Andres Baena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7807594/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modulatory Impact of the sRNA Mcr11 in Two Clinical Isolates of Mycobacterium tuberculosis. Current Microbiology, 2022, 79, 39.	2.2	4
2	Dual RNA Sequencing of Mycobacterium tuberculosis-Infected Human Splenic Macrophages Reveals a Strain-Dependent Host–Pathogen Response to Infection. International Journal of Molecular Sciences, 2022, 23, 1803.	4.1	10
3	New Conjugated Compound T5 Epidioxy-Sterol-ANB Inhibits the Growth of Mycobacterium tuberculosis Affecting the Cholesterol and Folate Pathways. Frontiers in Microbiology, 2020, 11, 537935.	3.5	0
4	A systematic evaluation of Mycobacterium tuberculosis Genome-Scale Metabolic Networks. PLoS Computational Biology, 2020, 16, e1007533.	3.2	17
5	Differential determinants of virulence in two Mycobacterium tuberculosis Colombian clinical isolates of the LAM09 family. Virulence, 2019, 10, 695-710.	4.4	36
6	Altered recruitment of Lyn, Syk and ZAP-70 into lipid rafts of activated B cells in Systemic Lupus Erythematosus. Cellular Signalling, 2019, 58, 9-19.	3.6	24
7	Innate immune cells for immunotherapy of autoimmune and cancer disorders. International Reviews of Immunology, 2017, 36, 315-337.	3.3	16
8	Targeting Innate Immune Cells for Immunotherapy. Journal of Immunology Research, 2017, 2017, 1-2.	2.2	6
9	Metabolic adaptation of two in silico mutants of Mycobacterium tuberculosis during infection. BMC Systems Biology, 2017, 11, 107.	3.0	27
10	Enhanced control of Mycobacterium tuberculosis extrapulmonary dissemination in mice by an arabinomannan-protein conjugate vaccine. PLoS Pathogens, 2017, 13, e1006250.	4.7	74
11	Encephalitozoon intestinalis Inhibits Dendritic Cell Differentiation through an IL-6-Dependent Mechanism. Frontiers in Cellular and Infection Microbiology, 2016, 6, 4.	3.9	11
12	Suppression of autophagy and antigen presentation by Mycobacterium tuberculosis PE_PGRS47. Nature Microbiology, 2016, 1, 16133.	13.3	133
13	Murine invariant natural killer T cells recognize glycolipids derived from extracts of the lichen Stereocaulon ramulosum. Vitae, 2015, 22, .	0.8	2
14	A Single Subset of Dendritic Cells Controls the Cytokine Bias of Natural Killer T Cell Responses to Diverse Glycolipid Antigens. Immunity, 2014, 40, 105-116.	14.3	90
15	Mycobacterial Membrane Vesicles Administered Systemically in Mice Induce a Protective Immune Response to Surface Compartments of Mycobacterium tuberculosis. MBio, 2014, 5, e01921-14.	4.1	102
16	Correlation between the response to Mycobacterium tuberculosis antigens and the tuberculin skin test in patients with rheumatoid arthritis in Colombia. Biomedica, 2013, 33, 226-32.	0.7	0
17	In vitro culture medium influences the vaccine efficacy of Mycobacterium bovis BCG. Vaccine, 2012, 30, 1038-1049.	3.8	44
18	A Rapid Fluorescence-Based Assay for Classification of iNKT Cell Activating Glycolipids. Journal of the American Chemical Society, 2011, 133, 5198-5201.	13.7	33

Andres Baena

#	Article	IF	CITATIONS
19	Mycobacteria release active membrane vesicles that modulate immune responses in a TLR2-dependent manner in mice. Journal of Clinical Investigation, 2011, 121, 1471-1483.	8.2	300
20	Incorporation of NKT Cell-Activating Glycolipids Enhances Immunogenicity and Vaccine Efficacy of <i>Mycobacterium bovis</i> Bacillus Calmette-Guelrin. Journal of Immunology, 2009, 183, 1644-1656.	0.8	74
21	Evasion and subversion of antigen presentation by <i>Mycobacterium tuberculosis</i> . Tissue Antigens, 2009, 74, 189-204.	1.0	140
22	Kinetics and Cellular Site of Glycolipid Loading Control the Outcome of Natural Killer T Cell Activation. Immunity, 2009, 30, 888-898.	14.3	159
23	Large Scale Mass Spectrometric Profiling of Peptides Eluted from HLA Molecules Reveals N-Terminal-Extended Peptide Motifs. Journal of Immunology, 2008, 181, 4874-4882.	0.8	36
24	Primate TNF Promoters Reveal Markers of Phylogeny and Evolution of Innate Immunity. PLoS ONE, 2007, 2, e621.	2.5	21
25	Aspartic Acid Homozygosity at Codon 57 of HLA-DQ β Is Associated with Susceptibility to Pulmonary Tuberculosis in Cambodia. Journal of Immunology, 2006, 176, 1090-1097.	0.8	56
26	The ?1030/?862-linked TNF promoter single-nucleotide polymorphisms are associated with the inability to control HIV-1 viremia. Immunogenetics, 2003, 55, 497-501.	2.4	12
27	Antigen-specific and persistent tuberculin anergy in a cohort of pulmonary tuberculosis patients from rural Cambodia. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7576-7581.	7.1	101
28	Ethnicâ€ 5 pecific Genetic Associations with Pulmonary Tuberculosis. Journal of Infectious Diseases, 2002, 186, 1463-1468.	4.0	234
29	TNF-α promoter single nucleotide polymorphisms are markers of human ancestry. Genes and Immunity, 2002, 3, 482-487.	4.1	65
30	Population data of F13AO1, FES/FPS, VWA, CSF1PO, TPOX and THO1 short tandem repeat loci in a sample of African descent individuals of Colombia. Forensic Science International, 2001, 117, 235-236.	2.2	11
31	Population Frequency for the Short Tandem Repeat Loci D18S849, D3S1744, and D12S1090 in Caucasian-Mestizo and African Descent Populations of Colombia. Journal of Forensic Sciences, 2000, 45, 429-431.	1.6	15