List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7803111/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
2	No growth stimulation of tropical trees by 150Âyears of CO2 fertilization but water-use efficiencyÂincreased. Nature Geoscience, 2015, 8, 24-28.	12.9	348
3	CO2- and temperature-controlled altitudinal shifts of C4- and C3-dominated grasslands allow reconstruction of palaeoatmospheric pCO2. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 177, 151-168.	2.3	100
4	Leaf wax n-alkane distributions in arid zone South African flora: Environmental controls, chemotaxonomy and palaeoecological implications. Organic Geochemistry, 2014, 67, 72-84.	1.8	98
5	Tree height strongly affects estimates of water-use efficiency responses to climate and CO2 using isotopes. Nature Communications, 2017, 8, 288.	12.8	97
6	Rock hyrax middens: A palaeoenvironmental archive for southern African drylands. Quaternary Science Reviews, 2012, 56, 107-125.	3.0	92
7	Stable carbon isotopes in freshwater mussel shells: Environmental record or marker for metabolic activity?. Geochimica Et Cosmochimica Acta, 2005, 69, 3545-3554.	3.9	89
8	Cutan, a common aliphatic biopolymer in cuticles of drought-adapted plants. Organic Geochemistry, 2005, 36, 595-601.	1.8	87
9	Influence of tropical easterlies in southern Africa's winter rainfall zone during the Holocene. Quaternary Science Reviews, 2015, 107, 138-148.	3.0	79
10	High altitude C4 grasslands in the northern Andes: relicts from glacial conditions?. Review of Palaeobotany and Palynology, 2001, 115, 147-160.	1.5	71
11	Holocene climate change in southernmost South Africa: rock hyrax middens record shifts in the southern westerlies. Quaternary Science Reviews, 2013, 82, 199-205.	3.0	66
12	The dynamic relationship between temperate and tropical circulation systems across South Africa since the last glacial maximum. Quaternary Science Reviews, 2017, 174, 54-62.	3.0	61
13	On the ¹³ C/ ¹² C isotopic signal of day and night respiration at the mesocosm level. Plant, Cell and Environment, 2010, 33, 900-913.	5.7	56
14	Neotropical <scp><scp>C</scp></scp> ₃ / <scp><scp>C</scp><₄ grass distributions – present, past and future. Global Change Biology, 2012, 18, 2324-2334.</scp>	9.5	56
15	Studies towards the synthesis of (+)-ptilomycalin A; Stereoselective N-acyliminium ion coupling reactions to enantiopure C-2 substituted lactams. Tetrahedron, 1996, 52, 2603-2628.	1.9	55
16	Evolving southwest African response to abrupt deglacial North Atlantic climate change events. Quaternary Science Reviews, 2015, 121, 132-136.	3.0	52
17	Improving estimates of tropical peatland area, carbon storage, and greenhouse gas fluxes. Wetlands Ecology and Management, 2015, 23, 327-346.	1.5	51
18	Quality not quantity: Organic matter composition controls of CO2 and CH4 fluxes in neotropical peat profiles. Soil Biology and Biochemistry, 2016, 103, 86-96.	8.8	47

#	Article	IF	CITATIONS
19	Climatic controls on Later Stone Age human adaptation in Africa's southern Cape. Journal of Human Evolution, 2018, 114, 35-44.	2.6	47
20	Getting to the root of the problem: litter decomposition and peat formation in lowland Neotropical peatlands. Biogeochemistry, 2015, 126, 115-129.	3.5	41
21	Holocene sea level and environmental change on the west coast of South Africa: evidence from plant biomarkers, stable isotopes and pollen. Journal of Paleolimnology, 2015, 53, 415-432.	1.6	37
22	Hydrogen isotope fractionation of leaf wax n-alkanes in southern African soils. Organic Geochemistry, 2017, 109, 1-13.	1.8	37
23	Pollen-based biome reconstructions for the past 450â€^000 yr from the Funza-2 core, Colombia: comparisons with model-based vegetation reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 177, 29-45.	2.3	36
24	Molecular fingerprinting of wetland organic matter using pyrolysis-GC/MS: an example from the southern Cape coastline of South Africa. Journal of Paleolimnology, 2010, 44, 947-961.	1.6	36
25	Developing forensic tools for an African timber: Regional origin is revealed by genetic characteristics, but not by isotopic signature. Biological Conservation, 2018, 220, 262-271.	4.1	36
26	The potential of plant biomarker evidence derived from rock hyrax middens as an indicator of palaeoenvironmental change. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 285, 321-330.	2.3	35
27	Seasonal variability in methane and nitrous oxide fluxes from tropical peatlands in the western Amazon basin. Biogeosciences, 2017, 14, 3669-3683.	3.3	35
28	Biome-scale characterisation and differentiation of semi-arid and arid zone soil organic matter compositions using pyrolysis–GC/MS analysis. Geoderma, 2013, 200-201, 189-201.	5.1	34
29	Colombian vegetation at the Last Glacial Maximum: a comparison of model- and pollen-based biome reconstructions. Journal of Quaternary Science, 2004, 19, 721-732.	2.1	31
30	The chemistry of American and African amber, copal, and resin from the genus Hymenaea. Organic Geochemistry, 2017, 113, 43-54.	1.8	31
31	Leaf wax n-alkanes and δ13C values of CAM plants from arid southwest Africa. Organic Geochemistry, 2014, 67, 99-102.	1.8	30
32	Microbial biomarkers support organic carbon transport from methane-rich Amazon wetlands to the shelf and deep sea fan during recent and glacial climate conditions. Organic Geochemistry, 2014, 67, 85-98.	1.8	29
33	Evaluation of vegetation communities, water table, and peat composition as drivers of greenhouse gas emissions in lowland tropical peatlands. Science of the Total Environment, 2019, 688, 1193-1204.	8.0	29
34	Sources, transport and deposition of terrestrial organic material: A case study from southwestern Africa. Quaternary Science Reviews, 2016, 149, 215-229.	3.0	26
35	Human–environment interactions in an agricultural landscape: A 1400-yr sediment and pollen record from North Pare, NE Tanzania. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 406, 49-61. ————————————————————————————————————	2.3	25
36	Investigation of organic matter and biomarkers from Diepkloof Rock Shelter, South Africa: Insights into Middle Stone Age site usage and palaeoclimate. Journal of Archaeological Science, 2017, 85, 51-65.	2.4	25

#	Article	IF	CITATIONS
37	A late Pleistocene–Holocene multiâ€proxy record of palaeoenvironmental change from Still Bay, southern Cape Coast, South Africa. Journal of Quaternary Science, 2015, 30, 870-885.	2.1	23
38	Orbital controls on Namib Desert hydroclimate over the past 50,000 years. Geology, 2019, 47, 867-871.	4.4	23
39	A method for reconstructing temporal changes in vegetation functional trait composition using Holocene pollen assemblages. PLoS ONE, 2019, 14, e0216698.	2.5	22
40	Stable isotope analyses of rock hyrax faecal pellets, hyraceum and associated vegetation in southern Africa: Implications for dietary ecology and palaeoenvironmental reconstructions. Journal of Arid Environments, 2016, 134, 33-48.	2.4	21
41	Multi-disciplinary evidence of the Holocene history of a cultivated floodplain area in the wetlands of northern Colombia. Vegetation History and Archaeobotany, 2001, 10, 161-174.	2.1	19
42	Colombian dry moist forest transitions in the Llanos Orientales—A comparison of model and pollen-based biome reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 234, 28-44.	2.3	19
43	Contrasting controls on tree ring isotope variation for Amazon floodplain and terra firme trees. Tree Physiology, 2019, 39, 845-860.	3.1	19
44	Biogeological Analysis of Desert Varnish Using Portable Raman Spectrometers. Astrobiology, 2015, 15, 442-452.	3.0	18
45	Extreme hydroclimate response gradients within the western Cape Floristic region of South Africa since the Last Glacial Maximum. Quaternary Science Reviews, 2019, 219, 297-307.	3.0	17
46	NEW EVIDENCE FOR THE AGE AND PALAEOECOLOGY OF THE KNYSNA FORMATION, SOUTH AFRICA. South African Journal of Geology, 2010, 113, 241-256.	1.2	14
47	High-resolution record of Holocene climate change dynamics from southern Africa's temperate-tropical boundary, Baviaanskloof, South Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 539, 109518.	2.3	14
48	Unlocking preservation bias in the amber insect fossil record through experimental decay. PLoS ONE, 2018, 13, e0195482.	2.5	12
49	An Optical luminescence chronology for late Pleistocene aeolian activity in the Colombian and Venezuelan Llanos. Quaternary Research, 2016, 85, 299-312.	1.7	11
50	Novel responses of diatoms in neotropical mountain lakes to indigenous and post-European occupation. Anthropocene, 2021, 34, 100294.	3.3	11
51	Questioning the Influence of Sunspots on Amazon Hydrology: Even a Broken Clock Tells the Right Time Twice a Day. Geophysical Research Letters, 2018, 45, 1419-1422.	4.0	10
52	Changes in functional, phylogenetic and taxonomic diversities of lowland fens under different vegetation and disturbance levels. Plant Ecology, 2020, 221, 441-457.	1.6	10
53	Tree-ring oxygen isotopes record a decrease in Amazon dry season rainfall over the past 40Âyears. Climate Dynamics, 2022, 59, 1401-1414.	3.8	10
54	Intra-annual oxygen isotopes in the tree rings record precipitation extremes and water reservoir levels in the Metropolitan Area of São Paulo, Brazil. Science of the Total Environment, 2020, 743, 140798.	8.0	9

#	Article	IF	CITATIONS
55	Biogeochemical Characteristics of Lacustrine Sediments Reflecting a Changing Alpine Neotropical Ecosystem during the Pleistocene. Quaternary Research, 2002, 58, 189-196.	1.7	8
56	On the Habitability of Desert Varnish: A Combined Study by Micro-Raman Spectroscopy, X-ray Diffraction, and Methylated Pyrolysis–Gas Chromatography–Mass Spectrometry. Astrobiology, 2017, 17, 1123-1137.	3.0	7
57	FOSSILIZATION OF THE EOCENE "MONKEYHAIR―LATICIFER TREE FROM GEISELTAL, GERMANY: A DEEPER UNDERSTANDING USING MICRO-CT AND PYROLYSIS GC/MS. Palaios, 2021, 36, 1-14.	1.3	7
58	Paired analysis of tree ring width and carbon isotopes indicates when controls on tropical tree growth change from light to water limitations. Tree Physiology, 2022, 42, 1131-1148.	3.1	7
59	Volatile and semi-volatile composition of Cretaceous amber. Cretaceous Research, 2021, 127, 104958.	1.4	6
60	Using Paleoecological Data to Define Main Vegetation Dynamics Along the Savanna–Forest Ecotone in Colombia: Implications for Accurate Assessment of Human Impacts. , 2012, , 209-225.		5
61	Leaf traits interact with management and water table to modulate ecosystem properties in fen peatlands. Plant and Soil, 2019, 441, 331-347.	3.7	5
62	Response to the comment by B. Schöne et al. (2006) on "Stable carbon isotopes in freshwater mussel shells: Environmental record or marker for metabolic activity?― Geochimica Et Cosmochimica Acta, 2006, 70, 2662-2664.	3.9	3
63	Tropical timber tracing and stable isotopes: A response to Horacek et al Biological Conservation, 2018, 226, 335-336.	4.1	3
64	Lacustrine responses to middle and late Holocene anthropogenic activities in the northern tropical Andes. Journal of Paleolimnology, 2021, 65, 123-136.	1.6	3
65	Variability in soil and foliar stable carbon and nitrogen isotope compositions in the winter rainfall biomes of South Africa. Journal of Arid Environments, 2022, 200, 104726.	2.4	2
66	The Role of Microbial Biofilm in Removing Ammonia in Floating Treatment Wetlands. Ekologia, 2021, 40, 101-114.	0.8	1
67	A Stable Carbon Isotopic Record of Climatic Change from a Tropical Mountain Ecosystem in Colombia. Mineralogical Magazine, 1998, 62A, 189-190.	1.4	1