Christian Gachet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7804886/publications.pdf

Version: 2024-02-01

50276 56724 7,351 110 46 83 citations h-index g-index papers 114 114 114 6674 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Transfusion of fresh washed platelets does not prevent experimental polymicrobialâ€induced septic shock in mice. Journal of Thrombosis and Haemostasis, 2022, 20, 449-460.	3.8	3
2	A gain-of-function variant in the Wiskott-Aldrich syndrome gene is associated with a MYH9-related disease-like syndrome. Blood Advances, 2022, 6, 5279-5284.	5.2	2
3	Traumatic vessel injuries initiating hemostasis generate high shear conditions. Blood Advances, 2022, 6, 4834-4846.	5. 2	8
4	Differential Role of Glycoprotein VI in Mouse and Human Thrombus Progression and Stability. Thrombosis and Haemostasis, 2021, 121, 543-546.	3.4	4
5	Removal of citrate from PASâ€III additive solution improves functional and biochemical characteristics of buffyâ€coat platelet concentrates stored for 7 days, with or without INTERCEPT pathogen reduction. Transfusion, 2021, 61, 919-930.	1.6	10
6	Renin-angiotensin system is involved in embryonic emergence of hematopoietic stem/progenitor cells. Stem Cells, 2021, 39, 636-649.	3.2	9
7	Human platelets labeled at two discrete biotin densities are functional in vitro and are detected in vivo in the murine circulation: A promising approach to monitor platelet survival in vivo in clinical research. Transfusion, 2021, 61, 1642-1653.	1.6	4
8	AHR:IKAROS Interaction Promotes Platelet Biogenesis in Response to SR1. Reports, 2021, 4, 7.	0.5	1
9	CDX2 regulates ACE expression in blood development and leukemia cells. Blood Advances, 2021, 5, 2012-2016.	5.2	1
10	Respective roles of Glycoprotein VI and Fcl³RIIA in the regulation of l̂±IIbl̂²3â€mediated platelet activation to fibrinogen, thrombus buildup, and stability. Research and Practice in Thrombosis and Haemostasis, 2021, 5, e12551.	2.3	11
11	Platelet P2Y12 Receptor Deletion or Pharmacological Inhibition does not Protect Mice from Sepsis or Septic Shock. TH Open, 2021, 05, e343-e352.	1.4	7
12	Platelet $Fc\hat{I}^3$ RIIA-induced serotonin release exacerbates the severity of transfusion-related acute lung injury in mice. Blood Advances, 2021, 5, 4817-4830.	5.2	5
13	P2Y receptors in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	3
14	Use of electron microscopy to study megakaryocytes. Platelets, 2020, 31, 589-598.	2.3	5
15	Update of P2Y receptor pharmacology: IUPHAR Review 27. British Journal of Pharmacology, 2020, 177, 2413-2433.	5 . 4	151
16	Disrupting the platelet internal membrane via PI3KC2 \hat{l}_{\pm} inhibition impairs thrombosis independently of canonical platelet activation. Science Translational Medicine, 2020, 12, .	12.4	16
17	Megakaryocytes use in vivo podosomeâ€ike structures working collectively to penetrate the endothelial barrier of bone marrow sinusoids. Journal of Thrombosis and Haemostasis, 2020, 18, 2987-3001.	3.8	28
18	Pharmacological Blockade of Glycoprotein VI Promotes Thrombus Disaggregation in the Absence of Thrombin. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 2127-2142.	2.4	48

#	Article	IF	CITATIONS
19	Platelet δ-Storage Pool Disease: An Update. Journal of Clinical Medicine, 2020, 9, 2508.	2.4	34
20	Platelet Purinergic Receptors in Thrombosis and Inflammation. Hamostaseologie, 2020, 40, 145-152.	1.9	24
21	Functional properties of human platelets derived in vitro from CD34+ cells. Scientific Reports, 2020, 10, 914.	3.3	9
22	Cell surface expression of HLA I molecules as a marker of young platelets. Journal of Thrombosis and Haemostasis, 2019, 17, 1511-1521.	3.8	24
23	Platelet preparation for function testing in the laboratory and clinic: Historical and practical aspects. Research and Practice in Thrombosis and Haemostasis, 2019, 3, 615-625.	2.3	37
24	The ATP-gated P2X1 ion channel contributes to the severity of antibody-mediated Transfusion-Related Acute Lung Injury in mice. Scientific Reports, 2019, 9, 5159.	3.3	12
25	Combined deficiency of RAB32 and RAB38 in the mouse mimics Hermansky-Pudlak syndrome and critically impairs thrombosis. Blood Advances, 2019, 3, 2368-2380.	5.2	19
26	The <scp>PI</scp> 3â€kinase <scp>PI</scp> 3 <scp>KC</scp> 2α regulates mouse platelet membrane structure and function independently of membrane lipid composition. FEBS Letters, 2019, 593, 88-96.	2.8	12
27	P2Y receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	6
28	Immobilized fibrinogen activates human platelets through glycoprotein VI. Haematologica, 2018, 103, 898-907.	3 . 5	101
29	Platelets expressing IgG receptor $Fc\hat{l}^3RIIA/CD32A$ determine the severity of experimental anaphylaxis. Science Immunology, 2018, 3, .	11.9	59
30	The role of extracellular matrix stiffness in megakaryocyte and platelet development and function. American Journal of Hematology, 2018, 93, 430-441.	4.1	45
31	Physiopathologie de l'anaphylaxie aux curares. Le futur et le possibleÂ: les plaquettes. Revue Francaise D'allergologie, 2018, 58, 201-202.	0.2	0
32	On the Way to in vitro Platelet Production. Frontiers in Medicine, 2018, 5, 239.	2.6	15
33	Platelets: A more than a centenary old Odyssey and more to come. Transfusion Clinique Et Biologique, 2018, 25, 149-150.	0.4	0
34	High-Resolution 3D Imaging of Megakaryocytes Using Focused Ion Beam-Scanning Electron Microscopy. Methods in Molecular Biology, 2018, 1812, 217-231.	0.9	9
35	On the way to in vitro platelet production. Transfusion Clinique Et Biologique, 2018, 25, 220-227.	0.4	7
36	Inherited platelet disordersÂ: Management of the bleeding risk. Transfusion Clinique Et Biologique, 2018, 25, 228-235.	0.4	23

#	Article	lF	Citations
37	Platelet transfusion: Current challenges. Transfusion Clinique Et Biologique, 2018, 25, 151-164.	0.4	23
38	Macrothrombocytopenia and dense granule deficiency associated with FLI1 variants: ultrastructural and pathogenic features. Haematologica, 2017, 102, 1006-1016.	3.5	34
39	Amotosalen/UVA pathogen inactivation technology reduces platelet activability, induces apoptosis and accelerates clearance. Haematologica, 2017, 102, e502-e503.	3.5	8
40	Î-storage pool disease: an underestimated cause of unexplained bleeding. Hematologie, 2017, 23, 243-254.	0.0	4
41	A unique microenvironment in the developing liver supports the expansion of megakaryocyte progenitors. Blood Advances, 2017, 1, 1854-1866.	5.2	15
42	Platelet Integrins in Tumor Metastasis: Do They Represent a Therapeutic Target?. Cancers, 2017, 9, 133.	3.7	59
43	Inherited dysfunctional platelet P2Y12 receptor mutations associated with bleeding disorders. Hamostaseologie, 2016, 36, 279-283.	1.9	15
44	Time-Dependent Decay of mRNA and Ribosomal RNA during Platelet Aging and Its Correlation with Translation Activity. PLoS ONE, 2016, 11, e0148064.	2.5	75
45	Cdc42â€dependent Fâ€actin dynamics drive structuration of the demarcation membrane system in megakaryocytes. Journal of Thrombosis and Haemostasis, 2016, 14, 1268-1284.	3.8	34
46	Platelets are dispensable for antibodyâ€mediated transfusionâ€related acute lung injury in the mouse. Journal of Thrombosis and Haemostasis, 2016, 14, 1255-1267.	3.8	28
47	Importance of environmental stiffness for megakaryocyte differentiation and proplatelet formation. Blood, 2016, 128, 2022-2032.	1.4	58
48	Respective contributions of single and compound granule fusion to secretion by activated platelets. Blood, 2016, 128, 2538-2549.	1.4	59
49	Aryl hydrocarbon receptor–dependent enrichment of a megakaryocytic precursor with a high potential to produce proplatelets. Blood, 2016, 127, 2231-2240.	1.4	54
50	Platelet integrin α6β1 controls lung metastasis through direct binding to cancer cell–derived ADAM9. JCI Insight, 2016, 1, e88245.	5.0	90
51	Antiplatelet drugs: which targets for which treatments?. Journal of Thrombosis and Haemostasis, 2015, 13, S313-S322.	3.8	47
52	A review of platelet secretion assays for the diagnosis of inherited platelet secretion disorders. Thrombosis and Haemostasis, 2015, 114, 14-25.	3.4	82
53	EP217609, a neutralisable dual-action Flla/FXa anticoagulant, with antithrombotic effects in arterial thrombosis. Thrombosis and Haemostasis, 2015, 113, 385-395.	3.4	9
54	Fibrillar cellular fibronectin supports efficient platelet aggregation and procoagulant activity. Thrombosis and Haemostasis, 2015, 114, 1175-1188.	3.4	34

#	Article	IF	CITATIONS
55	Platelets in cancer. Hamostaseologie, 2015, 35, 325-336.	1.9	37
56	Haemorrhagic and thrombotic diatheses in mouse models with thrombocytosis. Thrombosis and Haemostasis, 2015, 113, 414-425.	3.4	10
57	Platelet glycoprotein VI binds to polymerized fibrin and promotes thrombin generation. Blood, 2015, 126, 683-691.	1.4	203
58	Dehydration of blood platelets by zeodration: in vitro characterization and hemostatic properties in vivo. Transfusion, 2015, 55, 2207-2218.	1.6	2
59	The class II PI 3-kinase, PI3KC2α, links platelet internal membrane structure to shear-dependent adhesive function. Nature Communications, 2015, 6, 6535.	12.8	67
60	Purinergic Receptors in Thrombosis and Inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2307-2315.	2.4	141
61	The P2X1 Receptor Is Required for Neutrophil Extravasation during Lipopolysaccharide-Induced Lethal Endotoxemia in Mice. Journal of Immunology, 2015, 194, 739-749.	0.8	49
62	Diagnosis of suspected inherited platelet function disorders: results of a worldwide survey. Journal of Thrombosis and Haemostasis, 2014, 12, 1562-1569.	3.8	139
63	Biogenesis of the demarcation membrane system (DMS) in megakaryocytes. Blood, 2014, 123, 921-930.	1.4	112
64	Myosin IIA is critical for organelle distribution and F-actin organization in megakaryocytes and platelets. Blood, 2014, 123, 1261-1269.	1.4	40
65	Preserved functional and biochemical characteristics of platelet components prepared with amotosalen and ultraviolet A for pathogen inactivation. Transfusion, 2013, 53, 1187-1200.	1.6	53
66	Integrin $\hat{l}\pm$ ₆ \hat{l}^2 ₁ Is the Main Receptor for Vascular Laminins and Plays a Role in Platelet Adhesion, Activation, and Arterial Thrombosis. Circulation, 2013, 128, 541-552.	1.6	85
67	Targeting Platelet GPlb \hat{l}^2 Reduces Platelet Adhesion, GPlb Signaling and Thrombin Generation and Prevents Arterial Thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1221-1229.	2.4	29
68	Romiplostim administration shows reduced megakaryocyte response-capacity and increased myelofibrosis in a mouse model of MYH9-RD. Blood, 2012, 119, 3333-3341.	1.4	30
69	A Humanized Glycoprotein VI (GPVI) Mouse Model to Assess the Antithrombotic Efficacies of Anti-GPVI Agents. Journal of Pharmacology and Experimental Therapeutics, 2012, 341, 156-163.	2.5	45
70	Characterization of Megakaryocyte Development in the Native Bone Marrow Environment. Methods in Molecular Biology, 2012, 788, 175-192.	0.9	28
71	The future of glycoproteinÂVI as an antithrombotic target. Journal of Thrombosis and Haemostasis, 2012, 10, 2418-2427.	3.8	70
72	P2Y12 receptors in platelets and other hematopoietic and non-hematopoietic cells. Purinergic Signalling, 2012, 8, 609-619.	2.2	114

#	Article	IF	Citations
73	Hirudin and heparin enable efficient megakaryocyte differentiation of mouse bone marrow progenitors. Experimental Cell Research, 2012, 318, 25-32.	2.6	29
74	Cardiovascular Mortality in Chronic Kidney Disease Patients Undergoing Percutaneous Coronary Intervention Is Mainly Related to Impaired P2Y12 Inhibition by Clopidogrel. Journal of the American College of Cardiology, 2011, 57, 399-408.	2.8	121
75	Impaired inhibition of P2Y12 by clopidogrel is a major determinant of cardiac death in diabetes mellitus patients treated by percutaneous coronary intervention. Atherosclerosis, 2011, 217, 465-472.	0.8	23
76	Mechanisms underlying FeCl3â€induced arterial thrombosis. Journal of Thrombosis and Haemostasis, 2011, 9, 779-789.	3.8	209
77	P2 receptors and platelet function. Purinergic Signalling, 2011, 7, 293-303.	2.2	108
78	Novel Function of Tenascin-C, a Matrix Protein Relevant to Atherosclerosis, in Platelet Recruitment and Activation Under Flow. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 117-124.	2.4	36
79	The Antithrombotic Activity of EP224283, a Neutralizable Dual Factor Xa Inhibitor/Glycoprotein IIbIlla Antagonist, Exceeds That of the Coadministered Parent Compounds. Journal of Pharmacology and Experimental Therapeutics, 2011, 338, 412-420.	2.5	17
80	Major Contribution of the P2Y ₁ Receptor in Purinergic Regulation of TNFα-Induced Vascular Inflammation. Circulation, 2011, 123, 2404-2413.	1.6	81
81	A central role of GPIb-IX in the procoagulant function of platelets that is independent of the 45-kDa GPIbα N-terminal extracellular domain. Blood, 2010, 116, 1157-1164.	1.4	37
82	Impact of P2Y12 Inhibition by Clopidogrel on Cardiovascular Mortality in Unselected Patients Treated by Percutaneous Coronary Angioplasty. JACC: Cardiovascular Interventions, 2010, 3, 648-656.	2.9	36
83	Arterial thrombosis: relevance of a model with two levels of severity assessed by histologic, ultrastructural and functional characterization. Journal of Thrombosis and Haemostasis, 2010, 8, 173-184.	3.8	75
84	Studies of mice lacking the GPIbâ€Vâ€IX complex question the role of this receptor in atherosclerosis. Journal of Thrombosis and Haemostasis, 2009, 7, 1935-1938.	3.8	19
85	Clopidogrel 150 mg/day to Overcome Low Responsiveness in Patients Undergoing Elective Percutaneous Coronary Intervention. JACC: Cardiovascular Interventions, 2008, 1, 631-638.	2.9	119
86	P2 receptors, platelet function and pharmacological implications. Thrombosis and Haemostasis, 2008, 99, 466-472.	3.4	250
87	Reduced Atherosclerotic Lesions in P2Y ₁ /Apolipoprotein E Double-Knockout Mice. Circulation, 2008, 118, 754-763.	1.6	76
88	Testing antiplatelet therapy. Country Review Ukraine, 2008, 10, A28-A34.	0.8	46
89	Megakaryocyte-restricted MYH9 inactivation dramatically affects hemostasis while preserving platelet aggregation and secretion. Blood, 2007, 110, 3183-3191.	1.4	158
90	Decreased Thrombotic Tendency in Mouse Models of the Bernard-Soulier Syndrome. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 241-247.	2.4	56

#	Article	IF	CITATIONS
91	The platelet P2 receptors in arterial thrombosis. Blood Cells, Molecules, and Diseases, 2006, 36, 223-227.	1.4	43
92	REGULATION OF PLATELET FUNCTIONS BY P2 RECEPTORS. Annual Review of Pharmacology and Toxicology, 2006, 46, 277-300.	9.4	245
93	MRS2500 [2-lodo-N6-methyl-(N)-methanocarba- $2\hat{a}\in^2$ -deoxyadenosine- $3\hat{a}\in^2$ -bisphosphate], a Potent, Selecti and Stable Antagonist of the Platelet P2Y1 Receptor with Strong Antithrombotic Activity in Mice. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 556-563.	ve, 2.5	135
94	Flow cytometric analysis of intraplatelet VASP phosphorylation for the detection of clopidogrel resistance in patients with ischemic cardiovascular diseases. Journal of Thrombosis and Haemostasis, 2005, 3, 85-92.	3.8	367
95	The P2 Receptors in Platelet Function. Seminars in Thrombosis and Hemostasis, 2005, 31, 150-161.	2.7	111
96	Preparation of Washed Platelet Suspensions From Human and Rodent Blood., 2004, 272, 013-028.		151
97	Lineage-specific overexpression of the P2Y1 receptor induces platelet hyper-reactivity in transgenic mice. Journal of Thrombosis and Haemostasis, 2003, 1, 155-163.	3.8	58
98	A Role of the Fast ATP-gated P2X1 Cation Channel in Thrombosis of Small Arteries In Vivo. Journal of Experimental Medicine, 2003, 198, 661-667.	8.5	191
99	Differential Involvement of the P2Y1and P2Y12Receptors in Platelet Procoagulant Activity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 1941-1947.	2.4	128
100	Signaling Role for Phospholipase $C\hat{I}^3$ 2 in Platelet Glycoprotein $Ib\hat{I}\pm$ Calcium Flux and Cytoskeletal Reorganization. Journal of Biological Chemistry, 2003, 278, 32880-32891.	3.4	94
101	ADP Receptors of Platelets and their Inhibition. Thrombosis and Haemostasis, 2001, 86, 222-232.	3.4	375
102	Key Role of the P2Y ₁ Receptor in Tissue Factor–Induced Thrombin-Dependent Acute Thromboembolism. Circulation, 2001, 103, 718-723.	1.6	128
103	Desensitization of the Platelet Aggregation Response to ADP: Differential Down-regulation of the P2Y1 and P2cyc Receptors. Thrombosis and Haemostasis, 2000, 84, 484-491.	3.4	118
104	Desensitization of the platelet aggregation response to ADP: differential down-regulation of the P2Y1 and P2cyc receptors. Thrombosis and Haemostasis, 2000, 84, 484-91.	3.4	32
105	Defective platelet aggregation and increased resistance to thrombosis in purinergic P2Y1 receptor–null mice. Journal of Clinical Investigation, 1999, 104, 1731-1737.	8.2	393
106	The P2Y1 Receptor Is Necessary for Adenosine 5′-Diphosphate–Induced Platelet Aggregation. Blood, 1998, 92, 152-159.	1.4	247
107	The P2Y1 receptor is necessary for adenosine 5'-diphosphate-induced platelet aggregation. Blood, 1998, 92, 152-9.	1.4	63
108	Presence of P2X1 Purinoceptors in Human Platelets and Megakaryoblastic Cell Lines. Thrombosis and Haemostasis, 1997, 78, 1500-1504.	3.4	82

#	Article	lF	CITATIONS
109	Presence of P2X1 purinoceptors in human platelets and megakaryoblastic cell lines. Thrombosis and Haemostasis, 1997, 78, 1500-4.	3.4	23
110	Purinoceptors on blood platelets: further pharmacological and clinical evidence to suggest the presence of two ADP receptors. British Journal of Haematology, 1995, 91, 434-444.	2.5	134