Daniel Olive

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7802969/publications.pdf

Version: 2024-02-01

76326 58581 7,409 95 40 82 citations h-index g-index papers 105 105 105 10555 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Local Ablative Therapy Associated with Immunotherapy in Locally Advanced Pancreatic Cancer: A Solution to Overcome the Double Trouble?—A Comprehensive Review. Journal of Clinical Medicine, 2022, 11, 1948.	2.4	7
2	Phosphoantigen-Stimulated γδT Cells Suppress Natural Killer–Cell Responses to Missing-Self. Cancer Immunology Research, 2022, 10, 558-570.	3.4	4
3	Targeting CISH enhances natural cytotoxicity receptor signaling and reduces NK cell exhaustion to improve solid tumor immunity., 2022, 10, e004244.		23
4	Endowing universal CAR T-cell with immune-evasive properties using TALEN-gene editing. Nature Communications, 2022, 13, .	12.8	45
5	Quantification of Immune Variables from Liquid Biopsy in Breast Cancer Patients Links Vδ2+ γδT Cell Alterations with Lymph Node Invasion. Cancers, 2021, 13, 441.	3.7	6
6	Identification of an Immature Subset of PMN-MDSC Correlated to Response to Checkpoint Inhibitor Therapy in Patients with Metastatic Melanoma. Cancers, 2021, 13, 1362.	3.7	11
7	Functional characterization of PD1+TIM3+ tumor-infiltrating T cells in DLBCL and effects of PD1 or TIM3 blockade. Blood Advances, 2021, 5, 1816-1829.	5.2	22
8	Soluble BTN2A1 Is a Potential Prognosis Biomarker in Pre-Treated Advanced Renal Cell Carcinoma. Frontiers in Immunology, 2021, 12, 670827.	4.8	10
9	High-dimensional mass cytometry analysis of NK cell alterations in AML identifies a subgroup with adverse clinical outcome. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	29
10	Phase I Trial of Prophylactic Donor-Derived IL-2-Activated NK Cell Infusion after Allogeneic Hematopoietic Stem Cell Transplantation from a Matched Sibling Donor. Cancers, 2021, 13, 2673.	3.7	12
11	Blockade of HVEM for Prostate Cancer Immunotherapy in Humanized Mice. Cancers, 2021, 13, 3009.	3.7	20
12	Endometrial Carcinoma: Immune Microenvironment and Emerging Treatments in Immuno-Oncology. Biomedicines, 2021, 9, 632.	3.2	30
13	BTN2A1, an immune checkpoint targeting $\hat{V}^39\hat{V}^2$ T cell cytotoxicity against malignant cells. Cell Reports, 2021, 36, 109359.	6.4	44
14	Mechanisms of NK cell dysfunction in the tumor microenvironment and current clinical approaches to harness NK cell potential for immunotherapy. Journal of Leukocyte Biology, 2021, 109, 1071-1088.	3.3	25
15	Development of ICT01, a first-in-class, anti-BTN3A antibody for activating Vγ9VÎ′2 T cell–mediated antitumor immune response. Science Translational Medicine, 2021, 13, eabj0835.	12.4	49
16	Chronic IL-15 Stimulation and Impaired mTOR Signaling and Metabolism in Natural Killer Cells During Acute Myeloid Leukemia. Frontiers in Immunology, 2021, 12, 730970.	4.8	6
17	Baseline plasma levels of soluble PD-1, PD-L1, and BTN3A1 predict response to nivolumab treatment in patients with metastatic renal cell carcinoma: a step toward a biomarker for therapeutic decisions. Oncolmmunology, 2020, 9, 1832348.	4.6	55
18	ICOS is widely expressed in cutaneous T-cell lymphoma, and its targeting promotes potent killing of malignant cells. Blood Advances, 2020, 4, 5203-5214.	5.2	18

#	Article	IF	Citations
19	γδT Cells in Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1273, 91-104.	1.6	12
20	\hat{I}^3 9 \hat{I}^2 T cell diversity and the receptor interface with tumor cells. Journal of Clinical Investigation, 2020, 130, 4637-4651.	8.2	49
21	Cell-Laden Hydrogel as a Clinical-Relevant 3D Model for Analyzing Neuroblastoma Growth, Immunophenotype, and Susceptibility to Therapies. Frontiers in Immunology, 2019, 10, 1876.	4.8	35
22	Dynamic of systemic immunity and its impact on tumor recurrence after radiofrequency ablation of hepatocellular carcinoma. Oncolmmunology, 2019, 8, 1615818.	4.6	34
23	Vitamin D Controls Tumor Growth and CD8+ T Cell Infiltration in Breast Cancer. Frontiers in Immunology, 2019, 10, 1307.	4.8	56
24	An X-ray Vision for Phosphoantigen Recognition. Immunity, 2019, 50, 1026-1028.	14.3	7
25	Prognostic significance of circulating PD-1, PD-L1, pan-BTN3As, BTN3A1 and BTLA in patients with pancreatic adenocarcinoma. Oncolmmunology, 2019, 8, e1561120.	4.6	92
26	Endometrial Tumor Microenvironment Alters Human NK Cell Recruitment, and Resident NK Cell Phenotype and Function. Frontiers in Immunology, 2019, 10, 877.	4.8	81
27	HVEM has a broader expression than PD-L1 and constitutes a negative prognostic marker and potential treatment target for melanoma. Oncolmmunology, 2019, 8, e1665976.	4.6	35
28	PD-L1 microSPECT/CT Imaging for Longitudinal Monitoring of PD-L1 Expression in Syngeneic and Humanized Mouse Models for Cancer. Cancer Immunology Research, 2019, 7, 150-161.	3.4	29
29	Inducible Co-Stimulator (ICOS) as a potential therapeutic target for anti-cancer therapy. Expert Opinion on Therapeutic Targets, 2018, 22, 343-351.	3.4	64
30	Enediynes bearing polyfluoroaryl sulfoxide as new antiproliferative agents with dual targeting of microtubules and DNA. European Journal of Medicinal Chemistry, 2018, 148, 306-313.	5.5	12
31	BTN3A is a prognosis marker and a promising target for $V\hat{I}^39V\hat{I}'2$ T cells based-immunotherapy in pancreatic ductal adenocarcinoma (PDAC). Oncolmmunology, 2018, 7, e1372080.	4.6	47
32	New Insights Into the Regulation of $\hat{l}^3\hat{l}$ T Cells by BTN3A and Other BTN/BTNL in Tumor Immunity. Frontiers in Immunology, 2018, 9, 1601.	4.8	68
33	The MEK1/2-ERK Pathway Inhibits Type I IFN Production in Plasmacytoid Dendritic Cells. Frontiers in Immunology, 2018, 9, 364.	4.8	26
34	Hyperprogressive Disease in Anorectal Melanoma Treated by PD-1 Inhibitors. Frontiers in Immunology, 2018, 9, 797.	4.8	33
35	Immunomodulatory Drugs Exert Anti-Leukemia Effects in Acute Myeloid Leukemia by Direct and Immunostimulatory Activities. Frontiers in Immunology, 2018, 9, 977.	4.8	25
36	Pancreatic Ductal Adenocarcinoma: A Strong Imbalance of Good and Bad Immunological Cops in the Tumor Microenvironment. Frontiers in Immunology, 2018, 9, 1044.	4.8	107

#	Article	IF	CITATIONS
37	A Tribute to Alessandro Moretta (1953–2018). Living Without Alessandro. Frontiers in Immunology, 2018, 9, .	4.8	1
38	Identification of a subset of human natural killer cells expressing high levels of programmed death 1: AÂphenotypic and functional characterization. Journal of Allergy and Clinical Immunology, 2017, 139, 335-346.e3.	2.9	379
39	Butyrophilin 3A (BTN3A, CD277)â€specific antibody 20.1 differentially activates Vγ9Vδ2 TCR clonotypes and interferes with phosphoantigen activation. European Journal of Immunology, 2017, 47, 982-992.	2.9	47
40	Rituximab treatment circumvents the prognostic impact of tumor-infiltrating T-cells in follicular lymphoma patients. Human Pathology, 2017, 64, 128-136.	2.0	25
41	The Juxtamembrane Domain of Butyrophilin BTN3A1 Controls Phosphoantigen-Mediated Activation of Human Vl³9Vl´2 T Cells. Journal of Immunology, 2017, 198, 4228-4234.	0.8	36
42	Two alternate strategies for innate immunity to Epstein-Barr virus: One using NK cells and the other NK cells and $\hat{l}^3\hat{l}$ T cells. Journal of Experimental Medicine, 2017, 214, 1827-1841.	8.5	57
43	Evolutionary and polymorphism analyses reveal the central role of BTN3A2 in the concerted evolution of the BTN3 gene family. Immunogenetics, 2017, 69, 379-390.	2.4	21
44	NKp46 expression on NK cells as a prognostic and predictive biomarker for response to allo-SCT in patients with AML. Oncolmmunology, 2017, 6, e1307491.	4.6	37
45	NKG2C ⁺ memoryâ€like NK cells contribute to the control of HIV viremia during primary infection: Optiprimâ€ANRS 147. Clinical and Translational Immunology, 2017, 6, e150.	3.8	42
46	A Mature NK Profile at the Time of HIV Primary Infection Is Associated with an Early Response to cART. Frontiers in Immunology, 2017, 8, 54.	4.8	30
47	Natural Killer Defective Maturation Is Associated with Adverse Clinical Outcome in Patients with Acute Myeloid Leukemia. Frontiers in Immunology, 2017, 8, 573.	4.8	47
48	Targeting the Human T-Cell Inducible COStimulator Molecule with a Monoclonal Antibody Prevents Graft-vs-Host Disease and Preserves Graft vs Leukemia in a Xenograft Murine Model. Frontiers in Immunology, 2017, 8, 756.	4.8	28
49	Design of short peptides to block BTLA/HVEM interactions for promoting anticancer T-cell responses. PLoS ONE, 2017, 12, e0179201.	2.5	28
50	NK cells and multiple myeloma-associated endothelial cells: molecular interactions and influence of IL-27. Oncotarget, 2017, 8, 35088-35102.	1.8	20
51	NKp30 expression is a prognostic immune biomarker for stratification of patients with intermediate-risk acute myeloid leukemia. Oncotarget, 2017, 8, 49548-49563.	1.8	34
52	Underground Adaptation to a Hostile Environment: Acute Myeloid Leukemia vs. Natural Killer Cells. Frontiers in Immunology, 2016, 7, 94.	4.8	26
53	Inherent and Tumor-Driven Immune Tolerance in the Prostate Microenvironment Impairs Natural Killer Cell Antitumor Activity. Cancer Research, 2016, 76, 2153-2165.	0.9	154
54	RhoB Mediates Phosphoantigen Recognition by VÎ ³ 9VÎ 2ÂT Cell Receptor. Cell Reports, 2016, 15, 1973-1985.	6.4	112

#	Article	IF	CITATIONS
55	Butyrophilin 3A/CD277–Dependent Activation of Human γδT Cells: Accessory Cell Capacity of Distinct Leukocyte Populations. Journal of Immunology, 2016, 197, 3059-3068.	0.8	40
56	Follicular B Lymphomas Generate Regulatory T Cells via the ICOS/ICOSL Pathway and Are Susceptible to Treatment by Anti-ICOS/ICOSL Therapy. Cancer Research, 2016, 76, 4648-4660.	0.9	65
57	BTN3A molecules considerably improve $\hat{V}^{39}\hat{V}^{2}$ T cells-based immunotherapy in acute myeloid leukemia. Oncolmmunology, 2016, 5, e1146843.	4.6	46
58	PD-L1 expression in metastatic neuroblastoma as an additional mechanism for limiting immune surveillance. Oncolmmunology, 2016, 5, e1064578.	4.6	91
59	Dual Role of the Tyrosine Kinase Syk in Regulation of Toll-Like Receptor Signaling in Plasmacytoid Dendritic Cells. PLoS ONE, 2016, 11, e0156063.	2.5	35
60	Increased NK Cell Maturation in Patients with Acute Myeloid Leukemia. Frontiers in Immunology, 2015, 6, 564.	4.8	24
61	Highly effective NK cells are associated with good prognosis in patients with metastatic prostate cancer. Oncotarget, 2015, 6, 14360-14373.	1.8	164
62	Noninvasive Imaging of Tumor PD-L1 Expression Using Radiolabeled Anti–PD-L1 Antibodies. Cancer Research, 2015, 75, 2928-2936.	0.9	193
63	Reconstitution of Natural Killer Cells in HLA-Matched HSCTÂafter Reduced-Intensity Conditioning: Impact on ClinicalÂOutcome. Biology of Blood and Marrow Transplantation, 2015, 21, 429-439.	2.0	55
64	Cancer-Induced Alterations of NK-Mediated Target Recognition: Current and Investigational Pharmacological Strategies Aiming at Restoring NK-Mediated Anti-Tumor Activity. Frontiers in Immunology, 2014, 5, 122.	4.8	75
65	Vγ9Vδ2 TCRâ€activation by phosphorylated antigens requires butyrophilin 3 A1 <scp>(</scp> <i>BTN3A1</i> <scp>)</scp> and additional genes on human chromosome 6. European Journal of Immunology, 2014, 44, 2571-2576.	2.9	71
66	Identification of MUM1 as a prognostic immunohistochemical marker in follicular lymphoma using computerized image analysis. Human Pathology, 2014, 45, 2085-2093.	2.0	23
67	Phosphoantigens and butyrophilin 3A1 induce similar intracellular activation signaling in human TCRVÎ ³ 9+ Î ³ Î [*] T lymphocytes. Immunology Letters, 2014, 161, 133-137.	2.5	33
68	PD-1–Expressing Tumor-Infiltrating T Cells Are a Favorable Prognostic Biomarker in HPV-Associated Head and Neck Cancer. Cancer Research, 2013, 73, 128-138.	0.9	554
69	Interfering with coinhibitory molecules: BTLA/HVEM as new targets to enhance anti-tumor immunity. Immunology Letters, 2013, 151, 71-75.	2.5	59
70	Photoactivated cyclization of aryl-containing enediynes coated gold nanoparticles: Enhancement of the DNA cleavage ability of enediynes. Colloids and Surfaces B: Biointerfaces, 2013, 112, 513-520.	5.0	11
71	The co-receptor BTLA negatively regulates human $V\hat{1}^39V\hat{1}^2$ T-cell proliferation: a potential way of immune escape for lymphoma cells. Blood, 2013, 122, 922-931.	1.4	87
72	Hepatitis C Virus Fails To Activate NF-κB Signaling in Plasmacytoid Dendritic Cells. Journal of Virology, 2012, 86, 1090-1096.	3.4	28

#	Article	IF	Citations
73	ICOS-Ligand Expression on Plasmacytoid Dendritic Cells Supports Breast Cancer Progression by Promoting the Accumulation of Immunosuppressive CD4+ T Cells. Cancer Research, 2012, 72, 6130-6141.	0.9	184
74	HCV glycoprotein E2 is a novel BDCA-2 ligand and acts as an inhibitor of IFN production by plasmacytoid dendritic cells. Blood, 2012, 120, 4544-4551.	1.4	58
75	Key implication of CD277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human $\hat{l}^3\hat{l}^*$ T-cell subset. Blood, 2012, 120, 2269-2279.	1.4	443
76	A phase 1 trial of the anti-inhibitory KIR mAb IPH2101 for AML in complete remission. Blood, 2012, 120, 4317-4323.	1.4	247
77	The HVEM network: new directions in targeting novel costimulatory/co-inhibitory molecules for cancer therapy. Current Opinion in Pharmacology, 2012, 12, 478-485.	3.5	61
78	The Molecular Basis for Modulation of Human $V\hat{1}^39V\hat{1}^2$ T Cell Responses by CD277/Butyrophilin-3 (BTN3A)-specific Antibodies. Journal of Biological Chemistry, 2012, 287, 32780-32790.	3.4	139
79	The butyrophilin (BTN) gene family: from milk fat to the regulation of the immune response. Immunogenetics, 2012, 64, 781-794.	2.4	85
80	Differential role for CD277 as a coâ€regulator of the immune signal in T and NK cells. European Journal of Immunology, 2011, 41, 3443-3454.	2.9	59
81	Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity. Journal of Clinical Investigation, 2011, 121, 3609-3622.	8.2	524
82	Ligation of the BT3 molecules, members of the B7 family, enhance the proinflammatory responses of human monocytes and monocyte-derived dendritic cells. Molecular Immunology, 2010, 48, 109-118.	2.2	17
83	Impaired Toll-like receptor 7 and 9 signaling: from chronic viral infections to cancer. Trends in Immunology, 2010, 31, 391-397.	6.8	107
84	BTLA mediates inhibition of human tumor-specific CD8+ T cells that can be partially reversed by vaccination. Journal of Clinical Investigation, 2010, 120, 157-167.	8.2	252
85	Hepatitis C Virus Is a Weak Inducer of Interferon Alpha in Plasmacytoid Dendritic Cells in Comparison with Influenza and Human Herpesvirus Type-1. PLoS ONE, 2009, 4, e4319.	2.5	40
86	High Expression of the Inhibitory Receptor BTLA in T-Follicular Helper Cells and in B-Cell Small Lymphocytic Lymphoma/Chronic Lymphocytic Leukemia. American Journal of Clinical Pathology, 2009, 132, 589-596.	0.7	81
87	Deficient expression of NCR in NK cells from acute myeloid leukemia: evolution during leukemia treatment and impact of leukemia cells in NCRdull phenotype induction. Blood, 2007, 109, 323-330.	1.4	321
88	The SH3 domain of Tec kinase is essential for its targeting to activated CD28 costimulatory molecule. European Journal of Immunology, 2004, 34, 1972-1980.	2.9	22
89	Frontline: Characterization of BT3 molecules belonging to the B7 family expressed on immune cells. European Journal of Immunology, 2004, 34, 2089-2099.	2.9	90
90	Natural Killer Cell-triggering Receptors in Patients with Acute Leukaemia. Leukemia and Lymphoma, 2003, 44, 1683-1689.	1.3	17

DANIEL OLIVE

#	Article	IF	CITATION
91	Defective expression and function of natural killer cell–triggering receptors in patients with acute myeloid leukemia. Blood, 2002, 99, 3661-3667.	1.4	434
92	Reciprocal Expression of the TNF Family Receptor Herpes Virus Entry Mediator and Its Ligand LIGHT on Activated T Cells: LIGHT Down-Regulates Its Own Receptor. Journal of Immunology, 2000, 165, 4397-4404.	0.8	161
93	CD47-SIRPÎ \pm Controls ADCC Killing of Primary T Cells by PMN Through a Combination of Trogocytosis and NADPH Oxidase Activation. Frontiers in Immunology, 0, 13, .	4.8	3
94	BTN3A Targeting $\hat{V^{3}9V^{2}}$ T Cells Antimicrobial Activity Against Coxiella burnetii-Infected Cells. Frontiers in Immunology, 0, 13, .	4.8	4
95	Role of Vγ9vΠ2 T lymphocytes in infectious diseases. Frontiers in Immunology, 0, 13, .	4.8	11