
J-S Lauret

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7807758/publications.pdf Version: 2024-02-01

LS LAUDET

#	Article	IF	CITATIONS
1	Vibronic effect and influence of aggregation on the photophysics of graphene quantum dots. Nanoscale, 2022, 14, 3826-3833.	5.6	7
2	Exciton Cooling in 2D Perovskite Nanoplatelets: Rationalized Carrier-Induced Stark and Phonon Bottleneck Effects. Journal of Physical Chemistry Letters, 2022, 13, 393-399.	4.6	9
3	Hot Brownian Motion of Optically Levitated Nanodiamonds. ACS Photonics, 2022, 9, 420-425.	6.6	8
4	Vibronic fingerprints in the luminescence of graphene quantum dots at cryogenic temperature. Journal of Chemical Physics, 2022, 156, 104302.	3.0	4
5	Synthesis of highly calibrated CsPbBr ₃ nanocrystal perovskites by soft chemistry. Chemical Communications, 2022, 58, 5960-5963.	4.1	1
6	Thermometry of an optically levitated nanodiamond. AVS Quantum Science, 2022, 4, .	4.9	4
7	Tetrazine molecules as an efficient electronic diversion channel in 2D organic–inorganic perovskites. Materials Horizons, 2021, 8, 1547-1560.	12.2	24
8	Thermally Induced Synthesis of Anthraceneâ€, Pyrene―and Naphthaleneâ€Fused Porphyrins. ChemistryOpen, 2021, 10, 997-1003.	1.9	3
9	Solution-Processed Graphene–Nanographene van der Waals Heterostructures for Photodetectors with Efficient and Ultralong Charge Separation. Journal of the American Chemical Society, 2021, 143, 17109-17116.	13.7	19
10	Negatively Curved Nanographene with Heptagonal and [5]Helicene Units. Journal of the American Chemical Society, 2020, 142, 14814-14819.	13.7	81
11	Photostability of Single-Walled Carbon Nanotubes/Polymer Core–Shell Hybrids as Telecom Wavelength Emitters. ACS Applied Nano Materials, 2020, 3, 7291-7296.	5.0	1
12	Directing random lasing emission using cavity exciton-polaritons. Optics Express, 2020, 28, 39739.	3.4	7
13	Exciton–Exciton Annihilation in Two-Dimensional Halide Perovskites at Room Temperature. Journal of Physical Chemistry Letters, 2019, 10, 5153-5159.	4.6	74
14	Superlocalization of Excitons in Carbon Nanotubes at Cryogenic Temperature. Nano Letters, 2019, 19, 7210-7216.	9.1	10
15	Room-Temperature Cavity Polaritons with 3D Hybrid Perovskite: Toward Large-Surface Polaritonic Devices. ACS Photonics, 2019, 6, 1804-1811.	6.6	30
16	Fermi level shift in carbon nanotubes by dye confinement. Carbon, 2019, 149, 772-780.	10.3	17
17	Single-walled carbon nanotube/polystyrene core–shell hybrids: synthesis and photoluminescence properties. Journal of Materials Chemistry C, 2018, 6, 4786-4792.	5.5	5
18	Interplay of spectral diffusion and phonon-broadening in individual photo-emitters: the case of carbon nanotubes. Nanoscale, 2018, 10, 683-689.	5.6	3

#	Article	IF	CITATIONS
19	Bandgap Engineering of Graphene Nanoribbons by Control over Structural Distortion. Journal of the American Chemical Society, 2018, 140, 7803-7809.	13.7	68
20	Single photon emission from graphene quantum dots at room temperature. Nature Communications, 2018, 9, 3470.	12.8	86
21	Controlling the kinetics of the non-covalent functionalization of carbon nanotubes using sub-cmc dilutions in a co-surfactant environment. Nanoscale, 2017, 9, 2646-2651.	5.6	6
22	Fluorescence from graphene nanoribbons of well-defined structure. Carbon, 2017, 119, 235-240.	10.3	30
23	Structural Properties of Double-Walled Carbon Nanotubes Driven by Mechanical Interlayer Coupling. ACS Nano, 2017, 11, 4840-4847.	14.6	21
24	Exploiting One-Dimensional Exciton–Phonon Coupling for Tunable and Efficient Single-Photon Generation with a Carbon Nanotube. Nano Letters, 2017, 17, 4184-4188.	9.1	24
25	Impact of Reabsorption on the Emission Spectra and Recombination Dynamics of Hybrid Perovskite Single Crystals. Journal of Physical Chemistry Letters, 2017, 8, 2977-2983.	4.6	79
26	Fast growth of monocrystalline thin films of 2D layered hybrid perovskite. CrystEngComm, 2017, 19, 2598-2602.	2.6	66
27	Properties of Functionalized Carbon Nanotubes and Their Interaction with a Metallic Substrate Investigated by Scanning Tunneling Microscopy. Journal of Physical Chemistry C, 2017, 121, 24264-24271.	3.1	11
28	Davydov Splitting and Self-Organization in a Porphyrin Layer Noncovalently Attached to Single Wall Carbon Nanotubes. Nano Letters, 2017, 17, 6778-6782.	9.1	8
29	Optical Investigation of On‣urface Synthesized Armchair Graphene Nanoribbons. Physica Status Solidi (B): Basic Research, 2017, 254, 1700223.	1.5	14
30	Using Low Temperature Photoluminescence Spectroscopy to Investigate CH3NH3PbI3 Hybrid Perovskite Degradation. Molecules, 2016, 21, 885.	3.8	17
31	Exciton dynamics and non-linearities in two-dimensional hybrid organic perovskites. Journal of Applied Physics, 2016, 119, .	2.5	39
32	Single layer nano graphene platelets derived from graphite nanofibres. Nanoscale, 2016, 8, 8810-8818.	5.6	19
33	Narrow Linewidth Excitonic Emission in Organic–Inorganic Lead Iodide Perovskite Single Crystals. Journal of Physical Chemistry Letters, 2016, 7, 5093-5100.	4.6	83
34	Widely Tunable Single-Photon Source from a Carbon Nanotube in the Purcell Regime. Physical Review Letters, 2016, 116, 247402.	7.8	79
35	Diameter-selective non-covalent functionalization of carbon nanotubes with porphyrin monomers. Nanoscale, 2016, 8, 2326-2332.	5.6	18
36	Strong reduction of exciton-phonon coupling in single-wall carbon nanotubes of high crystalline quality: Insight into broadening mechanisms and exciton localization. Physical Review B, 2015, 91, .	3.2	14

#	Article	IF	CITATIONS
37	Solid-State Physics Perspective on Hybrid Perovskite Semiconductors. Journal of Physical Chemistry C, 2015, 119, 10161-10177.	3.1	205
38	Optical Investigation of Broadband White-Light Emission in Self-Assembled Organic–Inorganic Perovskite (C ₆ H ₁₁ NH ₃) ₂ PbBr ₄ . Journal of Physical Chemistry C, 2015, 119, 23638-23647.	3.1	279
39	Two-Dimensional Perovskite Activation with an Organic Luminophore. ACS Applied Materials & Interfaces, 2015, 7, 21763-21769.	8.0	38
40	Diameter dependence of the optoelectronic properties of single walled carbon nanotubes determined by ellipsometry. Carbon, 2015, 83, 32-39.	10.3	12
41	Photostability of 2D Organic-Inorganic Hybrid Perovskites. Materials, 2014, 7, 4789-4802.	2.9	64
42	Quantum confinement of zero-dimensional hybrid organic-inorganic polaritons at room temperature. Applied Physics Letters, 2014, 104, .	3.3	15
43	Unifying the Low-Temperature Photoluminescence Spectra of Carbon Nanotubes: The Role of Acoustic Phonon Confinement. Physical Review Letters, 2014, 113, 057402.	7.8	38
44	Room-Temperature Optical Tunability and Inhomogeneous Broadening in 2D-Layered Organic–Inorganic Perovskite Pseudobinary Alloys. Journal of Physical Chemistry Letters, 2014, 5, 3958-3963.	4.6	93
45	Confinement in single walled carbon nanotubes investigated by spectroscopic ellipsometry. Thin Solid Films, 2014, 571, 395-398.	1.8	4
46	Chirality Dependence of the Absorption Cross Section of Carbon Nanotubes. Physical Review Letters, 2013, 111, 137402.	7.8	37
47	Synthesis, optical properties and photostability of novel fluorinated organic–inorganic hybrid (<i>R</i> –NH ₃) ₂ Pb <i>X</i> ₄ semiconductors. Journal Physics D: Applied Physics, 2013, 46, 135105.	2.8	28
48	Light harvesting with non covalent carbon nanotube/porphyrin compounds. Chemical Physics, 2013, 413, 45-54.	1.9	35
49	Excitonic homogeneous broadening in single-wall carbon nanotubes. Chemical Physics, 2013, 413, 102-111.	1.9	11
50	Monolithic microcavity with carbon nanotubes as active material. Applied Physics Letters, 2013, 102, 153102.	3.3	20
51	Functionalization of Carbon Nanotubes through Polymerization in Micelles: A Bridge between the Covalent and Noncovalent Methods. Chemistry of Materials, 2013, 25, 2700-2707.	6.7	42
52	Strong exciton-photon coupling in microcavities containing new fluorophenethylamine based perovskite compounds. Optics Express, 2012, 20, 10399.	3.4	38
53	Local Field Effects in the Energy Transfer between a Chromophore and a Carbon Nanotube: A Single-Nanocompound Investigation. ACS Nano, 2012, 6, 8796-8802.	14.6	23
54	Detection of a Biexciton in Semiconducting Carbon Nanotubes Using Nonlinear Optical Spectroscopy. Physical Review Letters, 2012, 109, 197402.	7.8	31

#	Article	IF	CITATIONS
55	High-Q planar organic–inorganic Perovskite-based microcavity. Optics Letters, 2012, 37, 5061.	3.3	19
56	Charge Transfer and Tunable Ambipolar Effect Induced by Assembly of Cu(II) Binuclear Complexes on Carbon Nanotube Field Effect Transistor Devices. Journal of the American Chemical Society, 2012, 134, 7896-7901.	13.7	24
57	Excitonic signatures in the optical response of singleâ€wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2012, 249, 900-906.	1.5	9
58	Excitonic nonlinearities in singleâ€wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2012, 249, 907-913.	1.5	0
59	Optical anisotropy of single walled carbon nanotubes investigated by spectroscopic ellipsometry. Carbon, 2012, 50, 4673-4679.	10.3	17
60	Synthesis and optical properties of novel organic–inorganic hybrid UV (R–NH ₃) ₂ PbCl ₄ semiconductors. Journal of Materials Chemistry, 2011, 21, 466-474.	6.7	45
61	Time-Resolved Investigation of Excitation Energy Transfer in Carbon Nanotube–Porphyrin Compounds. Journal of Physical Chemistry C, 2011, 115, 23283-23292.	3.1	29
62	Elastic Exciton-Exciton Scattering in Photoexcited Carbon Nanotubes. Physical Review Letters, 2011, 107, 127401.	7.8	35
63	Phonon-induced dephasing in single-wall carbon nanotubes. Physical Review B, 2011, 84, .	3.2	16
64	Îâ€5tacking Functionalization of Carbon Nanotubes through Micelle Swelling. ChemPhysChem, 2010, 11, 1667-1672.	2.1	63
65	Strong-coupling regime at room temperature in one-dimensional microcavities containing ultraviolet-emitting perovskites. Superlattices and Microstructures, 2010, 47, 10-15.	3.1	2
66	Many-body effects in electronic bandgaps of carbon nanotubes measured by scanning tunnelling spectroscopy. Nature Materials, 2010, 9, 235-238.	27.5	62
67	Quantum efficiency of energy transfer in noncovalent carbon nanotube/porphyrin compounds. Applied Physics Letters, 2010, 97, .	3.3	48
68	Preparations and Characterizations of Luminescent Two Dimensional Organic-inorganic Perovskite Semiconductors. Materials, 2010, 3, 3385-3406.	2.9	86
69	Optical spectroscopy of two-dimensional layered (C_6H_5C_2H_4-NH_3)_2-PbI_4 perovskite. Optics Express, 2010, 18, 5912.	3.4	254
70	Optical properties of carbon nanotubes in a composite material: The role of dielectric screening and thermal expansion. Journal of Applied Physics, 2009, 105, 094323.	2.5	32
71	Transmission Electron Microscopy and UV–vis–IR Spectroscopy Analysis of the Diameter Sorting of Carbon Nanotubes by Gradient Density Ultracentrifugation. Advanced Functional Materials, 2009, 19, 2219-2223.	14.9	29
72	UV polaritons at room temperature in a microcavity containing perovskites. Journal of Luminescence, 2009, 129, 1985-1988.	3.1	4

#	Article	IF	CITATIONS
73	Synthesis and optical properties of novel organic–inorganic hybrid nanolayer structure semiconductors. Acta Materialia, 2009, 57, 3301-3309.	7.9	127
74	Synthesis of New Perovskite Luminescent Nanoparticles in the Visible Range. Chemistry of Materials, 2009, 21, 210-214.	6.7	32
75	Excitation Transfer in Functionalized Carbon Nanotubes. ChemPhysChem, 2008, 9, 1250-1253.	2.1	36
76	Particularities of surface plasmon–exciton strong coupling with large Rabi splitting. New Journal of Physics, 2008, 10, 065017.	2.9	89
77	UV polaritonic emission from a perovskite-based microcavity. Applied Physics Letters, 2008, 93, 081101.	3.3	36
78	Strong exciton–photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds. New Journal of Physics, 2008, 10, 065007.	2.9	83
79	Origin of the excitonic recombinations in hexagonal boron nitride by spatially resolved cathodoluminescence spectroscopy. Journal of Applied Physics, 2007, 102, .	2.5	91
80	Emission of hybrid organic-inorganic exciton/plasmon mixed states. Applied Physics Letters, 2007, 90, 091107.	3.3	44
81	Cathodoluminescence imaging and spectroscopy on a single multiwall boron nitride nanotube. Chemical Physics Letters, 2007, 442, 372-375.	2.6	49
82	Optical properties of multiwall boron nitride nanotubes. Physica Status Solidi (B): Basic Research, 2007, 244, 4147-4151.	1.5	63
83	Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors. Applied Physics Letters, 2006, 89, 171110.	3.3	113
84	Bandgap photoluminescence of semiconducting single-wall carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 1057-1060.	2.7	28
85	Third-order optical nonlinearities of carbon nanotubes in the femtosecond regime. Applied Physics Letters, 2004, 85, 3572-3574.	3.3	48
86	Ultrafast pump–probe measurements in single wall carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 380-383.	2.7	11