Franco Scarselli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7806634/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On Inductive–Transductive Learning With Graph Neural Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44, 758-769.	13.9	18
2	Segmentation of Petri Plate Images for Automatic Reporting of Urine Culture Tests. Intelligent Systems Reference Library, 2022, , 127-151.	1.2	2
3	Smart Gravimetric System for Enhanced Security of Accesses to Public Places Embedding a MobileNet Neural Network Classifier. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-10.	4.7	8
4	GNNkeras: A Keras-based library for Graph Neural Networks and homogeneous and heterogeneous graph processing. SoftwareX, 2022, 18, 101061.	2.6	7
5	A Two-Stage GAN for High-Resolution Retinal Image Generation and Segmentation. Electronics (Switzerland), 2022, 11, 60.	3.1	17
6	Towards learning trustworthily, automatically, and with guarantees on graphs: An overview. Neurocomputing, 2022, 493, 217-243.	5.9	11
7	Deep Learning Approaches for the Segmentation of Glomeruli in Kidney Histopathological Images. Mathematics, 2022, 10, 1934.	2.2	4
8	A new deep learning approach integrated with clinical data for the dermoscopic differentiation of early melanomas from atypical nevi. Journal of Dermatological Science, 2021, 101, 115-122.	1.9	28
9	Multi-Modal Siamese Network for Diagnostically Similar Lesion Retrieval in Prostate MRI. IEEE Transactions on Medical Imaging, 2021, 40, 986-995.	8.9	22
10	Smart gravimetric system based on Deep Learning for enhanced safety of accesses to public places. , 2021, , .		2
11	Molecular generative Graph Neural Networks for Drug Discovery. Neurocomputing, 2021, 450, 242-252.	5.9	57
12	A Study on the effects of recursive convolutional layers in convolutional neural networks. Neurocomputing, 2021, 460, 59-70.	5.9	11
13	Segmentation of Aorta 3D CT Images Based on 2D Convolutional Neural Networks. Electronics (Switzerland), 2021, 10, 2559.	3.1	12
14	A Multi-Stage GAN for Multi-Organ Chest X-ray Image Generation and Segmentation. Mathematics, 2021, 9, 2896.	2.2	11
15	Image generation by GAN and style transfer for agar plate image segmentation. Computer Methods and Programs in Biomedicine, 2020, 184, 105268.	4.7	53
16	Weak supervision for generating pixel–level annotations in scene text segmentation. Pattern Recognition Letters, 2020, 138, 1-7.	4.2	38
17	Robust Prostate Cancer Classification with Siamese Neural Networks. Lecture Notes in Computer Science, 2020, , 180-189.	1.3	1
18	Analysis of brain NMR images for age estimation with deep learning. Procedia Computer Science, 2019, 159, 981-989	2.0	10

FRANCO SCARSELLI

#	Article	IF	CITATIONS
19	Confidence Measures for Deep Learning in Domain Adaptation. Applied Sciences (Switzerland), 2019, 9, 2192.	2.5	3
20	COCO_TS Dataset: Pixel–Level Annotations Based on Weak Supervision for Scene Text Segmentation. Lecture Notes in Computer Science, 2019, , 238-250.	1.3	14
21	Deep Neural Networks for Structured Data. Studies in Computational Intelligence, 2018, , 29-51.	0.9	6
22	Generating Bounding Box Supervision for Semantic Segmentation with Deep Learning. Lecture Notes in Computer Science, 2018, , 190-200.	1.3	7
23	A Deep Learning Approach to Bacterial Colony Segmentation. Lecture Notes in Computer Science, 2018, , 522-533.	1.3	13
24	Inductive–Transductive Learning with Graph Neural Networks. Lecture Notes in Computer Science, 2018, , 201-212.	1.3	8
25	The Vapnik–Chervonenkis dimension of graph and recursive neural networks. Neural Networks, 2018, 108, 248-259.	5.9	29
26	A fully recursive perceptron network architecture. , 2017, , .		6
27	An unobtrusive sleep monitoring system for the human sleep behaviour understanding. , 2016, , .		16
28	A Comparative Study of Inductive and Transductive Learning with Feedforward Neural Networks. Lecture Notes in Computer Science, 2016, , 283-293.	1.3	7

FRANCO SCARSELLI

#	Article	IF	CITATIONS
37	Sentence Extraction by Graph Neural Networks. Lecture Notes in Computer Science, 2010, , 237-246.	1.3	5
38	Pattern recognition in graphical domains. Neurocomputing, 2009, 73, 177-178.	5.9	0
39	The Graph Neural Network Model. IEEE Transactions on Neural Networks, 2009, 20, 61-80.	4.2	4,021
40	Computational Capabilities of Graph Neural Networks. IEEE Transactions on Neural Networks, 2009, 20, 81-102.	4.2	131
41	Artificial Neural Networks for Processing Graphs with Application to Image Understanding: A Survey. , 2009, , 179-199.		3
42	Advances in Neural Information Processing Paradigms. Studies in Computational Intelligence, 2009, , 1-7.	0.9	0
43	Recursive Processing of Cyclic Graphs. IEEE Transactions on Neural Networks, 2006, 17, 10-18.	4.2	26
44	Computing customized page ranks. ACM Transactions on Internet Technology, 2006, 6, 381-414.	4.4	14
45	Recursive neural networks learn to localize faces. Pattern Recognition Letters, 2005, 26, 1885-1895.	4.2	23
46	Adaptive page ranking with neural networks. , 2005, , .		8
47	Inside PageRank. ACM Transactions on Internet Technology, 2005, 5, 92-128.	4.4	351
48	Computing personalized pageranks. , 2004, , .		4
49	Design of a crawler with bounded bandwidth. , 2004, , .		4
50	Adaptive ranking of web pages. , 2003, , .		39
51	A hybrid model for the prediction of the linguistic origin of surnames. IEEE Transactions on Knowledge and Data Engineering, 2003, 15, 760-763.	5.7	1
52	Processing directed acyclic graphs with recursive neural networks. IEEE Transactions on Neural Networks, 2001, 12, 1464-1470.	4.2	24
53	Theoretical properties of recursive neural networks with linear neurons. IEEE Transactions on Neural Networks, 2001, 12, 953-967.	4.2	11
54	Universal Approximation Using Feedforward Neural Networks: A Survey of Some Existing Methods, and Some New Results. Neural Networks, 1998, 11, 15-37.	5.9	436

#	Article	IF	CITATIONS
55	On the closure of the set of functions that can be realized by a given multilayer perceptron. IEEE Transactions on Neural Networks, 1998, 9, 1086-1098.	4.2	5