
Harriet Alexander

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7807449/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 2019, 37, 852-857.	17.5	11,167
2	The Transcriptome and Proteome of the Diatom Thalassiosira pseudonana Reveal a Diverse Phosphorus Stress Response. PLoS ONE, 2012, 7, e33768.	2.5	296
3	Probing the evolution, ecology and physiology of marine protists using transcriptomics. Nature Reviews Microbiology, 2017, 15, 6-20.	28.6	176
4	Metatranscriptome analyses indicate resource partitioning between diatoms in the field. Proceedings of the United States of America, 2015, 112, E2182-90.	7.1	166
5	Functional group-specific traits drive phytoplankton dynamics in the oligotrophic ocean. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5972-9.	7.1	118
6	Virus-host relationships of marine single-celled eukaryotes resolved from metatranscriptomics. Nature Communications, 2017, 8, 16054.	12.8	100
7	Re-assembly, quality evaluation, and annotation of 678 microbial eukaryotic reference transcriptomes. GigaScience, 2019, 8, .	6.4	61
8	Sixty Years of Sverdrup: A Retrospective of Progress in the Study of Phytoplankton Blooms. Oceanography, 2014, 27, 222-235.	1.0	47
9	ldentifying reference genes with stable expression from high throughput sequence data. Frontiers in Microbiology, 2012, 3, 385.	3.5	40
10	Integrating "Big Data―into Aquatic Ecology: Challenges and Opportunities. Limnology and Oceanography Bulletin, 2017, 26, 101-108.	0.4	40
11	Phosphorus availability regulates intracellular nucleotides in marine eukaryotic phytoplankton. Limnology and Oceanography Letters, 2017, 2, 119-129.	3.9	38
12	Transcriptional response of the harmful raphidophyte Heterosigma akashiwo to nitrate and phosphate stress. Harmful Algae, 2017, 68, 258-270.	4.8	32
13	Shifting metabolic priorities among key protistan taxa within and below the euphotic zone. Environmental Microbiology, 2018, 20, 2865-2879.	3.8	32
14	Conserved Transcriptional Responses to Nutrient Stress in Bloom-Forming Algae. Frontiers in Microbiology, 2017, 8, 1279.	3.5	31
15	Auxotrophic interactions: a stabilizing attribute of aquatic microbial communities?. FEMS Microbiology Ecology, 2020, 96, .	2.7	31
16	Seasonal and Geographical Transitions in Eukaryotic Phytoplankton Community Structure in the Atlantic and Pacific Oceans. Frontiers in Microbiology, 2020, 11, 542372.	3.5	22
17	Transcriptional Shifts Highlight the Role of Nutrients in Harmful Brown Tide Dynamics. Frontiers in Microbiology, 2019, 10, 136.	3.5	19
18	EUKulele: Taxonomic annotation of the unsung eukaryotic microbes. Journal of Open Source Software, 2021, 6, 2817.	4.6	19

HARRIET ALEXANDER

#	Article	IF	CITATIONS
19	Microbiomes of bloom-forming <i>Phaeocystis</i> algae are stable and consistently recruited, with both symbiotic and opportunistic modes. ISME Journal, 2022, 16, 2255-2264.	9.8	19
20	Transcriptional patterns identify resource controls on the diazotroph <i>Trichodesmium</i> in the Atlantic and Pacific oceans. ISME Journal, 2018, 12, 1486-1495.	9.8	17
21	The Osmolyte Ties That Bind: Genomic Insights Into Synthesis and Breakdown of Organic Osmolytes in Marine Microbes. Frontiers in Marine Science, 2021, 8, .	2.5	17
22	Variable depth distribution of <i>Trichodesmium</i> clades in the North Pacific Ocean. Environmental Microbiology Reports, 2016, 8, 1058-1066.	2.4	16
23	Transcriptional response of Emiliania huxleyi under changing nutrient environments in the North Pacific Subtropical Gyre. Environmental Microbiology, 2020, 22, 1847-1860.	3.8	13
24	Bio-GO-SHIP: The Time Is Right to Establish Global Repeat Sections of Ocean Biology. Frontiers in Marine Science, 2022, 8, .	2.5	9
25	Marine Microeukaryote Metatranscriptomics: Sample Processing and Bioinformatic Workflow Recommendations for Ecological Applications. Frontiers in Marine Science, 0, 9, .	2.5	8
26	<scp>DMSP</scp> synthesis genes distinguish two types of <scp>DMSP</scp> producer phenotypes. Environmental Microbiology, 2021, 23, 1656-1669.	3.8	6
27	What are the type, direction, and strength of species, community, and ecosystem responses to warming in aquatic mesocosm studies and their dependency on experimental characteristics? A systematic review protocol. Environmental Evidence, 2017, 6, .	2.7	3
28	Keeping it light: (re)analyzing community-wide datasets without major infrastructure. GigaScience, 2019, 8, .	6.4	2