal-Exposed, Catenated, and Charged Metalâ^'Organic Frameworks. Langmuir, 2009, 25, 5239-5247.	1.6	134
210	Upgrade of natural gas in rho zeolite-like metal–organic framework and effect of water: a computational study. Energy and Environmental Science, 2009, 2, 1088.	15.6	67
211	A new lattice density functional theory for polymer adsorption at solid-liquid interface. Journal of Chemical Physics, 2009, 131, 044710.	1.2	10
212	Flowâ€Induced Morphologies of Diblock Copolymers in a Nanotube Studied by Dissipative Particle Dynamics Simulation. Macromolecular Theory and Simulations, 2008, 17, 163-170.	0.6	10
213	Mechanistic insight into the biological nanopore in tetragonal lysozyme crystal. Journal of Membrane Science, 2008, 324, 192-197.	4.1	17
214	Molecular Screening of Metalâ^'Organic Frameworks for CO ₂ Storage. Langmuir, 2008, 24, 6270-6278.	1.6	227
215	Electrophoresis in Protein Crystal: Nonequilibrium Molecular Dynamics Simulations. Biophysical Journal, 2008, 95, 4148-4156.	0.2	16
216	Exceptionally high CO2 storage in covalent-organic frameworks: Atomistic simulation study. Energy and Environmental Science, 2008, 1, 139.	15.6	126

#	Article	IF	Citations
217	Diffusion and Separation of CO ₂ and CH ₄ in Silicalite, C ₁₆₈ Schwarzite, and IRMOF-1: A Comparative Study from Molecular Dynamics Simulation. Langmuir, 2008, 24, 5474-5484.	1.6	140
218	Adsorption of Copolymers in a Selective Nanoslit: A Hybrid Density Functional Theory. Journal of Physical Chemistry B, 2008, 112, 9568-9573.	1.2	10
219	Molecular Dynamics Simulations for Water and Ions in Protein Crystals. Langmuir, 2008, 24, 4215-4223.	1.6	36
220	Computer Simulation for Adsorption of CO ₂ , N ₂ and Flue Gas in a Mimetic MCM-41. Journal of Physical Chemistry C, 2008, 112, 11295-11300.	1.5	55
221	Molecular Interplay of Cations and Nonpolar/Polar Sorbates in Titanosilicate ETS-10. Journal of Physical Chemistry C, 2008, 112, 12861-12868.	1.5	8
222	Role of solvent in protein phase behavior: Influence of temperature dependent potential. Journal of Chemical Physics, 2008, 128, 235104.	1.2	12
223	Water in hydrated orthorhombic lysozyme crystal: Insight from atomistic simulations. Journal of Chemical Physics, 2008, 129, 075105.	1.2	9
224	Polymer-induced phase separation and crystallization in immunoglobulin G solutions. Journal of Chemical Physics, 2008, 128, 205105.	1.2	11
225	Analogy in the adsorption of random copolymers and homopolymers at solid-liquid interface: A Monte Carlo simulation study. Journal of Chemical Physics, 2007, 126, 094905.	1.2	9
226	Density functional theory for copolymers confined in a nanoslit. Journal of Chemical Physics, 2007, 126, 134903.	1.2	17
227	Equation of State for the Vaporâ°'Liquid Equilibria of Binary Systems Containing Imidazolium-Based lonic Liquids. Industrial & Engineering Chemistry Research, 2007, 46, 4323-4329.	1.8	46
228	Molecular dynamics simulation of polyelectrolyte with oppositely charged monomeric and dimeric surfactants. Molecular Simulation, 2007, 33, 261-268.	0.9	7
229	Assembly of Copolymer Blend on Nanopatterned Surfaces:  A Molecular Simulation Study. Langmuir, 2007, 23, 11112-11119.	1.6	18
230	Hybrid Density Functional Theory for Homopolymer Mixtures Confined in a Selective Nanoslit. Journal of Physical Chemistry B, 2007, 111, 5927-5933.	1.2	22
231	Recognition of Multiblock Copolymers on Nanopatterned Surfaces:Â Insight from Molecular Simulations. Langmuir, 2007, 23, 2430-2436.	1.6	23
232	Effects of Macromolecular Crowding on Biochemical Reaction Equilibria: A Molecular Thermodynamic Perspective. Biophysical Journal, 2007, 93, 1464-1473.	0.2	33
233	Storage and Separation of CO2and CH4in Silicalite, C168Schwarzite, and IRMOF-1:Â A Comparative Study from Monte Carlo Simulation. Langmuir, 2007, 23, 659-666.	1.6	388
234	Salt effect on the interactions between gemini surfactant and oppositely charged polyelectrolyte in aqueous solution. Journal of Colloid and Interface Science, 2007, 306, 405-410.	5.0	29

#	Article	IF	CITATIONS
235	Equation of State Coupled with Scaled Particle Theory for Surface Tensions of Liquid Mixtures. Industrial & Engineering Chemistry Research, 2007, 46, 7267-7274.	1.8	10
236	Exploration of heavy metal ions transmembrane flux enhancement across a supported liquid membrane by appropriate carrier selection. Chemical Engineering Science, 2007, 62, 6032-6039.	1.9	28
237	Capillary Phase Transitions of Linear and Branched Alkanes in Carbon Nanotubes from Molecular Simulation. Langmuir, 2006, 22, 7391-7399.	1.6	27
238	Pore Size or Geometry:Â Which Determines the Shape and Inverse-Shape Selective Adsorption of Alkane Isomers?. Journal of Physical Chemistry B, 2006, 110, 8670-8673.	1.2	11
239	Monte Carlo Simulation for the Adsorption and Separation of Linear and Branched Alkanes in IRMOF-1. Langmuir, 2006, 22, 5702-5707.	1.6	118
240	A generic molecular thermodynamic model for linear and branched polymer solutions in a lattice. Fluid Phase Equilibria, 2006, 244, 188-192.	1.4	29
241	Interactions between gemini surfactant alkanediyl-bis(dodecyldimethylammonium bromide) and polyelectrolyte NaPAA. Journal of Colloid and Interface Science, 2006, 301, 631-636.	5.0	17
242	Phase behavior of gemini surfactant hexylene-1,6-bis(dodecyldimethylammonium bromide) and polyelectrolyte NaPAA. Journal of Colloid and Interface Science, 2006, 299, 410-415.	5.0	12
243	Interactions between bovine serum albumin and gemini surfactant alkanediyl-α, ω-bis(dimethyldodecyl-ammonium bromide). Biopolymers, 2006, 83, 243-249.	1.2	63
244	Experimental and computational studies of membrane extraction of Cu(II). AICHE Journal, 2006, 52, 3266-3277.	1.8	23
245	Shape versus inverse-shape selective adsorption of alkane isomers in carbon nanotubes. Journal of Chemical Physics, 2006, 124, 024717.	1.2	14
246	A new molecular thermodynamic model for multicomponent Ising lattice. Journal of Chemical Physics, 2006, 125, 164506.	1.2	27
247	Phase behavior of polyampholytes from charged hard-sphere chain model. Journal of Chemical Physics, 2006, 124, 144908.	1.2	21
248	Adsorption and phase transitions on nanoporous carbonaceous materials: insights from molecular simulations. Fluid Phase Equilibria, 2005, 228-229, 189-195.	1.4	14
249	Hierarchical Modeling N2Adsorption on the Surface of and within a C60Crystal:Â From Quantum Mechanics to Molecular Simulation. Journal of Physical Chemistry B, 2005, 109, 4731-4737.	1.2	13
250	Viscosity of Polyelectrolyte Solutions:Â Experiment and a New Model. Industrial & Discosity Research, 2005, 44, 8120-8126.	1.8	8
251	Adsorption and separation of linear and branched alkanes on carbon nanotube bundles from configurational-bias Monte Carlo simulation. Physical Review B, 2005, 72, .	1.1	93
252	Separation of CO2 and N2 by Adsorption in C168 Schwarzite:  A Combination of Quantum Mechanics and Molecular Simulation Study. Journal of the American Chemical Society, 2005, 127, 11989-11997.	6.6	76

#	Article	IF	Citations
253	Nitrogen and Oxygen Mixture Adsorption on Carbon Nanotube Bundles from Molecular Simulation. Langmuir, 2004, 20, 10910-10918.	1.6	62
254	HM-IE:  Quantum Chemical Hybrid Methods for Calculating Interaction Energies. Journal of Physical Chemistry A, 2004, 108, 107-112.	1.1	44
255	Hierarchical Modeling O2 and N2 Adsorption in C168 Schwarzite:  From Quantum Mechanics to Molecular Simulation. Journal of Physical Chemistry B, 2004, 108, 9852-9860.	1.2	16
256	An ab Initio Study on the Effect of Carbon Surface Curvature and Ring Structure on N2(O2)â^'Carbon Intermolecular Potentials. Journal of Physical Chemistry B, 2004, 108, 9842-9851.	1.2	30
257	Capillary Phase Transitions ofn-Alkanes in a Carbon Nanotube. Nano Letters, 2004, 4, 241-244.	4.5	71
258	A Monte Carlo simulation study of the effect of carbon topology on nitrogen adsorption on graphite, a nanotube bundle, C60 fullerite, C168 schwarzite, and a nanoporous carbon. Physical Chemistry Chemical Physics, 2004, 6, 4440.	1.3	22
259	Monte Carlo Simulation of O2and N2Adsorption in Nanoporous Carbon (C168Schwarzite). Langmuir, 2003, 19, 3512-3518.	1.6	32
260	A New Model for the Viscosity of Electrolyte Solutions. Industrial & Engineering Chemistry Research, 2003, 42, 6267-6272.	1.8	58
261	Monte Carlo Simulation of O2and N2Mixture Adsorption in Nanoporous Carbon (C168Schwarzite). Langmuir, 2003, 19, 5936-5941.	1.6	27
262	Ultrafast dichroism spectroscopy of anthracene in solution. IV. Merging of inertial and diffusive motions in toluene. Journal of Chemical Physics, 2003, 118, 7534.	1.2	7
263	Nitrogen adsorption on carbon nanotube bundles:â€,â€,Role of the external surface. Physical Review B, 2003, 68, .	1.1	62
264	Criticality and phase behavior in the restricted-primitive model electrolyte: Description of ion association. Journal of Chemical Physics, 2002, 116, 7977-7982.	1.2	45
265	Effects of Solvent Viscosity on Protein Dynamics:  Infrared Vibrational Echo Experiments and Theory. Journal of Physical Chemistry B, 2001, 105, 1081-1092.	1.2	79
266	Charged hard dumbbell in the binding mean-spherical approximation. Molecular Physics, 2001, 99, 1765-1767.	0.8	11
267	Thermodynamic properties and phase equilibria of charged hard sphere chain model for polyelectrolyte solutions. Molecular Physics, 2001, 99, 1121-1128.	0.8	66
268	Phase equilibria for chain-fluid mixtures near to and far from the critical region. AICHE Journal, 2000, 46, 2525-2536.	1.8	39
269	Critical temperatures and pressures for hydrocarbon mixtures from an equation of state with renormalization-group theory corrections. Fluid Phase Equilibria, 2000, 169, 127-147.	1.4	42
270	Molecular Thermodynamics for Partitioning of Native and Denatured Proteins in Aqueous Two-Phase Systems. Journal of Physical Chemistry B, 2000, 104, 7197-7205.	1.2	16

#	Article	IF	CITATIONS
271	Polyelectrolyte solutions with stickiness between polyions and counterions. Journal of Chemical Physics, 1999, 110, 4952-4962.	1.2	35
272	Equation of state for thermodynamic properties of chain fluids near-to and far-from the vapor–liquid critical region. Journal of Chemical Physics, 1999, 111, 5964-5974.	1.2	93
273	Molecular Thermodynamics for Protein Precipitation with a Polyelectrolyte. Journal of Physical Chemistry B, 1999, 103, 5560-5569.	1.2	30
274	Lattice Monte Carlo simulation of polymer adsorption at an interface, 1. Monodisperse polymer. Macromolecular Theory and Simulations, 1998, 7, 105-111.	0.6	20
275	Lattice Monte Carlo simulation of polymer adsorption at an interface, 2. Polydisperse polymer. Macromolecular Theory and Simulations, 1998, 7, 113-117.	0.6	3
276	A molecular-thermodynamic model for polyelectrolyte solutions. Journal of Chemical Physics, 1998, 108, 780-784.	1.2	72
277	Monte Carlo Simulations of Liquidâ^'Liquid Equilibria for Ternary Chain Molecule Systems on a Lattice. Macromolecules, 1997, 30, 8459-8462.	2.2	14
278	Thermodynamic properties of unsymmetrical sticky electrolytes with overlap between ions from Ornstein-Zernike equation. Fluid Phase Equilibria, 1997, 135, 23-34.	1.4	2
279	Membrane Fouling: Microscopic Insights into the Effects of Surface Chemistry and Roughness. Advanced Theory and Simulations, 0, , 2100395.	1.3	7