
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7806003/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Extracting ROI-Based Contourlet Subband Energy Feature From the sMRI Image for Alzheimer's Disease Classification. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19, 1627-1639.	3.0	10
2	deepMDDI: A deep graph convolutional network framework for multi-label prediction of drug-drug interactions. Analytical Biochemistry, 2022, 646, 114631.	2.4	18
3	Detection of Alzheimer's disease using features of brain region-of-interest-based individual network constructed with the sMRI image. Computerized Medical Imaging and Graphics, 2022, 98, 102057.	5.8	9
4	mAexpress-Reader: Prediction of m6A regulated expression genes by integrating m6A sites and reader binding information in specific- context. Methods, 2022, , .	3.8	2
5	Prediction of the transcription factor binding sites with meta-learning. Methods, 2022, , .	3.8	2
6	m6Acancer-Net: Identification of m6A-mediated cancer driver genes from gene-site heterogeneous network. Methods, 2022, , .	3.8	1
7	Prediction of Drug-Drug Interaction Using an Attention-Based Graph Neural Network on Drug Molecular Graphs. Molecules, 2022, 27, 3004.	3.8	13
8	kngMap: Sensitive and Fast Mapping Algorithm for Noisy Long Reads Based on the K-Mer Neighborhood Graph. Frontiers in Genetics, 2022, 13, .	2.3	5
9	<i>m 6</i> Â <i>Aexpress-BHM</i> : predicting m6A regulation of gene expression in multiple-groups context by a Bayesian hierarchical mixture model. Briefings in Bioinformatics, 2022, 23, .	6.5	1
10	An Integrative Framework for Combining Sequence and Epigenomic Data to Predict Transcription Factor Binding Sites Using Deep Learning. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 355-364.	3.0	19
11	Alzheimer's disease classification using features extracted from nonsubsampled contourlet subband-based individual networks. Neurocomputing, 2021, 421, 260-272.	5.9	23
12	Recent advances in functional annotation and prediction of the epitranscriptome. Computational and Structural Biotechnology Journal, 2021, 19, 3015-3026.	4.1	13
13	Network controllability-based algorithm to target personalized driver genes for discovering combinatorial drugs of individual patients. Nucleic Acids Research, 2021, 49, e37-e37.	14.5	32
14	Comparison of Methods for Picking the Operational Taxonomic Units From Amplicon Sequences. Frontiers in Microbiology, 2021, 12, 644012.	3.5	21
15	Funm6AViewer: a web server and R package for functional analysis of context-specific m6A RNA methylation. Bioinformatics, 2021, 37, 4277-4279.	4.1	4
16	Resilience function uncovers the critical transitions in cancer initiation. Briefings in Bioinformatics, 2021, 22, .	6.5	3
17	Performance assessment of sample-specific network control methods for bulk and single-cell biological data analysis. PLoS Computational Biology, 2021, 17, e1008962.	3.2	15
18	Identifying driver genes for individual patients through inductive matrix completion. Bioinformatics, 2021, 37, 4477-4484.	4.1	17

#	Article	IF	CITATIONS
19	<i>m6A-express</i> : uncovering complex and condition-specific m6A regulation of gene expression. Nucleic Acids Research, 2021, 49, e116-e116.	14.5	24
20	Network control principles for identifying personalized driver genes in cancer. Briefings in Bioinformatics, 2020, 21, 1641-1662.	6.5	29
21	DPDDI: a deep predictor for drug-drug interactions. BMC Bioinformatics, 2020, 21, 419.	2.6	91
22	Bioinformatics approaches for deciphering the epitranscriptome: Recent progress and emerging topics. Computational and Structural Biotechnology Journal, 2020, 18, 1587-1604.	4.1	38
23	IncRNA_Mdeep: An Alignment-Free Predictor for Distinguishing Long Non-Coding RNAs from Protein-Coding Transcripts by Multimodal Deep Learning. International Journal of Molecular Sciences, 2020, 21, 5222.	4.1	12
24	smsMap: mapping single molecule sequencing reads by locating the alignment starting positions. BMC Bioinformatics, 2020, 21, 341.	2.6	7
25	Identification of Alzheimer's disease based on wavelet transformation energy feature of the structural MRI image and NN classifier. Artificial Intelligence in Medicine, 2020, 108, 101940.	6.5	12
26	Prediction of enhancer–promoter interactions using the cross-cell type information and domain adversarial neural network. BMC Bioinformatics, 2020, 21, 507.	2.6	15
27	LPI-CNNCP: Prediction of IncRNA-protein interactions by using convolutional neural network with the copy-padding trick. Analytical Biochemistry, 2020, 601, 113767.	2.4	28
28	Prediction of the RBP binding sites on IncRNAs using the high-order nucleotide encoding convolutional neural network. Analytical Biochemistry, 2019, 583, 113364.	2.4	18
29	FunDMDeep-m6A: identification and prioritization of functional differential m6A methylation genes. Bioinformatics, 2019, 35, i90-i98.	4.1	34
30	LPI-BLS: Predicting lncRNA–protein interactions with a broad learning system-based stacked ensemble classifier. Neurocomputing, 2019, 370, 88-93.	5.9	48
31	DRUM: Inference of Disease-Associated m6A RNA Methylation Sites From a Multi-Layer Heterogeneous Network. Frontiers in Genetics, 2019, 10, 266.	2.3	32
32	DMSC: A Dynamic Multi-Seeds Method for Clustering 16S rRNA Sequences Into OTUs. Frontiers in Microbiology, 2019, 10, 428.	3.5	12
33	Prediction of IncRNA-disease associations by integrating diverse heterogeneous information sources with RWR algorithm and positive pointwise mutual information. BMC Bioinformatics, 2019, 20, 87.	2.6	49
34	A novel network control model for identifying personalized driver genes in cancer. PLoS Computational Biology, 2019, 15, e1007520.	3.2	50
35	Global analysis of N6-methyladenosine functions and its disease association using deep learning and network-based methods. PLoS Computational Biology, 2019, 15, e1006663.	3.2	41
36	Prediction of drug-target interaction by integrating diverse heterogeneous information source with multiple kernel learning and clustering methods. Computational Biology and Chemistry, 2019, 78, 460-467.	2.3	44

#	Article	IF	CITATIONS
37	Advances in the Prediction of Protein Subcellular Locations with Machine Learning. Current Bioinformatics, 2019, 14, 406-421.	1.5	13
38	A novel network control model for identifying personalized driver genes in cancer. , 2019, 15, e1007520.		0
39	A novel network control model for identifying personalized driver genes in cancer. , 2019, 15, e1007520.		Ο
40	A novel network control model for identifying personalized driver genes in cancer. , 2019, 15, e1007520.		0
41	A novel network control model for identifying personalized driver genes in cancer. , 2019, 15, e1007520.		0
42	A novel network control model for identifying personalized driver genes in cancer. , 2019, 15, e1007520.		0
43	A novel algorithm for finding optimal driver nodes to target control complex networks and its applications for drug targets identification. BMC Genomics, 2018, 19, 924.	2.8	29
44	Discovering personalized driver mutation profiles of single samples in cancer by network control strategy. Bioinformatics, 2018, 34, 1893-1903.	4.1	108
45	MeT-DB V2.0: elucidating context-specific functions of N6-methyl-adenosine methyltranscriptome. Nucleic Acids Research, 2018, 46, D281-D287.	14.5	115
46	Viral and cellular N6-methyladenosine and N6,2′-O-dimethyladenosine epitranscriptomes in the KSHV life cycle. Nature Microbiology, 2018, 3, 108-120.	13.3	137
47	NPBSS: a new PacBio sequencing simulator for generating the continuous long reads with an empirical model. BMC Bioinformatics, 2018, 19, 177.	2.6	31
48	trumpet: transcriptome-guided quality assessment of m6A-seq data. BMC Bioinformatics, 2018, 19, 260.	2.6	10
49	Identifying Drug-Target Interactions with Decision Templates. Current Protein and Peptide Science, 2018, 19, 498-506.	1.4	9
50	DBH: A de Bruijn graph-based heuristic method for clustering large-scale 16S rRNA sequences into OTUs. Journal of Theoretical Biology, 2017, 425, 80-87.	1.7	13
51	DMclust, a Densityâ€based Modularity Method for Accurate OTU Picking of 16S rRNA Sequences. Molecular Informatics, 2017, 36, 1600059.	2.5	15
52	Prediction of metabolic fluxes from gene expression data with Huber penalty convex optimization function. Molecular BioSystems, 2017, 13, 901-909.	2.9	6
53	Constrained target controllability of complex networks. Journal of Statistical Mechanics: Theory and Experiment, 2017, 2017, 063402.	2.3	24
54	Gene Prediction in Metagenomic Fragments with Deep Learning. BioMed Research International, 2017, 2017, 2017, 1-9.	1.9	18

#	Article	IF	CITATIONS
55	QNB: differential RNA methylation analysis for count-based small-sample sequencing data with a quad-negative binomial model. BMC Bioinformatics, 2017, 18, 387.	2.6	40
56	Some Remarks on Prediction of Drug-Target Interaction with Network Models. Current Topics in Medicinal Chemistry, 2017, 17, 2456-2468.	2.1	4
57	Computational Methods for Predicting ncRNA-protein Interactions. Medicinal Chemistry, 2017, 13, 515-525.	1.5	14
58	Guitar: An R/Bioconductor Package for Gene Annotation Guided Transcriptomic Analysis of RNA-Related Genomic Features. BioMed Research International, 2016, 2016, 1-8.	1.9	95
59	p12CDK2-AP1 interacts with CD82 to regulate the proliferation and survival of human oral squamous cell carcinoma cells. Oncology Reports, 2016, 36, 737-744.	2.6	3
60	m6A-Driver: Identifying Context-Specific mRNA m6A Methylation-Driven Gene Interaction Networks. PLoS Computational Biology, 2016, 12, e1005287.	3.2	38
61	Inference of Gene Regulatory Network Based on Local Bayesian Networks. PLoS Computational Biology, 2016, 12, e1005024.	3.2	114
62	Exploring the interaction patterns among taxa and environments from marine metagenomic data. Quantitative Biology, 2016, 4, 84-91.	0.5	7
63	Prediction of drug–target interaction by label propagation with mutual interaction information derived from heterogeneous network. Molecular BioSystems, 2016, 12, 520-531.	2.9	43
64	DRME: Count-based differential RNA methylation analysis at small sample size scenario. Analytical Biochemistry, 2016, 499, 15-23.	2.4	18
65	A general method of community detection by identifying community centers with affinity propagation. Physica A: Statistical Mechanics and Its Applications, 2016, 447, 508-519.	2.6	19
66	Spatially Enhanced Differential RNA Methylation Analysis from Affinity-Based Sequencing Data with Hidden Markov Model. BioMed Research International, 2015, 2015, 1-12.	1.9	11
67	MtHc: a motif-based hierarchical method for clustering massive 16S rRNA sequences into OTUs. Molecular BioSystems, 2015, 11, 1907-1913.	2.9	21
68	Sketching the distribution of transcriptomic features on RNA transcripts with Travis coordinates. , 2015, , .		0
69	lncRNA-MFDL: identification of human long non-coding RNAs by fusing multiple features and using deep learning. Molecular BioSystems, 2015, 11, 892-897.	2.9	82
70	Decomposition of RNA methylome reveals co-methylation patterns induced by latent enzymatic regulators of the epitranscriptome. Molecular BioSystems, 2015, 11, 262-274.	2.9	26
71	Some Remarks on Prediction of Protein-Protein Interaction with Machine Learning. Medicinal Chemistry, 2015, 11, 254-264.	1.5	18
72	Prediction of Protein–Protein Interaction with Pairwise Kernel Support Vector Machine. International Journal of Molecular Sciences, 2014, 15, 3220-3233.	4.1	51

#	Article	IF	CITATIONS
73	Mining Seasonal Marine Microbial Pattern with Greedy Heuristic Clustering and Symmetrical Nonnegative Matrix Factorization. BioMed Research International, 2014, 2014, 1-9.	1.9	2
74	Prediction of Signal Peptide Cleavage Sites with Subsite oupled and Template Matching Fusion Algorithm. Molecular Informatics, 2014, 33, 230-239.	2.5	7
75	Detecting differentially methylated mRNA from MeRIP-Seq with likelihood ratio test. , 2014, , .		2
76	MSLoc-DT: A new method for predicting the protein subcellular location of multispecies based on decision templates. Analytical Biochemistry, 2014, 449, 164-171.	2.4	21
77	Prioritization of candidate disease genes by enlarging the seed set and fusing information of the network topology and gene expression. Molecular BioSystems, 2014, 10, 1400-1408.	2.9	18
78	Identification of protein-RNA interaction sites using the information of spatial adjacent residues. Proteome Science, 2011, 9, S16.	1.7	7
79	Prediction of protein-protein interaction types with amino acid index distribution and pairwise kernel SVM. , 2011, , .		1
80	PPLook: an automated data mining tool for protein-protein interaction. BMC Bioinformatics, 2010, 11, 326.	2.6	14
81	Prediction of protein–protein interaction types using the decision templates based on multiple classier fusion. Mathematical and Computer Modelling, 2010, 52, 2075-2084.	2.0	11
82	Prediction of protein-protein interaction types using the decision templates. , 2009, , .		1
83	Using the concept of Chou's pseudo amino acid composition to predict protein subcellular localization: an approach by incorporating evolutionary information and von Neumann entropies. Amino Acids, 2008, 34, 565-572.	2.7	138
84	Using Chou's pseudo amino acid composition to predict protein quaternary structure: a sequence-segmented PseAAC approach. Amino Acids, 2008, 35, 591-598.	2.7	87
85	Classification of protein quaternary structure with support vector machine. Bioinformatics, 2003, 19, 2390-2396.	4.1	75