Wenhui Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7806002/publications.pdf

Version: 2024-02-01

82 18,109 papers citations

87

all docs

87
docs citations

87 times ranked

46

h-index

50276

82 g-index

24400 citing authors

#	Article	IF	CITATIONS
1	Elevated CD38 expression characterizes impaired CD8+ T cell immune response in metastatic pleural effusions. Immunology Letters, 2022, 245, 61-68.	2.5	2
2	DExD/H-box helicase 9 intrinsically controls CD8 ⁺ T cell–mediated antiviral response through noncanonical mechanisms. Science Advances, 2022, 8, eabk2691.	10.3	11
3	Phenotypic and functional characterizations of CD8+ T cell populations in malignant pleural effusion. Experimental Cell Research, 2022, 417, 113212.	2.6	4
4	Enforced PGC-1α expression promotes CD8 T cell fitness, memory formation and antitumor immunity. Cellular and Molecular Immunology, 2021, 18, 1761-1771.	10.5	73
5	NTCP Deficiency Causes Gallbladder Abnormalities in Mice and Human Beings. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 831-839.	4.5	7
6	Design of Dimeric Bile Acid Derivatives as Potent and Selective Human NTCP Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 5973-6007.	6.4	7
7	Animal Models for Hepatitis B: Does the Supply Meet the Demand?. Gastroenterology, 2021, 160, 1437-1442.	1.3	4
8	An Engineered Receptor-Binding Domain Improves the Immunogenicity of Multivalent SARS-CoV-2 Vaccines. MBio, 2021, 12, .	4.1	20
9	Transcriptionally inactive hepatitis B virus episome DNA preferentially resides in the vicinity of chromosome 19 in 3D host genome upon infection. Cell Reports, 2021, 35, 109288.	6.4	24
10	Entry of hepatitis B virus: going beyond NTCP to the nucleus. Current Opinion in Virology, 2021, 50, 97-102.	5.4	5
11	Potent and Specific Inhibition of NTCP-Mediated HBV/HDV Infection and Substrate Transporting by a Novel, Oral-Available Cyclosporine A Analogue. Journal of Medicinal Chemistry, 2021, 64, 543-565.	6.4	12
12	Development and effectiveness of pseudotyped SARS-CoV-2 system as determined by neutralizing efficiency and entry inhibition test in vitro. Biosafety and Health, 2020, 2, 226-231.	2.7	60
13	Lack of antibody-mediated cross-protection between SARS-CoV-2 and SARS-CoV infections. EBioMedicine, 2020, 58, 102890.	6.1	25
14	SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity. Nature Communications, 2020, 11, 6013.	12.8	828
15	Mitochondrial Damage and the Road to Exhaustion. Cell Metabolism, 2020, 32, 905-907.	16.2	13
16	Animal models for the study of human hepatitis B and D virus infection: New insights and progress. Antiviral Research, 2020, 182, 104898.	4.1	13
17	Dual-targeting nanoparticle vaccine elicits a therapeutic antibody response against chronic hepatitis B. Nature Nanotechnology, 2020, 15, 406-416.	31.5	134
18	Novel Abs targeting the Nâ€terminus of fibroblast growth factorÂ19 inhibit hepatocellular carcinoma growth without bileâ€acidâ€related sideâ€effects. Cancer Science, 2020, 111, 1750-1760.	3.9	5

#	Article	IF	CITATIONS
19	Increased sulfation of bile acids in mice and human subjects with sodium taurocholate cotransporting polypeptide deficiency. Journal of Biological Chemistry, 2019, 294, 11853-11862.	3.4	22
20	A global scientific strategy to cure hepatitis B. The Lancet Gastroenterology and Hepatology, 2019, 4, 545-558.	8.1	342
21	Severe fever with thrombocytopenia syndrome phlebovirus non-structural protein activates TPL2 signalling pathway for viral immunopathogenesis. Nature Microbiology, 2019, 4, 429-437.	13.3	46
22	Silencing Retinoid X Receptor Alpha Expression Enhances Early-Stage Hepatitis B Virus Infection In Cell Cultures. Journal of Virology, $2018, 92, .$	3.4	36
23	Receptor Usage of a Novel Bat Lineage C Betacoronavirus Reveals Evolution of Middle East Respiratory Syndrome-Related Coronavirus Spike Proteins for Human Dipeptidyl Peptidase 4 Binding. Journal of Infectious Diseases, 2018, 218, 197-207.	4.0	80
24	The immune response of rhesus macaques to novel vaccines comprising hepatitis B virus S, PreS1, and Core antigens. Vaccine, 2018, 36, 3740-3746.	3.8	8
25	The p.Ser267Phe variant of sodium taurocholate cotransporting polypeptide (NTCP) supports HBV infection with a low efficiency. Virology, 2018, 522, 168-176.	2.4	16
26	Woodchuck sodium taurocholate cotransporting polypeptide supports low-level hepatitis B and D virus entry. Virology, 2017, 505, 1-11.	2.4	20
27	Recombinant vaccinia vector-based vaccine (Tiantan) boosting a novel HBV subunit vaccine induced more robust and lasting immunity in rhesus macaques. Vaccine, 2017, 35, 3347-3353.	3.8	7
28	Sleep Duration and Cardiometabolic Risk Among Chinese School-aged Children: Do Adipokines Play a Mediating Role?. Sleep, 2017, 40, .	1.1	26
29	The History and Challenges of Blood Donor Screening in China. Transfusion Medicine Reviews, 2017, 31, 89-93.	2.0	24
30	NTCP-Reconstituted In Vitro HBV Infection System. Methods in Molecular Biology, 2017, 1540, 1-14.	0.9	47
31	A potent human neutralizing antibody Fc-dependently reduces established HBV infections. ELife, 2017, 6,	6.0	81
32	HBV core protein allosteric modulators differentially alter cccDNA biosynthesis from de novo infection and intracellular amplification pathways. PLoS Pathogens, 2017, 13, e1006658.	4.7	105
33	DNA Polymerase \hat{I}^2 Is a Key Cellular Factor for the Formation of Covalently Closed Circular DNA of Hepatitis B Virus. PLoS Pathogens, 2016, 12, e1005893.	4.7	152
34	Entry of hepatitis B and hepatitis D virus into hepatocytes: Basic insights and clinical implications. Journal of Hepatology, 2016, 64, S32-S40.	3.7	98
35	Modification of Three Amino Acids in Sodium Taurocholate Cotransporting Polypeptide Renders Mice Susceptible to Infection with Hepatitis D Virus <i>In Vivo</i> I) Journal of Virology, 2016, 90, 8866-8874.	3.4	41
36	A rapid and quantitative assay for measuring neutralizing antibodies of Coxsackievirus B3. Journal of Virological Methods, 2016, 232, 1-7.	2.1	6

#	Article	IF	CITATIONS
37	Role of highâ€risk variants in the development of impaired glucose metabolism was modified by birth weight in Han Chinese. Diabetes/Metabolism Research and Reviews, 2015, 31, 790-795.	4.0	7
38	Hepatitis D Virus Infection of Mice Expressing Human Sodium Taurocholate Co-transporting Polypeptide. PLoS Pathogens, 2015, 11, e1004840.	4.7	99
39	NTCP opens the door for hepatitis B virus infection. Antiviral Research, 2015, 121, 24-30.	4.1	70
40	Sodium Taurocholate Cotransporting Polypeptide Acts as a Receptor for Hepatitis B and D Virus. Digestive Diseases, 2015, 33, 388-396.	1.9	20
41	Human Coronavirus HKU1 Spike Protein Uses <i>O</i> -Acetylated Sialic Acid as an Attachment Receptor Determinant and Employs Hemagglutinin-Esterase Protein as a Receptor-Destroying Enzyme. Journal of Virology, 2015, 89, 7202-7213.	3.4	218
42	The Hepatitis B Virus Receptor. Annual Review of Cell and Developmental Biology, 2015, 31, 125-147.	9.4	61
43	miR-375 and miR-30d in the Effect of Chromium-Containing Chinese Medicine Moderating Glucose Metabolism. Journal of Diabetes Research, 2014, 2014, 1-6.	2.3	17
44	NTCP and Beyond: Opening the Door to Unveil Hepatitis B Virus Entry. International Journal of Molecular Sciences, 2014, 15, 2892-2905.	4.1	123
45	Nonmuscle Myosin Heavy Chain IIA Is a Critical Factor Contributing to the Efficiency of Early Infection of Severe Fever with Thrombocytopenia Syndrome Virus. Journal of Virology, 2014, 88, 237-248.	3.4	93
46	microRNA expression in hepatitis B virus infected primary treeshrew hepatocytes and the independence of intracellular miR-122 level for de novo HBV infection in culture. Virology, 2014, 448, 247-254.	2.4	15
47	Viral Entry of Hepatitis B and D Viruses and Bile Salts Transportation Share Common Molecular Determinants on Sodium Taurocholate Cotransporting Polypeptide. Journal of Virology, 2014, 88, 3273-3284.	3.4	210
48	Molecular Determinants of Hepatitis B and D Virus Entry Restriction in Mouse Sodium Taurocholate Cotransporting Polypeptide. Journal of Virology, 2013, 87, 7977-7991.	3.4	167
49	Alpha-Interferon Suppresses Hepadnavirus Transcription by Altering Epigenetic Modification of cccDNA Minichromosomes. PLoS Pathogens, 2013, 9, e1003613.	4.7	135
50	TIM-family Proteins Promote Infection of Multiple Enveloped Viruses through Virion-associated Phosphatidylserine. PLoS Pathogens, 2013, 9, e1003232.	4.7	288
51	Sodium Taurocholate Cotransporting Polypeptide Mediates Woolly Monkey Hepatitis B Virus Infection of Tupaia Hepatocytes. Journal of Virology, 2013, 87, 7176-7184.	3.4	57
52	Siteâ€Specific Engineering of Chemical Functionalities on the Surface of Live Hepatitisâ€D Virus. Angewandte Chemie - International Edition, 2013, 52, 13970-13974.	13.8	52
53	Development and Evaluation of a Pseudovirus-Luciferase Assay for Rapid and Quantitative Detection of Neutralizing Antibodies against Enterovirus 71. PLoS ONE, 2013, 8, e64116.	2.5	25
54	Molecular Determinants of Enterovirus 71 Viral Entry. Journal of Biological Chemistry, 2012, 287, 6406-6420.	3.4	118

#	Article	IF	CITATIONS
55	Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. ELife, 2012, 1, e00049.	6.0	1,621
56	Structural Basis for Activation and Inhibition of the Secreted Chlamydia Protease CPAF. Cell Host and Microbe, 2008, 4, 529-542.	11.0	79
57	Influenza A Virus Neuraminidase Limits Viral Superinfection. Journal of Virology, 2008, 82, 4834-4843.	3.4	130
58	Transferrin receptor 1 is a cellular receptor for New World haemorrhagic fever arenaviruses. Nature, 2007, 446, 92-96.	27.8	374
59	The S proteins of human coronavirus NL63 and severe acute respiratory syndrome coronavirus bind overlapping regions of ACE2. Virology, 2007, 367, 367-374.	2.4	145
60	Severe Acute Respiratory Syndrome Coronavirus Entry as a Target of Antiviral Therapies. Antiviral Therapy, 2007, 12, 639-650.	1.0	17
61	Antibody responses against SARS coronavirus are correlated with disease outcome of infected individuals. Journal of Medical Virology, 2006, 78, 1-8.	5.0	180
62	Conformational States of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein Ectodomain. Journal of Virology, 2006, 80, 6794-6800.	3.4	120
63	Conserved Receptor-binding Domains of Lake Victoria Marburgvirus and Zaire Ebolavirus Bind a Common Receptor. Journal of Biological Chemistry, 2006, 281, 15951-15958.	3.4	115
64	Animal Origins of the Severe Acute Respiratory Syndrome Coronavirus: Insight from ACE2-S-Protein Interactions. Journal of Virology, 2006, 80, 4211-4219.	3.4	247
65	SARS Coronavirus, but Not Human Coronavirus NL63, Utilizes Cathepsin L to Infect ACE2-expressing Cells. Journal of Biological Chemistry, 2006, 281, 3198-3203.	3.4	328
66	Cross-Neutralization of Human and Palm Civet Severe Acute Respiratory Syndrome Coronaviruses by Antibodies Targeting the Receptor-Binding Domain of Spike Protein. Journal of Immunology, 2006, 176, 6085-6092.	0.8	108
67	Insights from the Association of SARS-CoV S-Protein with its Receptor, ACE2. Advances in Experimental Medicine and Biology, 2006, 581, 209-218.	1.6	20
68	Interactions Between Sars Coronavirus and its Receptor. Advances in Experimental Medicine and Biology, 2006, 581, 229-234.	1.6	11
69	SARS-CoV, But not HCoV-NL63, Utilizes Cathepsins to Infect Cells: Viral Entry. Advances in Experimental Medicine and Biology, 2006, 581, 335-338.	1.6	21
70	Sulphated tyrosines mediate association of chemokines and Plasmodium vivax Duffy binding protein with the Duffy antigen/receptor for chemokines (DARC). Molecular Microbiology, 2005, 55, 1413-1422.	2.5	136
71	Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO Journal, 2005, 24, 1634-1643.	7.8	892
72	Structure of SARS Coronavirus Spike Receptor-Binding Domain Complexed with Receptor. Science, 2005, 309, 1864-1868.	12.6	1,790

#	Article	IF	CITATIONS
73	Evaluation of Human Monoclonal Antibody 80R for Immunoprophylaxis of Severe Acute Respiratory Syndrome by an Animal Study, Epitope Mapping, and Analysis of Spike Variants. Journal of Virology, 2005, 79, 5900-5906.	3.4	145
74	Efficient Replication of Severe Acute Respiratory Syndrome Coronavirus in Mouse Cells Is Limited by Murine Angiotensin-Converting Enzyme 2. Journal of Virology, 2004, 78, 11429-11433.	3.4	164
75	A 193-Amino Acid Fragment of the SARS Coronavirus S Protein Efficiently Binds Angiotensin-converting Enzyme 2. Journal of Biological Chemistry, 2004, 279, 3197-3201.	3.4	618
76	Retroviruses Pseudotyped with the Severe Acute Respiratory Syndrome Coronavirus Spike Protein Efficiently Infect Cells Expressing Angiotensin-Converting Enzyme 2. Journal of Virology, 2004, 78, 10628-10635.	3.4	240
77	Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: implication for developing subunit vaccine. Biochemical and Biophysical Research Communications, 2004, 324, 773-781.	2.1	366
78	Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2536-2541.	7.1	543
79	Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 2003, 426, 450-454.	27.8	5,168
80	Tyrosine Sulfation of Human Antibodies Contributes to Recognition of the CCR5 Binding Region of HIV-1 gp120. Cell, 2003, 114, 161-170.	28.9	186
81	Tyrosine-sulfated Peptides Functionally Reconstitute a CCR5 Variant Lacking a Critical Amino-terminal Region. Journal of Biological Chemistry, 2002, 277, 40397-40402.	3.4	54
82	Angiotensin-Converting Enzyme 2, the Cellular Receptor for Severe Acute Respiratory Syndrome Coronavirus and Human Coronavirus NL63., 0,, 147-156.		1