Toshiharu Makino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7802319/publications.pdf

Version: 2024-02-01

138	3,220 citations	126907	182427
papers	citations	h-index	g-index
139	139	139	2119
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Optically detected magnetic resonance of nitrogen-vacancy centers in vertical diamond Schottky diodes. Japanese Journal of Applied Physics, 2022, 61, SC1061.	1.5	О
2	Selectively buried growth of heavily B doped diamond layers with step-free surfaces in N doped diamond (111) by homoepitaxial lateral growth. Applied Surface Science, 2022, , 153340.	6.1	1
3	Study of ion-implanted nitrogen related defects in diamond Schottky barrier diode by transient photocapacitance and photoluminescence spectroscopy. Japanese Journal of Applied Physics, 2021, 60, SBBD07.	1.5	3
4	Carrier transport mechanism of diamond p ⁺ â€"n junction at low temperature using Schottkyâ€"pn junction structure. Japanese Journal of Applied Physics, 2021, 60, 030905.	1.5	5
5	Inversion channel MOSFET on heteroepitaxially grown free-standing diamond. Carbon, 2021, 175, 615-619.	10.3	9
6	Distinguishing dislocation densities in intrinsic layers of pin diamond diodes using two photon-excited photoluminescence imaging. Diamond and Related Materials, 2021, 117, 108463.	3.9	2
7	Fabrication of inversion p-channel MOSFET with a nitrogen-doped diamond body. Applied Physics Letters, 2021, 119, .	3.3	11
8	Scanning diamond NV center magnetometer probe fabricated by laser cutting and focused ion beam milling. Journal of Applied Physics, 2021, 130, .	2.5	1
9	Characterization of Schottky Barrier Diodes on Heteroepitaxial Diamond on 3C-SiC/Si Substrates. IEEE Transactions on Electron Devices, 2020, 67, 212-216.	3.0	11
10	Energy distribution of Al2O3/diamond interface states characterized by high temperature capacitance-voltage method. Carbon, 2020, 168, 659-664.	10.3	20
11	Charge state control by band engineering. Semiconductors and Semimetals, 2020, 103, 137-159.	0.7	1
12	Vector Electrometry in a Wide-Gap-Semiconductor Device Using a Spin-Ensemble Quantum Sensor. Physical Review Applied, 2020, 14, .	3.8	17
13	Insight into Al2O3/B-doped diamond interface states with high-temperature conductance method. Applied Physics Letters, 2020, 117, .	3.3	11
14	Study of defects in diamond Schottky barrier diode by photocurrent spectroscopy. Japanese Journal of Applied Physics, 2020, 59, SGGK14.	1.5	2
15	Temperature dependence of diamond MOSFET transport properties. Japanese Journal of Applied Physics, 2020, 59, SGGD19.	1.5	4
16	Determination of Current Leakage Sites in Diamond p–n Junction. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900243.	1.8	1
17	Inversion channel mobility and interface state density of diamond MOSFET using N-type body with various phosphorus concentrations. Applied Physics Letters, 2019, 114, .	3.3	19
18	Conductive-probe atomic force microscopy and Kelvin-probe force microscopy characterization of OH-terminated diamond (111) surfaces with step-terrace structures. Japanese Journal of Applied Physics, 2019, 58, SIIB08.	1.5	5

#	Article	IF	CITATIONS
19	Microstructures of dome-shaped hillocks formed on B doped CVD homoepitaxial diamond films. Diamond and Related Materials, 2019, 97, 107422.	3.9	7
20	Charge-state control of ensemble of nitrogen vacancy centers by n–i–n diamond junctions. Applied Physics Express, 2018, 11, 033004.	2.4	10
21	Single crystal diamond membranes for nanoelectronics. Nanoscale, 2018, 10, 4028-4035.	5 . 6	27
22	Anisotropic diamond etching through thermochemical reaction between Ni and diamond in high-temperature water vapour. Scientific Reports, 2018, 8, 6687.	3.3	41
23	Direct observation of inversion capacitance in p-type diamond MOS capacitors with an electron injection layer. Japanese Journal of Applied Physics, 2018, 57, 04FR01.	1.5	14
24	Temperature dependence of electrical characteristics for diamond Schottky-pn diode in forward bias. Diamond and Related Materials, 2018, 85, 49-52.	3.9	11
25	Engineering of Fermi level by $\langle i \rangle$ nin $\langle i \rangle$ diamond junction for control of charge states of NV centers. Applied Physics Letters, 2018, 112, .	3.3	26
26	Formation of atomically flat hydroxyl-terminated diamond (1†1†1) surfaces via water vapor annealing. Applied Surface Science, 2018, 458, 222-225.	6.1	23
27	Reverseâ€recovery of diamond pâ€iâ€n diodes. IET Power Electronics, 2018, 11, 695-699.	2.1	4
28	Direct Nanoscale Sensing of the Internal Electric Field in Operating Semiconductor Devices Using Single Electron Spins. ACS Nano, 2017, 11, 1238-1245.	14.6	82
29	Mechanism of anisotropic etching on diamond (111) surfaces by a hydrogen plasma treatment. Applied Surface Science, 2017, 422, 452-455.	6.1	22
30	Charge transport properties of intrinsic layer in diamond vertical pin diode. Applied Physics Letters, 2017, 110, .	3.3	6
31	Dynamic properties of diamond high voltage p–i–n diodes. Japanese Journal of Applied Physics, 2017, 56, 04CR14.	1.5	10
32	Diamond Schottky-pn diode using lightly nitrogen-doped layer. Diamond and Related Materials, 2017, 75, 152-154.	3.9	37
33	Estimation of Inductively Coupled Plasma Etching Damage of Boronâ€Doped Diamond Using Xâ€Ray Photoelectron Spectroscopy. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700233.	1.8	11
34	Observation of Interface Defects in Diamond Lateral p-n-Junction Diodes and Their Effect on Reverse Leakage Current. IEEE Transactions on Electron Devices, 2017, 64, 3298-3302.	3.0	6
35	High-Temperature Bipolar-Mode Operation of Normally-Off Diamond JFET. IEEE Journal of the Electron Devices Society, 2017, 5, 95-99.	2.1	27
36	N-type control of single-crystal diamond films by ultra-lightly phosphorus doping. Applied Physics Letters, 2016, 109, .	3.3	49

#	Article	IF	Citations
37	Pure negatively charged state of the NV center in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>n</mml:mi></mml:math> -type diamond. Physical Review B, 2016, 93, .	3.2	77
38	Inversion channel diamond metal-oxide-semiconductor field-effect transistor with normally off characteristics. Scientific Reports, 2016, 6, 31585.	3.3	150
39	Diamond electronics., 2016,,.		2
40	Charge state modulation of nitrogen vacancy centers in diamond by applying a forward voltage across a p–i–n junction. Diamond and Related Materials, 2016, 63, 192-196.	3.9	18
41	Normally-Off Diamond Junction Field-Effect Transistors With Submicrometer Channel. IEEE Electron Device Letters, 2016, 37, 209-211.	3.9	36
42	Desorption time of phosphorus during MPCVD growth of n-type (001) diamond. Diamond and Related Materials, 2016, 64, 208-212.	3.9	11
43	Defect luminescence in Diamond and GaN: towards single photon emitting devices. , 2016, , .		0
44	Potential profile evaluation of a diamond lateral p–n junction diode using Kelvin probe force microscopy. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2589-2594.	1.8	1
45	Fabrication of diamond lateral p–n junction diodes on (111) substrates. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2548-2552.	1.8	7
46	Electronic properties of diamond Schottky barrier diodes fabricated on silicon-based heteroepitaxially grown diamond substrates. Applied Physics Express, 2015, 8, 104103.	2.4	30
47	Electrical excitation of silicon-vacancy centers in single crystal diamond. Applied Physics Letters, 2015, 106, .	3.3	33
48	Atomistic mechanism of perfect alignment of nitrogen-vacancy centers in diamond. Applied Physics Letters, 2014, 105, .	3.3	39
49	Carrier transport in homoepitaxial diamond films with heavy phosphorus doping. Japanese Journal of Applied Physics, 2014, 53, 05FP05.	1.5	19
50	Generation and transportation mechanisms for two-dimensional hole gases in GaN/AlGaN/GaN double heterostructures. Journal of Applied Physics, 2014, 115, .	2.5	42
51	Electron emission from nitrogen-containing diamond with narrow-gap coplanar electrodes. Japanese Journal of Applied Physics, 2014, 53, 05FP08.	1.5	0
52	Diamond electronic devices fabricated using heavily doped hopping p ⁺ and n ⁺ layers. Japanese Journal of Applied Physics, 2014, 53, 05FA12.	1.5	29
53	Investigation of electron emission site of p–i–n diode-type emitters with negative electron affinity. Japanese Journal of Applied Physics, 2014, 53, 05FP07.	1.5	0
54	Analysis of selective growth of n-type diamond in lateral p–n junction diodes by cross-sectional transmission electron microscopy. Japanese Journal of Applied Physics, 2014, 53, 05FP01.	1.5	10

#	Article	IF	CITATIONS
55	Polarizationâ€controlled dressedâ€photon–phonon etching of patterned diamond structures. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2339-2342.	1.8	7
56	Unique temperature dependence of deep ultraviolet emission intensity for diamond light emitting diodes. Japanese Journal of Applied Physics, 2014, 53, 05FP02.	1.5	4
57	Free exciton luminescence from a diamond p–i–n diode grown on a substrate produced by heteroepitaxy. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2251-2256.	1.8	14
58	$600V$ Diamond Junction Field-Effect Transistors Operated at $200\$ (circ) (m C)\$. IEEE Electron Device Letters, 2014, 35, 241-243.	3.9	74
59	Deterministic Electrical Charge-State Initialization of Single Nitrogen-Vacancy Center in Diamond. Physical Review X, 2014, 4, .	8.9	41
60	Perfect selective alignment of nitrogen-vacancy centers in diamond. Applied Physics Express, 2014, 7, 055201.	2.4	84
61	Reduction of nâ€type diamond contact resistance by graphite electrode. Physica Status Solidi - Rapid Research Letters, 2014, 8, 137-140.	2.4	16
62	Electrical characterization of diamond Pi <scp>N</scp> diodes for high voltage applications. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 2035-2039.	1.8	52
63	Fabrication of bipolar junction transistor on (001)-oriented diamond by utilizing phosphorus-doped n-type diamond base. Diamond and Related Materials, 2013, 34, 41-44.	3.9	38
64	Single photon, spin, and charge in diamond semiconductor at room temperature. , 2013, , .		0
65	Negative electron affinity of diamond and its application to high voltage vacuum power switches. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 1961-1975.	1.8	53
66	High-Temperature Operation of Diamond Junction Field-Effect Transistors With Lateral p-n Junctions. IEEE Electron Device Letters, 2013, 34, 1175-1177.	3.9	51
67	Formation of Graphene-on-Diamond Structure by Graphitization of Atomically Flat Diamond (111) Surface. Japanese Journal of Applied Physics, 2013, 52, 110121.	1.5	37
68	High-Voltage Vacuum Switch with a Diamond p–i–n Diode Using Negative Electron Affinity. Japanese Journal of Applied Physics, 2012, 51, 090113.	1.5	17
69	Formation of Step-Free Surfaces on Diamond (111) Mesas by Homoepitaxial Lateral Growth. Japanese Journal of Applied Physics, 2012, 51, 090107.	1.5	19
70	Diamond bipolar junction transistor device with phosphorus-doped diamond base layer. Diamond and Related Materials, 2012, 27-28, 19-22.	3.9	51
71	Device Design of Diamond Schottky-pn Diode for Low-Loss Power Electronics. Japanese Journal of Applied Physics, 2012, 51, 090116.	1.5	6
72	Electrically driven single-photon source at room temperature in diamond. Nature Photonics, 2012, 6, 299-303.	31.4	291

#	Article	IF	CITATIONS
73	Nonlinear behavior of currentâ€dependent emission for diamond lightâ€emitting diodes. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 1754-1760.	1.8	13
74	Diamond Junction Field-Effect Transistors with Selectively Grown n $^{+}$ -Side Gates. Applied Physics Express, 2012, 5, 091301.	2.4	61
75	Maskless Selective Growth Method for p–n Junction Applications on (001)-Oriented Diamond. Japanese Journal of Applied Physics, 2012, 51, 090118.	1.5	6
76	Electrical properties of lateral p–n junction diodes fabricated by selective growth of n ⁺ diamond. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 1761-1764.	1.8	32
77	Formation of Step-Free Surfaces on Diamond (111) Mesas by Homoepitaxial Lateral Growth. Japanese Journal of Applied Physics, 2012, 51, 090107.	1.5	19
78	High-Voltage Vacuum Switch with a Diamond p–i–n Diode Using Negative Electron Affinity. Japanese Journal of Applied Physics, 2012, 51, 090113.	1.5	22
79	Device Design of Diamond Schottky-pn Diode for Low-Loss Power Electronics. Japanese Journal of Applied Physics, 2012, 51, 090116.	1.5	5
80	Maskless Selective Growth Method for p–n Junction Applications on (001)-Oriented Diamond. Japanese Journal of Applied Physics, 2012, 51, 090118.	1.5	5
81	Electron emission from CVD diamond p–i–n junctions with negative electron affinity during room temperature operation. Diamond and Related Materials, 2011, 20, 917-921.	3.9	10
82	Carrier transport of diamond p ⁺ â€iâ€n ⁺ junction diode fabricated using lowâ€resistance hopping p ⁺ and n ⁺ layers. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 937-942.	1.8	5
83	Electron emission from diamond <i>p</i> àê" <i>i</i> àê" <i>n</i> junction diode with heavily Pâ€doped <i>n</i> ⁺ top layer. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 2073-2078.	1.8	19
84	Misorientation-angle dependence of boron incorporation into (001)-oriented chemical-vapor-deposited (CVD) diamond. Journal of Crystal Growth, 2011, 317, 60-63.	1.5	90
85	Enhancement in emission efficiency of diamond deep-ultraviolet light emitting diode. Applied Physics Letters, 2011, 99, .	3.3	73
86	Electron emission by current injection from nâ€type diamond film surface with negative electron affinity. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 2093-2098.	1.8	6
87	Improvement of (001)-oriented diamond p-i-n diode by use of selective grown n+ layer. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 2099-2104.	1.8	12
88	Diamond Schottkyâ€pn diode without tradeâ€off relationship between onâ€resistance and blocking voltage. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 2105-2109.	1.8	34
89	Electron Emission from a Diamond (111) p–i–n+Junction Diode with Negative Electron Affinity during Room Temperature Operation. Applied Physics Express, 2010, 3, 041301.	2.4	24
90	Electron Emission from Diamond (111) p+-i-n+ Junction Diode. Materials Research Society Symposia Proceedings, 2009, 1203, 1.	0.1	0

#	Article	IF	Citations
91	Diamond Schottky p–n diode with high forward current density. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2086-2090.	1.8	20
92	Diamond Schottky-pn diode with high forward current density and fast switching operation. Applied Physics Letters, 2009, 94, .	3.3	77
93	Selective Growth of Buried n+Diamond on (001) Phosphorus-Doped n-Type Diamond Film. Applied Physics Express, 2009, 2, 055502.	2.4	55
94	Electrical and light-emitting properties from (111)-oriented homoepitaxial diamond p–i–n junctions. Diamond and Related Materials, 2009, 18, 764-767.	3.9	18
95	High performance of diamond p+-i-n+ junction diode fabricated using heavily doped p+ and n+ layers. Applied Physics Letters, 2009, 94, .	3.3	73
96	Optoelectronic Devices Using Homoepitaxial Diamond p-n and p-i-n Junctions., 2009,, 379-398.		2
97	Electrical and lightâ€emitting properties of homoepitaxial diamond p–i–n junction. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 2200-2206.	1.8	29
98	Homoepitaxial diamond p–n+ junction with low specific on-resistance and ideal built-in potential. Diamond and Related Materials, 2008, 17, 782-785.	3.9	23
99	Oxidation processes of surface hydrogenated silicon nanocrystallites prepared by pulsed laser ablation and their effects on the photoluminescence wavelength. Journal of Applied Physics, 2008, 103, 024305.	2.5	16
100	Exciton-derived Electron Emission from (001) Diamond <i>p</i> a€" <i>n</i> Junction Diodes with Negative Electron Affinity. Applied Physics Express, 2008, 1, 015004.	2.4	8
101	n-Type Diamond Growth by Phosphorus Doping. Materials Research Society Symposia Proceedings, 2007, 1039, 1.	0.1	2
102	Formation of nanoscale fine-structured silicon by pulsed laser ablation in hydrogen background gas. Physical Review B, 2007, 76, .	3.2	43
103	Isotope effects between hydrogen and deuterium microwave plasmas on chemical vapor deposition homoepitaxial diamond growth. Journal of Applied Physics, 2007, 101, 103501.	2.5	10
104	Electrical and light-emitting properties of (001)-oriented homoepitaxial diamond p–i–n junction. Diamond and Related Materials, 2007, 16, 1025-1028.	3.9	18
105	n-type diamond growth by phosphorus doping on (O O 1)-oriented surface. Journal Physics D: Applied Physics, 2007, 40, 6189-6200.	2.8	90
106	Growth and characterization of boron-doped CVD homoepitaxial diamond films. Journal of Crystal Growth, 2007, 299, 235-242.	1.5	4
107	Electrical and optical characterizations of (001)-oriented homoepitaxial diamond p–n junction. Diamond and Related Materials, 2006, 15, 513-516.	3.9	15
108	High-Efficiency Excitonic Emission with Deep-Ultraviolet Light from (001)-Oriented Diamondp-i-nJunction. Japanese Journal of Applied Physics, 2006, 45, L1042-L1044.	1.5	52

#	Article	IF	CITATIONS
109	Correlation between electronic structure and chemical bond on the surface of hydrogenated silicon nanocrystallites. AIP Conference Proceedings, 2005, , .	0.4	O
110	Preparation of surface controlled silicon nanocrystallites by pulsed laser ablation. AIP Conference Proceedings, 2005, , .	0.4	0
111	Diamond Schottky barrier diodes with low specific on-resistance. Semiconductor Science and Technology, 2005, 20, 1203-1206.	2.0	5
112	Characterization of Field Emission from Nano-Scale Diamond Tip Arrays. Japanese Journal of Applied Physics, 2005, 44, L385-L387.	1.5	8
113	Structural and optical properties of surface-hydrogenated silicon nanocrystallites prepared by reactive pulsed laser ablation. Journal Physics D: Applied Physics, 2005, 38, 3507-3511.	2.8	17
114	Surface conductive layers on oxidized (111) diamonds. Applied Physics Letters, 2005, 87, 262107.	3.3	19
115	Electrical characterization of homoepitaxial diamond p–n+ junction. Diamond and Related Materials, 2005, 14, 1995-1998.	3.9	8
116	Strong Excitonic Emission from (001)-Oriented DiamondP-NJunction. Japanese Journal of Applied Physics, 2005, 44, L1190-L1192.	1.5	22
117	Electrical and optical characterization of boron-doped (111) homoepitaxial diamond films. Diamond and Related Materials, 2005, 14, 1964-1968.	3.9	21
118	Structural and optical properties of silicon nanoparticles prepared by pulsed laser ablation in hydrogen background gas. Applied Physics A: Materials Science and Processing, 2004, 79, 1391-1393.	2.3	11
119	Correlation between surface oxide and photoluminescence properties of Si nanoparticles prepared by pulsed laser ablation. Applied Physics A: Materials Science and Processing, 2004, 79, 1545-1547.	2.3	7
120	Recombination process of CdS quantum dot covered by novel polymer chains. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 1102-1105.	2.7	7
121	Reaction between nitrogen gas and silicon species during pulsed laser ablation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 1680-1682.	2.1	6
122	Laser Processing for Fabrication of Silicon Nanoparticles and Quantum Dot Functional Structures. The Review of Laser Engineering, 2003, 31, 548-551.	0.0	0
123	Background gas effects on structural properties in thin films deposited by pulsed laser deposition. , 2002, , .		1
124	Mechanisms of Visible Photoluminescence from Size-Controlled Silicon Nanoparticles. Materials Research Society Symposia Proceedings, 2002, 737, 325.	0.1	0
125	<title>Synthesis of quantum nanostructures composed of monodispersed silicon nanoparticles and indium oxide thin films using pulsed laser ablation</title> ., 2002, 4636, 97.		2
126	Electroluminescence of monodispersed silicon nanocrystallites synthesized by pulsed laser ablation in inert background gas. Applied Surface Science, 2002, 197-198, 594-597.	6.1	7

#	Article	IF	CITATIONS
127	Annealing effects on structures and optical properties of silicon nanostructured films prepared by pulsed-laser ablation in inert background gas. Journal of Applied Physics, 2001, 90, 5075-5080.	2.5	39
128	Monodispersed, nonagglomerated silicon nanocrystallites. Applied Physics Letters, 2001, 78, 2043-2045.	3.3	35
129	Effects of annealing on luminescence properties of Si nanocrystallites prepared by pulsed laser ablation in inert gas. Materials Science and Engineering C, 2001, 15, 129-131.	7.3	2
130	Silicon Nanocrystallite Light Emitting Devices Fabricated by Full Pulsed-Laser-Ablation Process. Materials Research Society Symposia Proceedings, 2000, 638, 1.	0.1	1
131	Stoichiometric indium oxide thin films prepared by pulsed laser deposition in pure inert background gas. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 83-86.	2.1	40
132	Structures and optical properties of silicon nanocrystallites prepared by pulsed-laser ablation in inert background gas. Applied Physics Letters, 2000, 76, 1389-1391.	3.3	46
133	<title>Crystallinities and light-emitting properties of nanostructured SiGe alloy prepared by pulsed laser ablation in inert background gases</title> ., 1999, 3618, 512.		1
134	<title>Semiconductor nanocrystallite formation using inert gas ambient pulsed laser ablation and its application to light-emitting devices</title> ., 1999, 3618, 465.		3
135	Optical Properties and Structural Changes in Semiconductor Fine Particles. Springer Series in Cluster Physics, 1999, , 19-30.	0.3	O
136	Structural phase transition of CdS microcrystals embedded in glassy matrix under high pressure. Journal of Physics Condensed Matter, 1998, 10, 10919-10930.	1.8	10
137	Pressure-induced structural phase transition of CdS microcrystals studied by raman scattering. Journal of Physics and Chemistry of Solids, 1995, 56, 491-494.	4.0	10
138	Pressure Effects on CdS Microcrystals Embedded in Germanate Glasses. Japanese Journal of Applied Physics, 1993, 32, 297.	1.5	6