Rajaram Swaminathan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7800785/publications.pdf

Version: 2024-02-01

44 papers 2,196 citations

394421 19 h-index 35 g-index

45 all docs

45 docs citations

45 times ranked

3112 citing authors

#	Article	IF	CITATIONS
1	Role of Charged Amino Acids in Sullying the Fluorescence of Tryptophan or Conjugated Dansyl Probe in Monomeric Proteins. Biochemistry, 2022, 61, 339-353.	2.5	2
2	Ordered structure induced in human c-Myc PEST region upon forming a disulphide bonded dimer. Journal of Chemical Sciences, 2021, 133, 1.	1.5	3
3	Enhanced solubility, electronic absorption and fluorescence observed for Karanjin in aqueous SDS micelles compared to water. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 414, 113289.	3.9	2
4	Weak Intrinsic Luminescence in Monomeric Proteins Arising from Charge Recombination. Journal of Physical Chemistry B, 2020, 124, 2731-2746.	2.6	13
5	Structure and dynamics at N―and Câ€terminal regions of intrinsically disordered human câ€Myc PEST degron reveal a pH―nduced transition. Proteins: Structure, Function and Bioinformatics, 2020, 88, 889-909.	2.6	8
6	Consequences of Heterogeneous Crowding on an Enzymatic Reaction: A Residence Time Monte Carlo Approach. ACS Omega, 2019, 4, 727-736.	3.5	8
7	Photocrosslinking between nucleic acids and proteins: general discussion. Faraday Discussions, 2018, 207, 283-306.	3.2	5
8	Light induced charge and energy transport in nucleic acids and proteins: general discussion. Faraday Discussions, 2018, 207, 153-180.	3.2	1
9	Bionanophotonics: general discussion. Faraday Discussions, 2018, 207, 491-512.	3.2	O
10	Protein charge transfer absorption spectra: an intrinsic probe to monitor structural and oligomeric transitions in proteins. Faraday Discussions, 2018, 207, 91-113.	3.2	20
11	Near UV-Visible electronic absorption originating from charged amino acids in a monomeric protein. Chemical Science, 2017, 8, 5416-5433.	7.4	136
12	Osmolytes: Key Players in Regulating Protein Aggregation. , 2017, , 97-119.		3
13	Charge Transfer Transitions Originating from Charged Amino Acids Account for 300-800 nm UV-Visible Electronic Absorption Spectra in Proteins. Biophysical Journal, 2017, 112, 190a-191a.	0.5	1
14	Investigation of Novel Spectroscopic Features in the Near Ultraviolet Region Arising from Non-Aromatic Amino Acids in Peptides and Proteins. Biophysical Journal, 2016, 110, 489a.	0.5	0
15	Collagen Promotes Higher Adhesion, Survival and Proliferation of Mesenchymal Stem Cells. PLoS ONE, 2015, 10, e0145068.	2.5	201
16	Preventing Disulfide Bond Formation Weakens Non-Covalent Forces among Lysozyme Aggregates. PLoS ONE, 2014, 9, e87012.	2.5	15
17	On the Characterization of Intermediates in the Isodesmic Aggregation Pathway of Hen Lysozyme at Alkaline pH. PLoS ONE, 2014, 9, e87256.	2.5	22
18	Fluid Flow and Particle Dynamics Inside an Evaporating Droplet Containing Live Bacteria Displaying Chemotaxis. Langmuir, 2014, 30, 12144-12153.	3 . 5	22

#	Article	IF	CITATIONS
19	MD Simulation Trajectories of Multiple Intrinsically Disordered Proteins Reveal Order to Disorder Transitions that Bear Functional Significance. Biophysical Journal, 2014, 106, 484a.	0.5	O
20	Hydrolytic enzymes conjugated to quantum dots mostly retain whole catalytic activity. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 2935-2943.	2.4	12
21	Human Lysozyme Amyloidosis: MD Simulations Reveal Increased Structural Destabilization in Disease causing Mutants Compared to Wildtype. Biophysical Journal, 2013, 104, 387a.	0.5	0
22	Carboxymethylation of Cysteines Impedes Aggregation of Hen Lysozyme in Alkaline pH. Biophysical Journal, 2012, 102, 255a.	0.5	1
23	Manipulating the Size of Hen Lysozyme Nanoparticles Created by Controlled Self-Assembly. Biophysical Journal, 2012, 102, 206a.	0.5	0
24	Inhibition of Lysozyme Amyloidogenesis by Osmolytes. Biophysical Journal, 2012, 102, 255a-256a.	0.5	0
25	Decrease in Size of Hen Egg white Lysozyme Aggregates with Decrease in Monomer Concentration from Micro to Nanomolar in Alkaline pH. Biophysical Journal, 2011, 100, 538a.	0.5	0
26	MD Simulations Highlight the Contrast in Dynamics of Intrinsically Disordered Proteins When Compared with Folded Proteins. Biophysical Journal, 2011, 100, 229a.	0.5	0
27	Lysozyme. Advances in Protein Chemistry and Structural Biology, 2011, 84, 63-111.	2.3	205
28	A novel approach to segregate and identify functional loop regions in protein structures using their Ramachandran maps. Proteins: Structure, Function and Bioinformatics, 2010, 78, 900-916.	2.6	7
29	Oligomerisation, Fibrillation and Activity of Hen Lysozyme in Alkaline Medium: A Concentration Dependent Investigation. Biophysical Journal, 2010, 98, 252a.	0.5	2
30	Suppression of lysozyme aggregation at alkaline pH by tri-N-acetylchitotriose. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 913-920.	2.3	34
31	Thioflavin T Displays Enhanced Fluorescence Selectively Inside Anionic Micelles and Mammalian Cells. Journal of Fluorescence, 2008, 18, 1199-1205.	2.5	64
32	Effect of macromolecular crowding on the rate of diffusion-limited enzymatic reaction. Pramana - Journal of Physics, 2008, 71, 359-368.	1.8	17
33	Hydrogen bond induced twisted intramolecular charge transfer in 2-(4′-N,N-dimethylaminophenyl)imidazo[4,5-b]pyridine. Chemical Physics Letters, 2008, 460, 119-124.	2.6	61
34	How do surfactants and DTT affect the size, dynamics, activity and growth of soluble lysozyme aggregates?. Biochemical Journal, 2008, 415, 275-288.	3.7	72
35	Employing the fluorescence anisotropy and quenching kinetics of tryptophan to hunt for residual structures in denatured proteins. Journal of Chemical Sciences, 2007, 119, 141-145.	1.5	12
36	Slow aggregation of lysozyme in alkaline pH monitored in real time employing the fluorescence anisotropy of covalently labelled dansyl probe. FEBS Letters, 2006, 580, 2097-2101.	2.8	28

#	Article	IF	CITATIONS
37	Effect of crowding by dextrans and Ficolls on the rate of alkaline phosphatase-catalyzed hydrolysis: A size-dependent investigation. Biopolymers, 2006, 83, 477-486.	2.4	69
38	Near Ultraviolet Absorption Arising from Lysine Residues in Close Proximity: A Probe to Monitor Protein Unfolding and Aggregation in Lysine-Rich Proteins. Bulletin of the Chemical Society of Japan, 2004, 77, 765-769.	3.2	28
39	Novel Absorption and Fluorescence Characteristics of L-Lysine. Chemistry Letters, 2001, 30, 844-845.	1.3	44
40	Rapid Diffusion of Green Fluorescent Protein in the Mitochondrial Matrix. Journal of Cell Biology, 1998, 140, 821-829.	5.2	215
41	Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. Biophysical Journal, 1997, 72, 1900-1907.	0.5	563
42	Cytoplasmic viscosity near the cell plasma membrane: translational diffusion of a small fluorescent solute measured by total internal reflection-fluorescence photobleaching recovery. Biophysical Journal, 1996, 71, 1140-1151.	0.5	98
43	Motional Dynamics of a Buried Tryptophan Reveals the Presence of Partially Structured Forms during Denaturation of Barstar. Biochemistry, 1996, 35, 9150-9157.	2.5	54
44	Similarity of fluorescence lifetime distributions for single tryptophan proteins in the random coil state. Biophysical Journal, 1994, 67, 2013-2023.	0.5	147