
Jordi Torres-Rosell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7807397/publications.pdf Version: 2024-02-01

IOPDI TOPPES-POSELI

#	Article	IF	CITATIONS
1	The Smc5–Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nature Cell Biology, 2007, 9, 923-931.	10.3	345
2	SMC5 and SMC6 genes are required for the segregation of repetitive chromosome regions. Nature Cell Biology, 2005, 7, 412-419.	10.3	178
3	Smc5–Smc6 mediate DNA double-strand-break repair by promoting sister-chromatid recombination. Nature Cell Biology, 2006, 8, 1032-1034.	10.3	170
4	Regulation of the Cell Integrity Pathway by Rapamycin-sensitive TOR Function in Budding Yeast. Journal of Biological Chemistry, 2002, 277, 43495-43504.	3.4	125
5	Pkc1 and the Upstream Elements of the Cell Integrity Pathway in Saccharomyces cerevisiae, Rom2 and Mtl1, Are Required for Cellular Responses to Oxidative Stress. Journal of Biological Chemistry, 2005, 280, 9149-9159.	3.4	124
6	Anaphase Onset Before Complete DNA Replication with Intact Checkpoint Responses. Science, 2007, 315, 1411-1415.	12.6	121
7	The unnamed complex: what do we know about Smc5-Smc6?. Chromosome Research, 2009, 17, 251-263.	2.2	112
8	Cytoplasmic cyclin D1 regulates cell invasion and metastasis through the phosphorylation of paxillin. Nature Communications, 2016, 7, 11581.	12.8	92
9	Spindle-independent condensation-mediated segregation of yeast ribosomal DNA in late anaphase. Journal of Cell Biology, 2005, 168, 209-219.	5.2	75
10	The Smc5/6 complex is required for dissolution of DNA-mediated sister chromatid linkages. Nucleic Acids Research, 2010, 38, 6502-6512.	14.5	70
11	Sit4 Is Required for Proper Modulation of the Biological Functions Mediated by Pkc1 and the Cell Integrity Pathway inSaccharomyces cerevisiae. Journal of Biological Chemistry, 2002, 277, 33468-33476.	3.4	64
12	Sgs1's roles in DNA end resection, HJ dissolution, and crossover suppression require a two-step SUMO regulation dependent on Smc5/6. Genes and Development, 2016, 30, 1339-1356.	5.9	61
13	Nucleolar Segregation Lags Behind the Rest of the Genome and Requires Cdc14p Activation by the FEAR Network. Cell Cycle, 2004, 3, 494-500.	2.6	58
14	A SUMO-Dependent Step during Establishment of Sister Chromatid Cohesion. Current Biology, 2012, 22, 1576-1581.	3.9	56
15	The Aurora-B-dependent NoCut checkpoint preventsÂdamage of anaphase bridges after DNA replicationÂstress. Nature Cell Biology, 2016, 18, 516-526.	10.3	53
16	Purified Smc5/6 Complex Exhibits DNA Substrate Recognition and Compaction. Molecular Cell, 2020, 80, 1039-1054.e6.	9.7	51
17	Condensin Regulates rDNA Silencing by Modulating Nucleolar Sir2p. Current Biology, 2004, 14, 125-130.	3.9	49
18	DNA activates the Nse2/Mms21 SUMO E3 ligase in the Smc5/6 complex. EMBO Journal, 2018, 37, .	7.8	42

Jordi Torres-Rosell

#	Article	IF	CITATIONS
19	Nucleolar segregation lags behind the rest of the genome and requires Cdc14p activation by the FEAR network. Cell Cycle, 2004, 3, 496-502.	2.6	38
20	ATPase-Dependent Control of the Mms21 SUMO Ligase during DNA Repair. PLoS Biology, 2015, 13, e1002089.	5.6	33
21	Transcription of ribosomal genes can cause nondisjunction. Journal of Cell Biology, 2006, 173, 893-903.	5.2	32
22	SUMO-SIM interactions: From structure to biological functions. Seminars in Cell and Developmental Biology, 2022, 132, 193-202.	5.0	32
23	Smc5–Smc6 complex suppresses gross chromosomal rearrangements mediated by break-induced replications. DNA Repair, 2008, 7, 1426-1436.	2.8	27
24	Smc5-Smc6 Complex Preserves Nucleolar Integrity in <i>S. cerevisiae</i> . Cell Cycle, 2005, 4, 868-872.	2.6	25
25	CDC14 and the Temporal Coordination between Mitotic Exit and Chromosome Segregation. Cell Cycle, 2005, 4, 109-112.	2.6	24
26	Smc5/6, an atypical SMC complex with two RING-type subunits. Biochemical Society Transactions, 2020, 48, 2159-2171.	3.4	23
27	Sumoylation of Smc5 Promotes Error-free Bypass at Damaged Replication Forks. Cell Reports, 2019, 29, 3160-3172.e4.	6.4	19
28	Structural basis for the E3 ligase activity enhancement of yeast Nse2 by SUMO-interacting motifs. Nature Communications, 2021, 12, 7013.	12.8	15
29	Can eukaryotic cells monitor the presence of unreplicated DNA?. Cell Division, 2007, 2, 19.	2.4	6
30	Analysis of SUMOylation in the RENT Complex by Fusion to a SUMO-Specific Protease Domain. Methods in Molecular Biology, 2017, 1505, 97-117.	0.9	5
31	Smc5 flies solo. Cell Cycle, 2011, 10, 879-878.	2.6	1