Kaoru Minoshima

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7803778/publications.pdf

Version: 2024-02-01

81900 95266 5,007 190 39 68 citations g-index h-index papers 191 191 191 2553 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Thermal control of a Kerr microresonator soliton comb via an optical sideband. Optics Letters, 2022, 47, 281.	3.3	25
2	Amplification and phase noise transfer of a Kerr microresonator soliton comb for low phase noise THz generation with a high signal-to-noise ratio. Optics Express, 2022, 30, 318.	3.4	19
3	Engineering nonlinear optical phenomena by arbitrarily manipulating the phase relationships among the relevant optical fields. Communications Physics, 2022, 5, .	5.3	O
4	Nonlinear amplification based on a tightly phase locked 750 MHz Yb:fiber frequency comb. Applied Physics Letters, 2021, 118, 031101.	3.3	3
5	Computationally image-corrected dual-comb microscopy with a free-running single-cavity dual-comb fiber laser. Optics Express, 2021, 29, 5018.	3.4	7
6	Frequency-scanned microresonator soliton comb with tracking of the frequency of all comb modes. Optics Letters, 2021, 46, 3400.	3.3	6
7	Quantum optical synthesis in 2D time–frequency space. APL Photonics, 2021, 6, 086104.	5.7	11
8	Mechanical sharing dual-comb fiber laser based on an all-polarization-maintaining cavity configuration. Optics Letters, 2021, 46, 5401.	3.3	30
9	One-shot three-dimensional imaging using a two-dimensional spectrometer with a fiber bundle. Optics Express, 2021, 29, 43778.	3.4	10
10	Dual-comb-based asynchronous pump-probe measurement with an ultrawide temporal dynamic range for characterization of photo-excited InAs quantum dots. Applied Physics Express, 2020, 13, 062003.	2.4	12
11	Phase-stabilized all-fiber-based mode-filtering technique for generating a gigahertz frequency comb. Optics Express, 2020, 28, 17502.	3.4	1
12	Investigation of the phase noise of a microresonator soliton comb. Optics Express, 2020, 28, 19295.	3.4	23
13	High-resolution 3D imaging method using chirped optical frequency combs based on convolution analysis of the spectral interference fringe. OSA Continuum, 2020, 3, 20.	1.8	8
14	Generation of a microresonator soliton comb via current modulation of a DFB laser. OSA Continuum, 2020, 3, 3218.	1.8	2
15	Coherent multi-comb pulse control demonstrated in polarization-modulated dual-comb spectroscopy technique. Applied Physics Express, 2019, 12, 072014.	2.4	12
16	Improvement of dynamic range and repeatability in a refractive-index-sensing optical comb by combining saturable-absorber-mirror mode-locking with an intracavity multimode interference fiber sensor. Japanese Journal of Applied Physics, 2019, 58, 060912.	1.5	10
17	Optical technology for arbitrarily manipulating amplitudes and phases of coaxially propagating highly discrete spectra. Physical Review A, 2019, 100, .	2.5	3
18	High-coherence ultra-broadband bidirectional dual-comb fiber laser. Optics Express, 2019, 27, 5931.	3.4	64

#	Article	IF	Citations
19	All-polarization-maintaining, polarization-multiplexed, dual-comb fiber laser with a nonlinear amplifying loop mirror. Optics Express, 2019, 27, 14648.	3.4	59
20	Optical–optical double-resonance dual-comb spectroscopy with pump-intensity modulation. Optics Express, 2019, 27, 37003.	3.4	4
21	Ultrasonic wave sensing using an optical-frequency-comb sensing cavity for photoacoustic imaging. OSA Continuum, 2019, 2, 439.	1.8	6
22	Lock-in-detection dual-comb spectroscopy. OSA Continuum, 2019, 2, 1998.	1.8	5
23	High-Coherence Ultra-Broadband Dual-Comb Fiber Laser with Carrier-Envelope-Offset Frequency. , 2019, , .		O
24	All-optical Hilbert transform with optical frequency comb for one-shot three-dimensional imaging. , 2019, , .		1
25	All-Polarization-Maintaining, Polarization-Multiplexed Mode-Locked Er-Fiber Laser with Nonlinear Amplifying Loop Mirror. , 2019, , .		0
26	Stabilized All-Fiber-Based Mode-Filtering Technique for the Generation of a GHz-Repetition-Rate Frequency Comb. , 2019, , .		0
27	Orbital Angular Momentum-resolved Dual-comb Spectroscopy towards Topological Material Studies. , 2019, , .		0
28	Simultaneous measurement of concentration and temperature in liquid sample using multi-mode interference fiber comb. , 2019, , .		0
29	Lens-less fiber coupling of a 1550-nm mode-locked fiber laser light on a low-temperature-grown GaAs photoconductive antenna. OSA Continuum, 2019, 2, 1310.	1.8	0
30	Wide axial dynamic range digital holography using multicascade-linked synthetic wavelengths and optical wavelength. , 2019, , .		0
31	Combination of lock-in detection with dual-comb spectroscopy. , 2019, , .		O
32	Refractive index sensor based on a combination of optical frequency comb with intracavity multi-mode interference fiber sensor. , 2019, , .		0
33	Tailored Raman-resonant four-wave-mixing processes. Optics Express, 2018, 26, 1452.	3.4	9
34	Mode-filtering technique based on all-fiber-based external cavity for fiber-based optical frequency comb. Optics Express, 2018, 26, 4656.	3.4	6
35	Precise and highly-sensitive Doppler-free two-photon absorption dual-comb spectroscopy using pulse shaping and coherent averaging for fluorescence signal detection. Optics Express, 2018, 26, 8957.	3.4	11
36	Strain sensing based on strain to radio-frequency conversion of optical frequency comb. Optics Express, 2018, 26, 9484.	3.4	20

#	Article	IF	Citations
37	Scan-less confocal phase imaging based on dual-comb microscopy. Optica, 2018, 5, 634.	9.3	70
38	Refractive-index-sensing optical comb based on photonic radio-frequency conversion with intracavity multi-mode interference fiber sensor. Optics Express, 2018, 26, 19694.	3.4	30
39	Photo-acoustic sensing with fiber-based optical frequency comb cavity. , 2018, , .		O
40	Low-noise 750  MHz spaced ytterbium fiber frequency combs. Optics Letters, 2018, 43, 4136.	3.3	28
41	All-Polarization-Maintaining Dual-Comb Fiber Laser with Nonlinear Amplifying Loop Mirror. , 2018, , .		1
42	Multicascade-linked synthetic wavelength digital holography using an optical-comb-referenced frequency synthesizer. Optics Express, 2018, 26, 26292.	3.4	16
43	All-fiber-based mode-filtering technique with high side-mode suppression ratio and high multiplication factor. , 2018, , .		1
44	One-shot three-dimensional imaging with a paired filter and chirped-frequency combs. , 2018, , .		0
45	Fast phase locking of a 750-MHz Yb:fiber laser frequency comb using a high-speed piezo-transducer. , 2018, , .		0
46	Continuous Generation of Ultrafast Arbitrary Optical Waveform with a Repetition Rate Exceeding 100 THz., 2018, , .		0
47	Refractive-index-sensing RF comb using intra-cavity multi-mode interference fiber sensor. , 2018, , .		0
48	Erbium-Fiber-Based Visible Astro-Comb with 42-GHz Mode Spacing. , 2018, , .		3
49	Application of Cavity-Enhanced Comb-Based Fourier-Transform Spectroscopy to Line Shape Study of Carbon Monoxide in Argon. , 2018, , .		O
50	Coherent Spatiotemporal Phase Control by Combining Optical Frequency Combs and Optical Vortices. , 2018, , .		0
51	Generation of 1.4-fs ultrafast single-cycle pulses with a repetition rate exceeding 100 THz by arbitrarily manipulating amplitude and phase. , 2018, , .		0
52	High-Sensitivity Doppler-Free Optical-Optical Double-Resonance Dual-Comb Spectroscopy. , 2018, , .		0
53	Tailor-made Raman-resonant four-wave-mixing processes and their applications to optical devices. , 2018, , .		0
54	$10W_{\rm s}$ sub-100 fs fiber amplifier based on a self-referenced 750-MHz Yb:fiber laser frequency comb. , 2018, , .		0

#	Article	IF	CITATIONS
55	Multi-dynamic range compressional wave detection using optical-frequency-comb. , 2018, , .		О
56	Refractive-index-sensing fiber comb using intracavity multi-mode interference fiber sensor. , 2018, , .		0
57	Development of ultrafast time-resolved dual-comb spectroscopy. APL Photonics, 2017, 2, .	5.7	60
58	Optical-frequency-comb based ultrasound sensor. , 2017, , .		5
59	No-scanning 3D measurement method using ultrafast dimensional conversion with a chirped optical frequency comb. Scientific Reports, 2017, 7, 3670.	3.3	40
60	One-shot three-dimensional measurements with a fiber bundle using a chirped optical frequency comb. , 2017, , .		0
61	High accuracy self-correction of the air-refractive index with a single color comb interferometer. , $2017, , .$		0
62	Non-scanning three-dimensional imaging using two-dimensional spectroscopy and spectral interferometry with a chirped frequency comb. , 2017, , .		0
63	Precise birefringence measurement of anisotropic materials by dual-comb spectroscopy. , 2017, , .		0
64	Portable and stable dual-comb spectroscopic system based on an all-fiber setup. , 2017, , .		0
65	Coherent modulation of interference signals in dual-comb spectroscopy. , 2017, , .		0
66	Mode-filtering of a fiber-based optical frequency comb with long-fiber-based ring resonator for repetition rate multiplication. , 2017 , , .		0
67	Fully stabilized 750-MHz Yb: fiber frequency comb. Optics Express, 2017, 25, 11910.	3.4	45
68	Scan-less hyperspectral dual-comb single-pixel-imaging in both amplitude and phase. Optics Express, 2017, 25, 21947.	3.4	46
69	Sensitivity improvement of dual-comb spectroscopy using mode-filtering technique. Optics Express, 2017, 25, 31730.	3.4	20
70	Repetition rate multiplication of fiber-based optical frequency comb with a long-fiber-based ring cavity. , $2017, , .$		0
71	Non-scanning three-dimensional tomographic imaging using chirped-frequency comb. , 2017, , .		0
72	Optical frequency synthesizer based on a fully stabilized 750-MHz Yb fiber laser frequency comb., 2017,		0

#	Article	IF	Citations
73	Coherent Control of Relative Carrier Envelope Phase in Dual-Comb Spectroscopy., 2017,,.		О
74	Doppler-free dual-comb spectroscopy of Rb using optical-optical double resonance technique. Optics Express, 2016, 24, 25894.	3.4	44
75	Dual-comb spectroscopy for rapid characterization of complex optical properties of solids. Optics Letters, 2016, 41, 4971.	3.3	72
76	Terahertz Frequency-Domain Spectroscopy of Low-Pressure Acetonitrile Gas by a Photomixing Terahertz Synthesizer Referenced to Dual Optical Frequency Combs. Journal of Infrared, Millimeter, and Terahertz Waves, 2016, 37, 903-915.	2.2	16
77	Length metrology with ultra-high precision using fiber-based optical frequency combs. , 2015, , .		O
78	Highly stabilized optical frequency comb interferometer with a long fiber-based reference path towards arbitrary distance measurement. Optics Express, 2015, 23, 25979.	3.4	29
79	Gas-phase spectroscopy using THz frequency synthesizer based on dual optical combs. , 2015, , .		0
80	Highly stabilized fiber-based optical frequency comb interferometer with meters-wide scanning range by frequency tuning. , $2015, , .$		0
81	Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers. Scientific Reports, 2015, 5, 10786.	3.3	60
82	Adaptive sampling, terahertz dual comb spectroscopy using unstabilized dual lasers. , 2015, , .		0
83	Real-time absolute frequency measurement of CW-THz radiation based on a free-running THz comb. , 2015, , .		0
84	Ultra-precision optical metrology using highly controlled fiber-based frequency combs. Proceedings of SPIE, 2015, , .	0.8	1
85	Real-time absolute frequency measurement of continuous-wave terahertz radiation based on dual terahertz combs of photocarriers with different frequency spacings. Optics Express, 2015, 23, 11367.	3.4	31
86	Real-Time Absolute Frequency Measurement of CW-THz Wave Based on a Free-Running THz Comb. , 2015, , .		0
87	Fiber-based optical frequency comb interferometer with nm-stability and meters-wide scanning range. , 2015, , .		0
88	Adaptive Sampling Dual Comb Spectroscopy in Terahertz Region Using Unstabilized Dual Femtosecond Lasers., 2015,,.		0
89	Extraction of beat signal between dual THz combs using dual THz spectrum analyzers. , 2014, , .		0
90	Low-pressure gas spectroscopy using terahertz frequency synthesizer traceable to microwave frequency standard via dual optical comb., 2014,,.		0

#	Article	IF	Citations
91	Prism-pair interferometer for precise measurement of the refractive index of optical glass by using a spectrum lamp. Applied Optics, 2014, 53, 2793.	1.8	4
92	Calibration of linear encoders with sub-nanometer uncertainty using an optical-zooming laser interferometer. Precision Engineering, 2014, 38, 769-774.	3.4	13
93	Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs. Scientific Reports, 2014, 4, 3816.	3.3	74
94	Terahertz Comb Spectroscopy Traceable to Microwave Frequency Standard. IEEE Transactions on Terahertz Science and Technology, 2013, 3, 322-330.	3.1	39
95	A precision length calibrator based on the optical zooming positioning stage. Optics Communications, 2013, 292, 1-4.	2.1	2
96	Gapless THz comb spectroscopy. , 2013, , .		1
97	Self-correction of air-refractive index with extreme accuracy using frequency combs. , $2013, \ldots$		0
98	Precise frequency measurement of continuous-wave terahertz radiation based on THz comb., 2013,,.		0
99	THz frequency comb for precise frequency measurement of continuous-wave terahertz radiation. , 2013, , .		0
100	Pulse-to-pulse alignment technique based on synthetic-wavelength interferometry of optical frequency combs for distance measurement. Optics Letters, 2013, 38, 2140.	3.3	49
101	Propagation and stability characteristics of a 500-m-long laser-based fiducial line for high-precision alignment of long-distance linear accelerators. Review of Scientific Instruments, 2013, 84, 093302.	1.3	9
102	High-accuracy correction of air refractive index by using two-color heterodyne interferometry of optical frequency combs. Measurement Science and Technology, 2013, 24, 015203.	2.6	29
103	Extremely high-accuracy correction of air refractive index using two-colour optical frequency combs. Scientific Reports, 2013, 3, 1894.	3.3	52
104	Enhancement of spectral resolution and accuracy in asynchronous-optical-sampling terahertz time-domain spectroscopy for low-pressure gas-phase analysis. Optics Express, 2012, 20, 15071.	3.4	35
105	Experimental investigation on focusing characteristics of a He-Ne laser using circular Fresnel zone plate for high-precision alignment of linear accelerators. Review of Scientific Instruments, 2012, 83, 053301.	1.3	4
106	Accurate measurement of orthogonality of equal-period, two-dimensional gratings by an interferometric method. Metrologia, 2012, 49, 236-244.	1.2	12
107	A bilateral comparison of optical glass refractive index between NMIJ and INRiM for the validation of the measuring systems. Metrologia, 2012, 49, 283.	1.2	2
108	Frequency-swept asynchronous-optical-sampling THz time-domain spectroscopy. , 2012, , .		0

#	Article	IF	CITATIONS
109	Generation of gapless terahertz frequency comb. , 2012, , .		O
110	Evaluation of spectral resolution and accuracy in ASOPS THz time-domain spectroscopy. , 2011, , .		0
111	Observation of terahertz frequency comb by time-window-extended, asynchronous-optical-sampling THz-TDS. , $2011, \ldots$		0
112	Prism-pair interferometry by homodyne interferometers with a common light source for high-accuracy measurement of the absolute refractive index of glasses. Applied Optics, 2011, 50, 1190.	2.1	8
113	Widely and continuously tunable terahertz synthesizer traceable to a microwave frequency standard. Optics Express, 2011, 19, 4428.	3.4	28
114	High-accuracy self-correction of refractive index of air using two-color interferometry of optical frequency combs. Optics Express, 2011, 19, 26095.	3.4	79
115	Terahertz Frequency Metrology Based on Frequency Comb. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 191-201.	2.9	80
116	High-precision positioning stage using optical zooming laser interferometer for linear encoder calibration. International Journal of Precision Engineering and Manufacturing, 2010, 11, 681-687.	2.2	5
117	High-precision absolute length metrology using fiber-based optical frequency combs. , 2010, , .		11
118	Continuously tunable, phase-locked, continuous-wave terahertz generator based on photomixing of two continuous-wave lasers locked to two independent optical combs. Journal of Applied Physics, 2010, 107, 033111.	2.5	12
119	Fiber-based frequency combs with millihertz-level relative linewidths for optical lattice clocks. , 2010, , .		0
120	Optical zooming interferometer for subnanometer positioning using an optical frequency comb. Applied Optics, 2010, 49, 5844.	2.1	7
121	Fiber-based, hybrid terahertz spectrometer using dual fiber combs. Optics Letters, 2010, 35, 1689.	3.3	55
122	A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator. Optics Express, 2010, 18, 1667.	3.4	181
123	Accurate, continuously tunable, terahertz synthesizer based on photomixing of two continuous-wave lasers phase-locked to two independent fiber combs. , 2010, , .		0
124	Fiber-based, asynchronous optical sampling terahertz time-domain spectroscopy system., 2009,,.		0
125	Frequency Measurement Capability of a Fiber-Based Frequency Comb at 633 nm. IEEE Transactions on Instrumentation and Measurement, 2009, 58, 1234-1240.	4.7	22
126	Real-time monitoring of continuous-wave terahertz radiation using a fiber-based, terahertz-comb-referenced spectrum analyzer. Optics Express, 2009, 17, 17034.	3.4	63

#	Article	IF	CITATIONS
127	High-accuracy interferometer with a prism pair for measurement of the absolute refractive index of glass. Applied Optics, 2009, 48, 2045.	2.1	13
128	Continuous tuning of phase-locked CW-THz radiation by photomixing of two CW lasers locked to two independent optical combs. , 2009, , .		0
129	Optimized amplification of femtosecond optical pulses by dispersion management for octave-spanning optical frequency comb generation. Optics Communications, 2008, 281, 4484-4487.	2.1	23
130	Frequency comparison of two fiber-based frequency combs at 633 nm., 2008,,.		2
131	High-accuracy interferometer with a prism pair for measurement of the absolute refractive index of glass. , 2008, , .		0
132	Ultrahigh dynamic-range distance measurement using a femtosecond frequency comb., 2007,,.		0
133	Optical Frequency Synthesis From a Cryogenic Sapphire Oscillator Using a Fiber-Based Frequency Comb. IEEE Transactions on Instrumentation and Measurement, 2007, 56, 632-636.	4.7	11
134	Carbon Nanotube Based Saturable Absorber Mirrors and Their Application to Ultrashort Pulse Generation. Springer Series in Optical Sciences, 2007, , 403-411.	0.7	0
135	Accurate wide-range displacement measurement using tunable diode laser and optical frequency comb generator. Optics Express, 2006, 14, 644.	3.4	47
136	Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb. Optics Express, 2006, 14, 5223.	3.4	185
137	Displacement metrology with sub-pm resolution in air based on a fs-comb wavelength synthesizer. Optics Express, 2006, 14, 5984.	3.4	52
138	Doppler-free spectroscopy using a continuous-wave optical frequency synthesizer. Applied Optics, 2006, 45, 4910.	2.1	23
139	Optical Frequency Measurement Using Chirped-Mirror-Dispersion-Controlled Mode-Locked Ti:Al2O3Laser. Japanese Journal of Applied Physics, 2006, 45, 5051-5062.	1.5	6
140	Displacement metrology setup with sub-pm stability in air utilizing a fs-comb based wavelength synthesizer. , 2006 , , .		0
141	Ultrahigh dynamic-range portable distance meter using an optical frequency comb. , 2006, , .		5
142	Dispersion-free wide-range sub-nm scale using tunable diode laser and optical frequency comb generaton. , 2006, , .		0
143	High-accuracy Distance Measurements Using Femtosecond Optical Combs. Journal of the Japan Society for Precision Engineering, 2006, 72, 959-962.	0.1	1
144	Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes. Optics Express, 2005, 13, 8025.	3.4	192

9

#	Article	IF	Citations
145	Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator. Optics Letters, 2005, 30, 1060.	3.3	152
146	Phase-locked widely tunable optical single-frequency generator based on a femtosecond comb. Optics Letters, 2005, 30, 2323.	3.3	69
147	Measurements and numerical analysis for femtosecond pulse deformations after propagation of hundreds of meters in air with water-vapor absorption lines. Applied Optics, 2004, 43, 5523.	2.1	13
148	Frequency metrology with a turnkey all-fiber system. Optics Letters, 2004, 29, 2467.	3.3	191
149	Phase locking of a continuous-wave optical parametric oscillator to an optical frequency comb for optical frequency synthesis. IEEE Journal of Quantum Electronics, 2004, 40, 929-936.	1.9	18
150	Broad-spectrum frequency comb generation and carrier-envelope offset frequency measurement by second-harmonic generation of a mode-locked fiber laser. Optics Letters, 2003, 28, 1516.	3.3	92
151	Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm. Optics Letters, 2003, 28, 2324.	3.3	64
152	Photonic Device Fabrication With Femtosecond Laser Oscillators. Optics and Photonics News, 2003, 14, 44.	0.5	4
153	High-precision long-distance measurement using a frequency comb of a femtosecond mode-locked laser., 2003, 5190, 308.		7
154	Fabrication of coupled mode photonic devices in glass by nonlinear femtosecond laser materials processing. Optics Express, 2002, 10, 645.	3.4	149
155	Characterization of laser induced damage sites in optical components. Optics Express, 2002, 10, 1444.	3.4	88
156	Direct measurement of the group refractive index of air with interferometry between adjacent femtosecond pulses. Applied Optics, 2002, 41, 4318.	2.1	55
157	Microscopic time-resolved two-dimensional imaging with a femtosecond amplifying optical Kerr gate. Applied Optics, 2002, 41, 5191.	2.1	20
158	Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator. Optics Letters, 2001, 26, 1516.	3.3	323
159	Stabilization of femtosecond mode-locked Ti:sapphire laser for high-accuracy pulse interferometry. IEEE Journal of Quantum Electronics, 2001, 37, 12-19.	1.9	22
160	Frequency control of a chirped-mirror-dispersion-controlled mode-locked Ti:Al 2 O 3 laser for comparison between microwave and optical frequencies. , 2001, , .		5
161	Femtosecond laser-induced breakdown in water: time-resolved shadow imaging and two-color interferometric imaging. Optics Communications, 2000, 176, 441-452.	2.1	50
162	Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser. Optics Communications, 2000, 183, 181-187.	2.1	55

#	Article	IF	Citations
163	Three-dimensional shape measurement of a diffusing surface by use of a femtosecond amplifying optical Kerr gate. Applied Optics, 2000, 39, 65.	2.1	29
164	High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser. Applied Optics, 2000, 39, 5512.	2.1	419
165	Three-dimensional imaging using a femtosecond amplifying optical Kerr gate. Optical Engineering, 1999, 38, 1758.	1.0	15
166	Characterization of femtosecond self-pumped phase conjugation in BaTiO3. Applied Physics Letters, 1999, 74, 2062-2064.	3.3	1
167	Femtosecond laser pulses diffracted by dielectric transmission gratings in the resonance-domain. Optics Communications, 1999, 163, 243-251.	2.1	8
168	Generation of self-pumped phase conjugation from the -c face of BaTiO_3 with femtosecond pulses. Applied Optics, 1999, 38, 1704.	2.1	5
169	Picosecond time-resolved dual fluorescence, transient absorption and reorientation time measurements of push-pull diphenyl-polyenes: evidence for †loose†complex and †bicimer†species. Chemical Physics, 1997, 219, 73-89.	1.9	14
170	In-situ measurements of shapes and thicknesses of optical parts by femtosecond two-colour interferometry. Optics Communications, 1997, 138, 6-10.	2.1	17
171	High-accuracy ultrastable moving stage using a novel self-zooming optical scale. Optics Communications, 1996, 132, 417-420.	2.1	16
172	Femtosecond inverse Raman spectrum of molecular J-aggregates. Journal of Raman Spectroscopy, 1995, 26, 553-559.	2.5	11
173	Complex electroâ€optic constants of dyeâ€doped polymer films determined with a Mach–Zehnder interferometer. Journal of Applied Physics, 1995, 77, 4935-4940.	2.5	21
174	Simultaneous 3-D Imaging Using Chirped Ultrashort Optical Pulses. Japanese Journal of Applied Physics, 1994, 33, L1348-L1351.	1.5	50
175	Femtosecond nonlinear optical dynamics of excitons in J-aggregates. Chemical Physics Letters, 1994, 218, 67-72.	2.6	214
176	Giant static dipole moment change on electronic excitation in highly oriented J-aggregates. Chemical Physics Letters, 1994, 220, 251-256.	2.6	60
177	New model of excitonic bands and molecular arrangement of highly oriented J-aggregates in polymer films prepared by a novel method. Journal of Luminescence, 1994, 60-61, 812-815.	3.1	16
178	Ultrafast nonlinear optical properties of J-aggregates and new preparation method of oriented films at room temperature., 1994, 2144, 128.		0
179	New fabrication method for highly orientedJaggregates dispersed in polymer films. Applied Physics Letters, 1993, 63, 577-579.	3.3	143
180	Femtosecond time-resolved interferometry for the determination of complex nonlinear susceptibility. Optics Letters, 1991, 16, 1683.	3.3	156

#	Article	lF	CITATIONS
181	Novel measurement method of electro-optic constant of polymers and doped polymers with nonlinear organic molecules. Synthetic Metals, 1989, 28, D699-D704.	3.9	6
182	Novel Method Of Electro-Optic Constant Measurement. Proceedings of SPIE, 1988, , .	0.8	5
183	Time-resolved two-color interferometric imaging for femtosecond laser-induced breakdown in water. , 0, , .		0
184	High-accuracy optical distance meter with a compact femtosecond fiber laser. , 0, , .		0
185	High speed time-resolving imaging. , 0, , .		O
186	Versatile photonic device fabrication using nonlinear processing in glass with a femtosecond laser oscillator. , 0, , .		0
187	Micrometer-resolution long-distance measurement using a femtosecond frequency comb. , 0, , .		0
188	An arbitrary optical single-frequency generator based on a femtosecond frequency comb., 0,,.		1
189	Micromachining three dimensional photonic devices using a high pulse energy femtosecond laser oscillator. , 0, , .		0
190	High-precision distance measurement using the frequency comb of an ultrashort pulse laser. , 0, , .		1