Takahiro Shintani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/780291/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enzymatic degradation of xyloglucans by Aspergillus species: a comparative view of this genus. Applied Microbiology and Biotechnology, 2021, 105, 2701-2711.	3.6	5
2	Crucial role of the intracellular α-glucosidase MalT in the activation of the transcription factor AmyR essential for amylolytic gene expression in <i>Aspergillus oryzae</i> . Bioscience, Biotechnology and Biochemistry, 2021, 85, 2076-2083.	1.3	6
3	Expression profiles of amylolytic genes in AmyR and CreA transcription factor deletion mutants of the black koji mold Aspergillus luchuensis. Journal of Bioscience and Bioengineering, 2021, 132, 321-326.	2.2	2
4	Improved recombinant protein production in Aspergillus oryzae lacking both α-1,3-glucan and galactosaminogalactan in batch culture with a lab-scale bioreactor. Journal of Bioscience and Bioengineering, 2021, , .	2.2	8
5	Alternative transcription start sites of the enolase-encoding gene enoA are stringently used in glycolytic/gluconeogenic conditions in Aspergillus oryzae. Current Genetics, 2020, 66, 729-747.	1.7	7
6	Chaperone complex formation of the transcription factor MalR involved in maltose utilization and amylolytic enzyme production in Aspergillus oryzae. Bioscience, Biotechnology and Biochemistry, 2018, 82, 827-835.	1.3	3
7	Increased production of biomass-degrading enzymes by double deletion of creA and creB genes involved in carbon catabolite repression in Aspergillus oryzae. Journal of Bioscience and Bioengineering, 2018, 125, 141-147.	2.2	25
8	Subcellular localization of aphidicolin biosynthetic enzymes heterologously expressed in Aspergillus oryzae. Bioscience, Biotechnology and Biochemistry, 2018, 82, 139-147.	1.3	5
9	The C-terminal region of the yeast monocarboxylate transporter Jen1 acts as a glucose signal–responding degron recognized by the α-arrestin Rod1. Journal of Biological Chemistry, 2018, 293, 10926-10936.	3.4	24
10	The PDR-type ABC transporters AtrA and AtrG are involved in azole drug resistance in Aspergillus oryzae. Bioscience, Biotechnology and Biochemistry, 2018, 82, 1840-1848.	1.3	10
11	Nuclear exportâ€dependent degradation of the carbon catabolite repressor CreA is regulated by a region located near the Câ€ŧerminus in <i>Aspergillus oryzae</i> . Molecular Microbiology, 2018, 110, 176-190.	2.5	18
12	Cellular responses to the expression of unstable secretory proteins in the filamentous fungus Aspergillus oryzae. Applied Microbiology and Biotechnology, 2017, 101, 2437-2446.	3.6	13
13	Improved α-Amylase Production by Dephosphorylation Mutation of CreD, an Arrestin-Like Protein Required for Glucose-Induced Endocytosis of Maltose Permease and Carbon Catabolite Derepression in Aspergillusoryzae. Applied and Environmental Microbiology, 2017, 83, .	3.1	14
14	Quantitative regulation of histone variant H2A.Z during cell cycle by ubiquitin proteasome system and SUMO-targeted ubiquitin ligases. Bioscience, Biotechnology and Biochemistry, 2017, 81, 1557-1560.	1.3	7
15	Cell wall α-1,3-glucan prevents α-amylase adsorption onto fungal cell in submerged culture of Aspergillus oryzae. Journal of Bioscience and Bioengineering, 2017, 124, 47-53.	2.2	30
16	Self-excising Cre/mutant lox marker recycling system for multiple gene integrations and consecutive gene deletions in Aspergillus oryzae. Journal of Bioscience and Bioengineering, 2017, 123, 403-411.	2.2	49
17	Induction of autophagy by phosphate starvation in an Atg11-dependent manner in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 2017, 483, 522-527.	2.1	34
18	A Novel Zn2-Cys6 Transcription Factor AtrR Plays a Key Role in an Azole Resistance Mechanism of Aspergillus fumigatus by Co-regulating cyp51A and cdr1B Expressions. PLoS Pathogens, 2017, 13, e1006096.	4.7	104

TAKAHIRO SHINTANI

#	Article	IF	CITATIONS
19	Cargo Proteins Facilitate the Formation of Transport Vesicles, but not Autophagosomes. , 2016, , 143-154.		0
20	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
21	The C2H2-type transcription factor, FlbC, is involved in the transcriptional regulation of Aspergillus oryzae glucoamylase and protease genes specifically expressed in solid-state culture. Applied Microbiology and Biotechnology, 2016, 100, 5859-5868.	3.6	23
22	Purification and enzymatic characterization of secretory glycoside hydrolase family 3 (GH3) aryl β-glucosidases screened from Aspergillus oryzae genome. Journal of Bioscience and Bioengineering, 2015, 120, 614-623.	2.2	25
23	Unfolded protein response is required for Aspergillus oryzae growth under conditions inducing secretory hydrolytic enzyme production. Fungal Genetics and Biology, 2015, 85, 1-6.	2.1	21
24	Endocytosis of a maltose permease is induced when amylolytic enzyme production is repressed in Aspergillus oryzae. Fungal Genetics and Biology, 2015, 82, 136-144.	2.1	21
25	Distinct mechanism of activation of two transcription factors, AmyR and MalR, involved in amylolytic enzyme production in Aspergillus oryzae. Applied Microbiology and Biotechnology, 2015, 99, 1805-1815.	3.6	38
26	Fusion of an intact secretory protein permits a misfolded protein to exit from the endoplasmic reticulum in yeast. Bioscience, Biotechnology and Biochemistry, 2014, 78, 49-59.	1.3	1
27	Improved α-amylase production by Aspergillus oryzae after a double deletion of genes involved in carbon catabolite repression. Applied Microbiology and Biotechnology, 2014, 98, 335-343.	3.6	55
28	Evaluation of baker's yeast strains exhibiting significant growth on Japanese beet molasses and compound analysis of the molasses types. Journal of Bioscience and Bioengineering, 2014, 117, 715-719.	2.2	14
29	Assays for Autophagy I: The Cvt Pathway and Nonselective Autophagy. Methods in Molecular Biology, 2014, 1163, 153-164.	0.9	14
30	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
31	Transcripts of a heterologous gene encoding mite allergen Der f 7 are stabilized by codon optimization in Aspergillus oryzae. Applied Microbiology and Biotechnology, 2012, 96, 1275-1282.	3.6	24
32	Functional analysis of FarA transcription factor in the regulation of the genes encoding lipolytic enzymes and hydrophobic surface binding protein for the degradation of biodegradable plastics in Aspergillus oryzae. Journal of Bioscience and Bioengineering, 2012, 113, 549-555.	2.2	23
33	Identification of potential cell wall component that allows Taka-amylase A adsorption in submerged cultures of Aspergillus oryzae. Applied Microbiology and Biotechnology, 2011, 92, 961-969.	3.6	27
34	Heterologous Expression ofAspergillus oryzaeXylose Reductase and Xylitol Dehydrogenase Genes Facilitated Xylose Utilization in the YeastSaccharomyces cerevisiae. Bioscience, Biotechnology and Biochemistry, 2011, 75, 168-170.	1.3	5
35	Aspartyl Aminopeptidase Is Imported from the Cytoplasm to the Vacuole by Selective Autophagy in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2011, 286, 13704-13713.	3.4	74
36	In silico Analysis of 3'-End-Processing Signals in Aspergillus oryzae Using Expressed Sequence Tags and Genomic Sequencing Data. DNA Research, 2011, 18, 189-200.	3.4	13

Takahiro Shintani

#	Article	IF	CITATIONS
37	The conserved oligomeric Golgi complex is involved in double-membrane vesicle formation during autophagy. Journal of Cell Biology, 2010, 188, 101-114.	5.2	179
38	Characterization and expression analysis of a maltose-utilizing (MAL) cluster in Aspergillus oryzae. Fungal Genetics and Biology, 2010, 47, 1-9.	2.1	40
39	Codon Optimization Increases Steady-State mRNA Levels in <i>Aspergillus oryzae</i> Heterologous Gene Expression. Applied and Environmental Microbiology, 2008, 74, 6538-6546.	3.1	61
40	Chapter Four Fluorescence Microscopyâ€Based Assays for Monitoring Yeast Atg Protein Trafficking. Methods in Enzymology, 2008, 451, 43-56.	1.0	14
41	Atg11 Directs Autophagosome Cargoes to the PAS Along Actin Cables. Autophagy, 2006, 2, 119-121.	9.1	23
42	The Actin Cytoskeleton Is Required for Selective Types of Autophagy, but Not Nonspecific Autophagy, in the Yeast Saccharomyces cerevisiae. Molecular Biology of the Cell, 2005, 16, 5843-5856.	2.1	139
43	Atg9 Cycles Between Mitochondria and the Pre-Autophagosomal Structure in Yeasts. Autophagy, 2005, 1, 101-109.	9.1	234
44	Early Stages of the Secretory Pathway, but Not Endosomes, Are Required for Cvt Vesicle and Autophagosome Assembly in Saccharomyces cerevisiae. Molecular Biology of the Cell, 2004, 15, 2189-2204.	2.1	130
45	Cargo Proteins Facilitate the Formation of Transport Vesicles in the Cytoplasm to Vacuole Targeting Pathway. Journal of Biological Chemistry, 2004, 279, 29889-29894.	3.4	311
46	Autophagy in Health and Disease: A Double-Edged Sword. Science, 2004, 306, 990-995.	12.6	2,367
46 47	Autophagy in Health and Disease: A Double-Edged Sword. Science, 2004, 306, 990-995. Vps51 Is Part of the Yeast Vps Fifty-three Tethering Complex Essential for Retrograde Traffic from the Early Endosome and Cvt Vesicle Completion. Journal of Biological Chemistry, 2003, 278, 5009-5020.	12.6 3.4	2,367 91
	Vps51 Is Part of the Yeast Vps Fifty-three Tethering Complex Essential for Retrograde Traffic from the		
47	Vps51 Is Part of the Yeast Vps Fifty-three Tethering Complex Essential for Retrograde Traffic from the Early Endosome and Cvt Vesicle Completion. Journal of Biological Chemistry, 2003, 278, 5009-5020. Mechanism of Cargo Selection in the Cytoplasm to Vacuole Targeting Pathway. Developmental Cell,	3.4	91
47 48	Vps51 Is Part of the Yeast Vps Fifty-three Tethering Complex Essential for Retrograde Traffic from the Early Endosome and Cvt Vesicle Completion. Journal of Biological Chemistry, 2003, 278, 5009-5020. Mechanism of Cargo Selection in the Cytoplasm to Vacuole Targeting Pathway. Developmental Cell, 2002, 3, 825-837. Apg2p Functions in Autophagosome Formation on the Perivacuolar Structure. Journal of Biological	3.4 7.0	91 326
47 48 49	 Vps51 Is Part of the Yeast Vps Fifty-three Tethering Complex Essential for Retrograde Traffic from the Early Endosome and Cvt Vesicle Completion. Journal of Biological Chemistry, 2003, 278, 5009-5020. Mechanism of Cargo Selection in the Cytoplasm to Vacuole Targeting Pathway. Developmental Cell, 2002, 3, 825-837. Apg2p Functions in Autophagosome Formation on the Perivacuolar Structure. Journal of Biological Chemistry, 2001, 276, 30452-30460. Tor-Mediated Induction of Autophagy via an Apg1 Protein Kinase Complex. Journal of Cell Biology, 	3.4 7.0 3.4	91 326 115
47 48 49 50	 Vps51 Is Part of the Yeast Vps Fifty-three Tethering Complex Essential for Retrograde Traffic from the Early Endosome and Cvt Vesicle Completion. Journal of Biological Chemistry, 2003, 278, 5009-5020. Mechanism of Cargo Selection in the Cytoplasm to Vacuole Targeting Pathway. Developmental Cell, 2002, 3, 825-837. Apg2p Functions in Autophagosome Formation on the Perivacuolar Structure. Journal of Biological Chemistry, 2001, 276, 30452-30460. Tor-Mediated Induction of Autophagy via an Apg1 Protein Kinase Complex. Journal of Cell Biology, 2000, 150, 1507-1513. Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast. EMBO Journal, 1999, 18, 	3.47.03.45.2	91 326 115 1,027
47 48 49 50 51	Vps51 ls Part of the Yeast Vps Fifty-three Tethering Complex Essential for Retrograde Traffic from the Early Endosome and Cvt Vesicle Completion. Journal of Biological Chemistry, 2003, 278, 5009-5020. Mechanism of Cargo Selection in the Cytoplasm to Vacuole Targeting Pathway. Developmental Cell, 2002, 3, 825-837. Apg2p Functions in Autophagosome Formation on the Perivacuolar Structure. Journal of Biological Chemistry, 2001, 276, 30452-30460. Tor-Mediated Induction of Autophagy via an Apg1 Protein Kinase Complex. Journal of Cell Biology, 2000, 150, 1507-1513. Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast. EMBO Journal, 1999, 18, 5234-5241.	 3.4 7.0 3.4 5.2 7.8 	91 326 115 1,027 266