Enrico Avancini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7807604/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications. Nature Communications, 2015, 6, 8932.	12.8	398
2	Progress in thin film CIGS photovoltaics – Research and development, manufacturing, and applications. Progress in Photovoltaics: Research and Applications, 2017, 25, 645-667.	8.1	248
3	High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration. Nature Energy, 2017, 2, .	39.5	247
4	Features of KF and NaF Postdeposition Treatments of Cu(In,Ga)Se ₂ Absorbers for High Efficiency Thin Film Solar Cells. Chemistry of Materials, 2015, 27, 5755-5764.	6.7	178
5	Advanced Alkali Treatments for Highâ€Efficiency Cu(In,Ga)Se ₂ Solar Cells on Flexible Substrates. Advanced Energy Materials, 2019, 9, 1900408.	19.5	175
6	High-Efficiency Polycrystalline Thin Film Tandem Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 2676-2681.	4.6	166
7	Heavy Alkali Treatment of Cu(In,Ga)Se ₂ Solar Cells: Surface versus Bulk Effects. Advanced Energy Materials, 2020, 10, 1903752.	19.5	107
8	Effects of Rubidium Fluoride and Potassium Fluoride Postdeposition Treatments on Cu(In,Ga)Se ₂ Thin Films and Solar Cell Performance. Chemistry of Materials, 2017, 29, 9695-9704.	6.7	91
9	Bandgap of thin film solar cell absorbers: A comparison of various determination methods. Thin Solid Films, 2019, 669, 482-486.	1.8	56
10	Injection Current Barrier Formation for RbF Postdepositionâ€Treated Cu(In,Ga)Se ₂ â€Based Solar Cells. Advanced Materials Interfaces, 2018, 5, 1701007.	3.7	51
11	Single-graded CIGS with narrow bandgap for tandem solar cells. Science and Technology of Advanced Materials, 2018, 19, 263-270.	6.1	51
12	Alkali treatments of Cu(In,Ga)Se ₂ thinâ€film absorbers and their impact on transport barriers. Progress in Photovoltaics: Research and Applications, 2018, 26, 911-923.	8.1	49
13	Refractive indices of layers and optical simulations of Cu(In,Ga)Se ₂ solar cells. Science and Technology of Advanced Materials, 2018, 19, 396-410.	6.1	46
14	Aluminum-Assisted Densification of Cosputtered Lithium Garnet Electrolyte Films for Solid-State Batteries. ACS Applied Energy Materials, 2019, 2, 8511-8524.	5.1	43
15	Flexible and Printed Electrochemical Immunosensor Coated with Oxygen Plasma Treated SWCNTs for Histamine Detection. Biosensors, 2020, 10, 35.	4.7	38
16	How band tail recombination influences the openâ€circuit voltage of solar cells. Progress in Photovoltaics: Research and Applications, 2022, 30, 702-712.	8.1	35
17	RbF post deposition treatment for narrow bandgap Cu(In,Ga)Se2 solar cells. Thin Solid Films, 2019, 670, 34-40.	1.8	33
18	Impact of compositional grading and overall Cu deficiency on the near-infrared response in Cu(In,) Tj ETQq0 0 C) rgBT /Ove 8.1	rloင္ပန္ 10 Tf 50

2

ENRICO AVANCINI

#	Article	IF	CITATIONS
19	Influence of Sodium and Rubidium Postdeposition Treatment on the Quasi-Fermi Level Splitting of Cu(In,Ga)Se ₂ Thin Films. IEEE Journal of Photovoltaics, 2018, 8, 1320-1325.	2.5	24
20	Flexible Screen-Printed Electrochemical Sensors Functionalized with Electrodeposited Copper for Nitrate Detection in Water. ACS Omega, 2021, 6, 33523-33532.	3.5	24
21	Voids and compositional inhomogeneities in Cu(In,Ga)Se ₂ thin films: evolution during growth and impact on solar cell performance. Science and Technology of Advanced Materials, 2018, 19, 871-882.	6.1	23
22	Surface Passivation for Reliable Measurement of Bulk Electronic Properties of Heterojunction Devices. Small, 2016, 12, 5339-5346.	10.0	17
23	Time-resolved photoluminescence on double graded Cu(In,Ga)Se2 – Impact of front surface recombination and its temperature dependence. Science and Technology of Advanced Materials, 2019, 20, 313-323.	6.1	17
24	Novel back contact reflector for high efficiency and doubleâ€graded Cu(In,Ca)Se ₂ thinâ€film solar cells. Progress in Photovoltaics: Research and Applications, 2018, 26, 894-900.	8.1	14
25	Precise Se-flux control and its effect on Cu(In,Ga)Se 2 absorber layer deposited at low substrate temperature by multi stage co-evaporation. Thin Solid Films, 2017, 633, 18-22.	1.8	12
26	NaF/RbF-Treated Cu(In,Ca)Se ₂ Thin-Film Solar Cell Absorbers: Distinct Surface Modifications Caused by Two Different Types of Rubidium Chemistry. ACS Applied Materials & Interfaces, 2020, 12, 34941-34948.	8.0	12
27	Evolution of carbon impurities in solution-grown and sputtered Al:ZnO thin films exposed to UV light and damp heat degradation. RSC Advances, 2016, 6, 53768-53776.	3.6	11
28	Flexible carbon nanotube-based electrolyte-gated field-effect transistor for spermidine detection. , 2021, , .		5
29	Flexible screen-printed nitrate sensors with Cu nanoclusters: a comparative analysis on the effect of carbon nanotubes. , 2021, , .		5
30	Quantifying the Elemental Distribution in Solar Cells from X-Ray Fluorescence Measurements with Multiple Detector Modules. , 2020, , .		3
31	Unraveling the Impact of Combined NaF/RbF Postdeposition Treatments on the Deeply Buried Cu(in,Ca)Se2/Mo Thinâ€Film Solar Cell Interface. Advanced Energy and Sustainability Research, 0, , 2100101.	5.8	0