List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7799673/publications.pdf Version: 2024-02-01

Ματτμίας Μανιν

#	Article	IF	CITATIONS
1	Towards Precision Dermatology: Emerging Role of Proteomic Analysis of the Skin. Dermatology, 2022, 238, 185-194.	2.1	9
2	YBX1 mediates translation of oncogenic transcripts to control cell competition in AML. Leukemia, 2022, 36, 426-437.	7.2	18
3	AlphaMap: an open-source Python package for the visual annotation of proteomics data with sequence-specific knowledge. Bioinformatics, 2022, 38, 849-852.	4.1	12
4	PLCG1 is required for AML1-ETO leukemia stem cell self-renewal. Blood, 2022, 139, 1080-1097.	1.4	16
5	A20 and ABIN-1 cooperate in balancing CBM complex-triggered NF-κB signaling in activated T cells. Cellular and Molecular Life Sciences, 2022, 79, 112.	5.4	11
6	Gene-selective transcription promotes the inhibition of tissue reparative macrophages by TNF. Life Science Alliance, 2022, 5, e202101315.	2.8	10
7	A knowledge graph to interpret clinical proteomics data. Nature Biotechnology, 2022, 40, 692-702.	17.5	97
8	Cotranslational N-degron masking by acetylation promotes proteome stability in plants. Nature Communications, 2022, 13, 810.	12.8	29
9	Association of Complement and MAPK Activation With SARS-CoV-2–Associated Myocardial Inflammation. JAMA Cardiology, 2022, 7, 286.	6.1	15
10	Ultraâ€high sensitivity mass spectrometry quantifies singleâ€cell proteome changes upon perturbation. Molecular Systems Biology, 2022, 18, e10798.	7.2	261
11	The emerging role of mass spectrometry-based proteomics in drug discovery. Nature Reviews Drug Discovery, 2022, 21, 637-654.	46.4	110
12	The proteogenomic subtypes of acute myeloid leukemia. Cancer Cell, 2022, 40, 301-317.e12.	16.8	43
13	OpenCell: Endogenous tagging for the cartography of human cellular organization. Science, 2022, 375, eabi6983.	12.6	174
14	Phosphorylation of serine-893 in CARD11 suppresses the formation and activity of the CARD11-BCL10-MALT1 complex in T and B cells. Science Signaling, 2022, 15, eabk3083.	3.6	3
15	Amyloid-like aggregating proteins cause lysosomal defects in neurons via gain-of-function toxicity. Life Science Alliance, 2022, 5, e202101185.	2.8	13
16	A GID E3 ligase assembly ubiquitinates an Rsp5 E3 adaptor and regulates plasma membrane transporters. EMBO Reports, 2022, 23, e53835.	4.5	9
17	Gelâ€like inclusions of Câ€terminal fragments of TDPâ€43 sequester stalled proteasomes in neurons. EMBO Reports, 2022, 23, e53890.	4.5	28
18	HAX1-dependent control of mitochondrial proteostasis governs neutrophil granulocyte differentiation. Journal of Clinical Investigation, 2022, 132, .	8.2	18

#	Article	IF	CITATIONS
19	The structural context of posttranslational modifications at a proteome-wide scale. PLoS Biology, 2022, 20, e3001636.	5.6	50
20	Dynamic human liver proteome atlas reveals functional insights into disease pathways. Molecular Systems Biology, 2022, 18, e10947.	7.2	22
21	Deep Visual Proteomics defines single-cell identity and heterogeneity. Nature Biotechnology, 2022, 40, 1231-1240.	17.5	160
22	Noninvasive proteomic biomarkers for alcohol-related liver disease. Nature Medicine, 2022, 28, 1277-1287.	30.7	91
23	Cryo-EM structures of Gid12-bound GID E3 reveal steric blockade as a mechanism inhibiting substrate ubiquitylation. Nature Communications, 2022, 13, .	12.8	3
24	Identification of early neurodegenerative pathways in progressive multiple sclerosis. Nature Neuroscience, 2022, 25, 944-955.	14.8	55
25	Unbiased spatial proteomics with single-cell resolution in tissues. Molecular Cell, 2022, 82, 2335-2349.	9.7	85
26	HYPK promotes the activity of the <i>N</i> ^α -acetyltransferase A complex to determine proteostasis of nonAc-X ² /N-degron–containing proteins. Science Advances, 2022, 8, .	10.3	11
27	Proteome profiling of cerebrospinal fluid reveals biomarker candidates for Parkinson's disease. Cell Reports Medicine, 2022, 3, 100661.	6.5	48
28	Signatures of muscle disuse in spaceflight and bed rest revealed by single muscle fiber proteomics. , 2022, 1, .		22
29	Temporal resolution of gene derepression and proteome changes upon PROTAC-mediated degradation of BCL11A protein in erythroid cells. Cell Chemical Biology, 2022, 29, 1273-1287.e8.	5.2	14
30	Plasma proteome profiles treatment efficacy of incretin dual agonism in dietâ€induced obese female and male mice. Diabetes, Obesity and Metabolism, 2021, 23, 195-207.	4.4	12
31	Linkage-specific ubiquitin chain formation depends on a lysine hydrocarbon ruler. Nature Chemical Biology, 2021, 17, 272-279.	8.0	26
32	Trapped Ion Mobility Spectrometry and Parallel Accumulation–Serial Fragmentation in Proteomics. Molecular and Cellular Proteomics, 2021, 20, 100138.	3.8	84
33	Data-independent acquisition method for ubiquitinome analysis reveals regulation of circadian biology. Nature Communications, 2021, 12, 254.	12.8	71
34	A New Parallel High-Pressure Packing System Enables Rapid Multiplexed Production of Capillary Columns. Molecular and Cellular Proteomics, 2021, 20, 100082.	3.8	13
35	Urinary proteome profiling for stratifying patients with familial Parkinson's disease. EMBO Molecular Medicine, 2021, 13, e13257.	6.9	88
36	Ethical Principles, Constraints, and Opportunities in Clinical Proteomics. Molecular and Cellular Proteomics, 2021, 20, 100046.	3.8	33

#	Article	IF	CITATIONS
37	The Hippo pathway controls myofibril assembly and muscle fiber growth by regulating sarcomeric gene expression. ELife, 2021, 10, .	6.0	29
38	Plasma Proteomes Can Be Reidentifiable and Potentially Contain Personally Sensitive and Incidental Findings. Molecular and Cellular Proteomics, 2021, 20, 100035.	3.8	20
39	Interaction of 7SK with the Smn complex modulates snRNP production. Nature Communications, 2021, 12, 1278.	12.8	23
40	Homology-directed repair protects the replicating genome from metabolic assaults. Developmental Cell, 2021, 56, 461-477.e7.	7.0	38
41	Deep learning the collisional cross sections of the peptide universe from a million experimental values. Nature Communications, 2021, 12, 1185.	12.8	81
42	DDRE-22. TARGETING SERINE SYNTHESIS IN BRAIN METASTASIS. Neuro-Oncology Advances, 2021, 3, i11-i11.	0.7	0
43	The tumor suppressor kinase DAPK3 drives tumor-intrinsic immunity through the STING–IFN-β pathway. Nature Immunology, 2021, 22, 485-496.	14.5	45
44	Integrative analysis of cell state changes in lung fibrosis with peripheral protein biomarkers. EMBO Molecular Medicine, 2021, 13, e12871.	6.9	53
45	Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV. Nature, 2021, 594, 246-252.	27.8	475
46	Tissue-specific modulation of gene expression in response to lowered insulin signalling in Drosophila. ELife, 2021, 10, .	6.0	12
47	Distinct signaling by insulin and IGF-1 receptors and their extra- and intracellular domains. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	41
48	Molecular Origin of Bloodâ€Based Infrared Spectroscopic Fingerprints**. Angewandte Chemie, 2021, 133, 17197-17206.	2.0	0
49	Molecular Origin of Bloodâ€Based Infrared Spectroscopic Fingerprints**. Angewandte Chemie - International Edition, 2021, 60, 17060-17069.	13.8	13
50	Cohort profile: the MUNICH Preterm and Term Clinical study (MUNICH-PreTCl), a neonatal birth cohort with focus on prenatal and postnatal determinants of infant and childhood morbidity. BMJ Open, 2021, 11, e050652.	1.9	2
51	Innenrücktitelbild: Molecular Origin of Bloodâ€Based Infrared Spectroscopic Fingerprints (Angew.) Tj ETQq1 1	0.784314 2.0	rgBT /Overl
52	Multi-omics profiling of living human pancreatic islet donors reveals heterogeneous beta cell trajectories towards type 2 diabetes. Nature Metabolism, 2021, 3, 1017-1031.	11.9	76
53	CID E3 ligase supramolecular chelate assembly configures multipronged ubiquitin targeting of an oligomeric metabolic enzyme. Molecular Cell, 2021, 81, 2445-2459.e13.	9.7	44
54	Identification of covalent modifications regulatingÂimmune signaling complex composition and phenotype. Molecular Systems Biology, 2021, 17, e10125.	7.2	6

#	Article	IF	CITATIONS
55	Highâ€resolution serum proteome trajectories in COVIDâ€19 reveal patientâ€specific seroconversion. EMBO Molecular Medicine, 2021, 13, e14167.	6.9	92
56	Reply to "Quality control requirements for the correct annotation of lipidomics data― Nature Communications, 2021, 12, 4772.	12.8	2
57	Artificial intelligence for proteomics and biomarker discovery. Cell Systems, 2021, 12, 759-770.	6.2	106
58	Identification of the transcription factor MAZ as a regulator of erythropoiesis. Blood Advances, 2021, 5, 3002-3015.	5.2	8
59	AlphaTims: Indexing Trapped Ion Mobility Spectrometry–TOF Data for Fast and Easy Accession and Visualization. Molecular and Cellular Proteomics, 2021, 20, 100149.	3.8	23
60	OS12.7.A Characterization of intra-tumoral heterogeneity and differential immune activation during malignant progression of meningiomas on single cell level. Neuro-Oncology, 2021, 23, ii15-ii16.	1.2	0
61	Signaling defects associated with insulin resistance in nondiabetic and diabetic individuals and modification by sex. Journal of Clinical Investigation, 2021, 131, .	8.2	27
62	Defining the RBPome of primary T helper cells to elucidate higher-order Roquin-mediated mRNA regulation. Nature Communications, 2021, 12, 5208.	12.8	23
63	JAZF1, A Novel p400/TIP60/NuA4 Complex Member, Regulates H2A.Z Acetylation at Regulatory Regions. International Journal of Molecular Sciences, 2021, 22, 678.	4.1	16
64	Deep muscle-proteomic analysis of freeze-dried human muscle biopsies reveals fiber type-specific adaptations to exercise training. Nature Communications, 2021, 12, 304.	12.8	79
65	Sequential Defects in Cardiac Lineage Commitment and Maturation Cause Hypoplastic Left Heart Syndrome. Circulation, 2021, 144, 1409-1428.	1.6	29
66	Hippocampal disruptions of synaptic and astrocyte metabolism are primary events of early amyloid pathology in the 5xFAD mouse model of Alzheimer's disease. Cell Death and Disease, 2021, 12, 954.	6.3	41
67	Phosphoproteome profiling uncovers a key role for CDKs in TNF signaling. Nature Communications, 2021, 12, 6053.	12.8	31
68	Defining NASH from a Multi-Omics Systems Biology Perspective. Journal of Clinical Medicine, 2021, 10, 4673.	2.4	9
69	Protein profile of fiber types in human skeletal muscle: a single-fiber proteomics study. Skeletal Muscle, 2021, 11, 24.	4.2	65
70	Loss of full-length hnRNP R isoform impairs DNA damage response in motoneurons by inhibiting Yb1 recruitment to chromatin. Nucleic Acids Research, 2021, 49, 12284-12305.	14.5	10
71	Hepatocyte-specific perturbation of NAD+ biosynthetic pathways in mice induces reversible nonalcoholic steatohepatitis–like phenotypes. Journal of Biological Chemistry, 2021, 297, 101388. 	3.4	20
72	Proteomic Analysis Identifies NDUFS1 and ATP5O as Novel Markers for Survival Outcome in Prostate Cancer. Cancers, 2021, 13, 6036.	3.7	7

#	Article	IF	CITATIONS
73	Large scale discovery of coronavirus-host factor protein interaction motifs reveals SARS-CoV-2 specific mechanisms and vulnerabilities. Nature Communications, 2021, 12, 6761.	12.8	47
74	Ethical principles, opportunities and constraints in clinical proteomics. Molecular and Cellular Proteomics, 2021, , .	3.8	1
75	Interconversion between Anticipatory and Active GID E3ÂUbiquitin Ligase Conformations via Metabolically Driven Substrate Receptor Assembly. Molecular Cell, 2020, 77, 150-163.e9.	9.7	50
76	SHP1 regulates a STAT6–ITGB3 axis in FLT3ITD-positive AML cells. Leukemia, 2020, 34, 1444-1449.	7.2	7
77	Pharmacological and phosphoproteomic approaches to roles of protein kinase C in kappa opioid receptor-mediated effects in mice. Neuropharmacology, 2020, 181, 108324.	4.1	5
78	Splicing factor YBX1 mediates persistence of JAK2-mutated neoplasms. Nature, 2020, 588, 157-163.	27.8	90
79	diaPASEF: parallel accumulation–serial fragmentation combined with data-independent acquisition. Nature Methods, 2020, 17, 1229-1236.	19.0	387
80	DIA-based systems biology approach unveils E3 ubiquitin ligase-dependent responses to a metabolic shift. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32806-32815.	7.1	17
81	LifeTime and improving European healthcare through cell-based interceptive medicine. Nature, 2020, 587, 377-386.	27.8	108
82	The Origins of Organellar Mapping by Protein Correlation Profiling. Proteomics, 2020, 20, 1900330.	2.2	9
83	MiT/ <scp>TFE</scp> factors control <scp>ER</scp> â€phagy via transcriptional regulation of <scp>FAM</scp> 134B. EMBO Journal, 2020, 39, e105696.	7.8	60
84	A Cell-Autonomous Signature of Dysregulated Protein Phosphorylation Underlies Muscle Insulin Resistance in Type 2 Diabetes. Cell Metabolism, 2020, 32, 844-859.e5.	16.2	68
85	Spatially and cell-type resolved quantitative proteomic atlas of healthy human skin. Nature Communications, 2020, 11, 5587.	12.8	72
86	Sequencing of the First Draft of the Human Acetylome. Clinical Chemistry, 2020, 66, 852-853.	3.2	1
87	Atomic-resolution mapping of transcription factor-DNA interactions by femtosecond laser crosslinking and mass spectrometry. Nature Communications, 2020, 11, 3019.	12.8	9
88	Limited Environmental Serine and Glycine Confer Brain Metastasis Sensitivity to PHGDH Inhibition. Cancer Discovery, 2020, 10, 1352-1373.	9.4	145
89	The proteome landscape of the kingdoms of life. Nature, 2020, 582, 592-596.	27.8	128
90	A Multi-Omics Approach to Liver Diseases: Integration of Single Nuclei Transcriptomics with Proteomics and HiCap Bulk Data in Human Liver. OMICS A Journal of Integrative Biology, 2020, 24, 180-194.	2.0	26

#	Article	IF	CITATIONS
91	A streamlined mass spectrometry–based proteomics workflow for largeâ€scale FFPE tissue analysis. Journal of Pathology, 2020, 251, 100-112.	4.5	109
92	Pervasive functional translation of noncanonical human open reading frames. Science, 2020, 367, 1140-1146.	12.6	400
93	Accurate MS-based Rab10 Phosphorylation Stoichiometry Determination as Readout for LRRK2 Activity in Parkinson's Disease. Molecular and Cellular Proteomics, 2020, 19, 1546-1560.	3.8	45
94	Dynamics in protein translation sustaining T cell preparedness. Nature Immunology, 2020, 21, 927-937.	14.5	120
95	Trapped ion mobility spectrometry and PASEF enable in-depth lipidomics from minimal sample amounts. Nature Communications, 2020, 11, 331.	12.8	138
96	Quantitative and Dynamic Catalogs of Proteins Released during Apoptotic and Necroptotic Cell Death. Cell Reports, 2020, 30, 1260-1270.e5.	6.4	53
97	<i> <scp>STAT</scp> 3 </i> â€dependent analysis reveals <i> <scp>PDK</scp> 4 </i> as independent predictor of recurrence in prostate cancer. Molecular Systems Biology, 2020, 16, e9247.	7.2	38
98	Integrative Analysis Identifies Key Molecular Signatures Underlying Neurodevelopmental Deficits in Fragile X Syndrome. Biological Psychiatry, 2020, 88, 500-511.	1.3	33
99	A beginner's guide to mass spectrometry–based proteomics. Biochemist, 2020, 42, 64-69.	0.5	35
100	Fam20C regulates protein secretion by Cab45 phosphorylation. Journal of Cell Biology, 2020, 219, .	5.2	15
101	FAM111 protease activity undermines cellular fitness and is amplified by gainâ€ofâ€function mutations in human disease. EMBO Reports, 2020, 21, e50662.	4.5	37
102	Proteome profiling in cerebrospinal fluid reveals novel biomarkers of Alzheimer's disease. Molecular Systems Biology, 2020, 16, e9356.	7.2	157
103	Integrative proteomics reveals principles of dynamic phosphosignaling networks in human erythropoiesis. Molecular Systems Biology, 2020, 16, e9813.	7.2	21
104	Phosphoproteomic approach for agonist-specific signaling in mouse brains: mTOR pathway is involved in κ opioid aversion. Neuropsychopharmacology, 2019, 44, 939-949.	5.4	74
105	Quick and clean: Cracking sentences encoded in E. coli by LC–MS/MS, de novo sequencing, and dictionary search. EuPA Open Proteomics, 2019, 22-23, 30-35.	2.5	2
106	Myosin binding protein H-like (MYBPHL): a promising biomarker to predict atrial damage. Scientific Reports, 2019, 9, 9986.	3.3	6
107	Catching Lipid Droplet Contacts by Proteomics. Contact (Thousand Oaks (Ventura County, Calif)), 2019, 2, 251525641985918.	1.3	6
108	SILAC-based quantitative mass spectrometry-based proteomics quantifies endoplasmic reticulum stress in whole HeLa cells. DMM Disease Models and Mechanisms, 2019, 12, .	2.4	10

#	Article	IF	CITATIONS
109	The forebrain synaptic transcriptome is organized by clocks but its proteome is driven by sleep. Science, 2019, 366, .	12.6	169
110	Sleep-wake cycles drive daily dynamics of synaptic phosphorylation. Science, 2019, 366, .	12.6	181
111	Hepatic Rab24 controls blood glucose homeostasis via improving mitochondrial plasticity. Nature Metabolism, 2019, 1, 1009-1026.	11.9	27
112	Proteomics-Based Comparative Mapping of the Secretomes of Human Brown and White Adipocytes Reveals EPDR1 as a Novel Batokine. Cell Metabolism, 2019, 30, 963-975.e7.	16.2	109
113	Plasma Proteome Profiling to detect and avoid sampleâ€related biases in biomarker studies. EMBO Molecular Medicine, 2019, 11, e10427.	6.9	171
114	Metallopeptidase inhibitor 1 (TIMPâ€1) promotes receptor tyrosine kinase câ€Kit signaling in colorectal cancer. Molecular Oncology, 2019, 13, 2646-2662.	4.6	11
115	The ever expanding scope of electrospray mass spectrometry—a 30 year journey. Nature Communications, 2019, 10, 3744.	12.8	25
116	The Atherosclerosis Risk Variant rs2107595 Mediates Allele-Specific Transcriptional Regulation of <i>HDAC9</i> via E2F3 and Rb1. Stroke, 2019, 50, 2651-2660.	2.0	38
117	Functional identity of hypothalamic melanocortin neurons depends on Tbx3. Nature Metabolism, 2019, 1, 222-235.	11.9	27
118	Multi-omic Profiling Reveals Dynamics of the Phased Progression of Pluripotency. Cell Systems, 2019, 8, 427-445.e10.	6.2	111
119	Cortical circuit alterations precede motor impairments in Huntington's disease mice. Scientific Reports, 2019, 9, 6634.	3.3	53
120	Proteomics reveals NNMT as a master metabolic regulator of cancer-associated fibroblasts. Nature, 2019, 569, 723-728.	27.8	330
121	Plasma proteome profiling discovers novel proteins associated with nonâ€alcoholic fatty liver disease. Molecular Systems Biology, 2019, 15, e8793.	7.2	176
122	A protein-interaction network of interferon-stimulated genes extends the innate immune system landscape. Nature Immunology, 2019, 20, 493-502.	14.5	139
123	Phosphoproteomics Reveals the GSK3-PDX1 Axis as a Key Pathogenic Signaling Node in Diabetic Islets. Cell Metabolism, 2019, 29, 1422-1432.e3.	16.2	65
124	FoxK1 and FoxK2 in insulin regulation of cellular and mitochondrial metabolism. Nature Communications, 2019, 10, 1582.	12.8	57
125	Trends in trapped ion mobility – Mass spectrometry instrumentation. TrAC - Trends in Analytical Chemistry, 2019, 116, 324-331.	11.4	40
126	The Case for Proteomics and Phosphoâ€Proteomics in Personalized Cancer Medicine. Proteomics - Clinical Applications, 2019, 13, e1800113.	1.6	88

#	Article	IF	CITATIONS
127	An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics. Nature Communications, 2019, 10, 963.	12.8	408
128	Efficient mitotic checkpoint signaling depends on integrated activities of Bub1 and the <scp>RZZ</scp> complex. EMBO Journal, 2019, 38, .	7.8	56
129	MaxQuant.Live Enables Global Targeting of More Than 25,000 Peptides. Molecular and Cellular Proteomics, 2019, 18, 982a-994.	3.8	91
130	Proteomics of Cytochrome c Oxidase-Negative versus -Positive Muscle Fiber Sections in Mitochondrial Myopathy. Cell Reports, 2019, 29, 3825-3834.e4.	6.4	17
131	Mesothelial Cell HIF1α Expression Is Metabolically Downregulated by Metformin to Prevent Oncogenic Tumor-Stromal Crosstalk. Cell Reports, 2019, 29, 4086-4098.e6.	6.4	26
132	A mass spectrometry guided approach for the identification of novel vaccine candidates in gram-negative pathogens. Scientific Reports, 2019, 9, 17401.	3.3	7
133	Replication-Coupled DNA-Protein Crosslink Repair by SPRTN and the Proteasome in Xenopus Egg Extracts. Molecular Cell, 2019, 73, 574-588.e7.	9.7	135
134	Proteomics in the Study of Liver Diseases. , 2019, , 165-193.		4
135	Defective glycosylation and multisystem abnormalities characterize the primary immunodeficiency XMEN disease. Journal of Clinical Investigation, 2019, 130, 507-522.	8.2	74
136	Response to Raaijmakers & Medema. EMBO Journal, 2019, 38, e103547.	7.8	6
137	Fibro-adipogenic progenitors of dystrophic mice are insensitive to NOTCH regulation of adipogenesis. Life Science Alliance, 2019, 2, e201900437.	2.8	41
138	Molecular and structural architecture of polyQ aggregates in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3446-E3453.	7.1	68
139	Compartment-resolved Proteomic Analysis of Mouse Aorta during Atherosclerotic Plaque Formation Reveals Osteoclast-specific Protein Expression. Molecular and Cellular Proteomics, 2018, 17, 321-334.	3.8	40
140	Development of phospho-specific Rab protein antibodies to monitor <i>in vivo</i> activity of the LRRK2 Parkinson's disease kinase. Biochemical Journal, 2018, 475, 1-22.	3.7	123
141	Online Parallel Accumulation–Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer. Molecular and Cellular Proteomics, 2018, 17, 2534-2545.	3.8	602
142	Plasma Proteome Profiling Reveals Dynamics of Inflammatory and Lipid Homeostasis Markers after Roux-En-Y Gastric Bypass Surgery. Cell Systems, 2018, 7, 601-612.e3.	6.2	80
143	UBL3 modification influences protein sorting to small extracellular vesicles. Nature Communications, 2018, 9, 3936.	12.8	53
144	Advocating for science progress as a human right. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10820-10823.	7.1	16

#	Article	IF	CITATIONS
145	PWWP2A binds distinct chromatin moieties and interacts with an MTA1-specific core NuRD complex. Nature Communications, 2018, 9, 4300.	12.8	46
146	Organellar Proteomics and Phospho-Proteomics Reveal Subcellular Reorganization in Diet-Induced Hepatic Steatosis. Developmental Cell, 2018, 47, 205-221.e7.	7.0	132
147	High-throughput and high-sensitivity phosphoproteomics with the EasyPhos platform. Nature Protocols, 2018, 13, 1897-1916.	12.0	238
148	Multi-level Proteomics Identifies CT45 as a Chemosensitivity Mediator and Immunotherapy Target in Ovarian Cancer. Cell, 2018, 175, 159-170.e16.	28.9	127
149	The Transcription Factor ETV1 Induces Atrial Remodeling and Arrhythmia. Circulation Research, 2018, 123, 550-563.	4.5	40
150	In-depth proteomic analyses of Haliotis laevigata (greenlip abalone) nacre and prismatic organic shell matrix. Proteome Science, 2018, 16, 11.	1.7	33
151	The Proteome of Prostate Cancer Bone Metastasis Reveals Heterogeneity with Prognostic Implications. Clinical Cancer Research, 2018, 24, 5433-5444.	7.0	68
152	BoxCar acquisition method enables single-shot proteomics at a depth of 10,000 proteins in 100 minutes. Nature Methods, 2018, 15, 440-448.	19.0	303
153	A Novel LC System Embeds Analytes in Pre-formed Gradients for Rapid, Ultra-robust Proteomics. Molecular and Cellular Proteomics, 2018, 17, 2284-2296.	3.8	270
154	The hemicellulose-degrading enzyme system of the thermophilic bacterium Clostridium stercorarium: comparative characterisation and addition of new hemicellulolytic glycoside hydrolases. Biotechnology for Biofuels, 2018, 11, 229.	6.2	62
155	Proteomics for blood biomarker exploration of severe mental illness: pitfalls of the past and potential for the future. Translational Psychiatry, 2018, 8, 160.	4.8	68
156	Rapid proteomic analysis for solid tumors reveals <scp>LSD</scp> 1 as a drug target in an endâ€stage cancer patient. Molecular Oncology, 2018, 12, 1296-1307.	4.6	25
157	In vivo brain GPCR signaling elucidated by phosphoproteomics. Science, 2018, 360, .	12.6	105
158	EASI-tag enables accurate multiplexed and interference-free MS2-based proteome quantification. Nature Methods, 2018, 15, 527-530.	19.0	88
159	The non-classical nuclear import carrier Transportin 1 modulates circadian rhythms through its effect on PER1 nuclear localization. PLoS Genetics, 2018, 14, e1007189.	3.5	20
160	Proteomics and <i>C9orf72</i> neuropathology identify ribosomes as poly-GR/PR interactors driving toxicity. Life Science Alliance, 2018, 1, e201800070.	2.8	88
161	Parallel accumulation for 100% duty cycle trapped ion mobility-mass spectrometry. International Journal of Mass Spectrometry, 2017, 413, 168-175.	1.5	59
162	Loss-less Nano-fractionator for High Sensitivity, High Coverage Proteomics. Molecular and Cellular Proteomics, 2017, 16, 694-705.	3.8	169

#	Article	IF	CITATIONS
163	CRL2 ^{Lrr1} promotes unloading of the vertebrate replisome from chromatin during replication termination. Genes and Development, 2017, 31, 275-290.	5.9	90
164	Phylointeractomics reconstructs functional evolution of protein binding. Nature Communications, 2017, 8, 14334.	12.8	26
165	Social network architecture of human immune cells unveiled by quantitative proteomics. Nature Immunology, 2017, 18, 583-593.	14.5	296
166	Single Muscle Fiber Proteomics Reveals Fiber-Type-Specific Features of Human Muscle Aging. Cell Reports, 2017, 19, 2396-2409.	6.4	213
167	H3.Y discriminates between HIRA and DAXX chaperone complexes and reveals unexpected insights into human DAXX-H3.3-H4 binding and deposition requirements. Nucleic Acids Research, 2017, 45, 5691-5706.	14.5	19
168	Lysine acetylome profiling uncovers novel histone deacetylase substrate proteins in <i>Arabidopsis</i> . Molecular Systems Biology, 2017, 13, 949.	7.2	141
169	A Primer on Concepts and Applications of Proteomics in Neuroscience. Neuron, 2017, 96, 558-571.	8.1	65
170	Revisiting biomarker discovery by plasmaÂproteomics. Molecular Systems Biology, 2017, 13, 942.	7.2	597
171	Dimethyl-Labeling-Based Quantification of the Lysine Acetylome and Proteome of Plants. Methods in Molecular Biology, 2017, 1653, 65-81.	0.9	20
172	A proteomic atlas of insulin signalling reveals tissueâ€specific mechanisms of longevity assurance. Molecular Systems Biology, 2017, 13, 939.	7.2	42
173	A Stat6/Pten Axis Links Regulatory T Cells with Adipose Tissue Function. Cell Metabolism, 2017, 26, 475-492.e7.	16.2	71
174	Spatiotemporal Proteomic Profiling of Huntington's Disease Inclusions Reveals Widespread Loss of Protein Function. Cell Reports, 2017, 21, 2291-2303.	6.4	107
175	Region and cell-type resolved quantitative proteomic map of the human heart. Nature Communications, 2017, 8, 1469.	12.8	213
176	Multivalent binding of PWWP2A to H2A.Z regulates mitosis and neural crest differentiation. EMBO Journal, 2017, 36, 2263-2279.	7.8	48
177	Deep Proteome Profiling Reveals Common Prevalence of MZB1-Positive Plasma B Cells in Human Lung and Skin Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 1298-1310.	5.6	97
178	Why is it so difficult to measure glucagon-like peptide-1 in a mouse?. Diabetologia, 2017, 60, 2066-2075.	6.3	39
179	Phosphorylation Is a Central Mechanism for Circadian Control of Metabolism and Physiology. Cell Metabolism, 2017, 25, 118-127.	16.2	297
180	Lysine acetylation in mitochondria: From inventory to function. Mitochondrion, 2017, 33, 58-71.	3.4	71

#	Article	IF	CITATIONS
181	Systematic proteomic analysis of LRRK2-mediated Rab GTPase phosphorylation establishes a connection to ciliogenesis. ELife, 2017, 6, .	6.0	344
182	A genome-wide resource for the analysis of protein localisation in Drosophila. ELife, 2016, 5, e12068.	6.0	315
183	Phosphoproteomics reveals that Parkinson's disease kinase LRRK2 regulates a subset of Rab GTPases. ELife, 2016, 5, .	6.0	766
184	Proteomics to study DNA-bound and chromatin-associated gene regulatory complexes. Human Molecular Genetics, 2016, 25, R106-R114.	2.9	59
185	Proteomics reveals the effects of sustained weight loss on the human plasma proteome. Molecular Systems Biology, 2016, 12, 901.	7.2	188
186	Deep Proteomics of Breast Cancer Cells Reveals that Metformin Rewires Signaling Networks Away from a Pro-growth State. Cell Systems, 2016, 2, 159-171.	6.2	76
187	Oxyntomodulin Identified as a Marker of Type 2 Diabetes and Gastric Bypass Surgery by Mass-spectrometry Based Profiling of Human Plasma. EBioMedicine, 2016, 7, 112-120.	6.1	53
188	Inflammatory signaling in human tuberculosis granulomas is spatially organized. Nature Medicine, 2016, 22, 531-538.	30.7	273
189	Molecular basis of PRC1 targeting to Polycomb response elements by PhoRC. Genes and Development, 2016, 30, 1116-1127.	5.9	78
190	Ultra-deep and quantitative saliva proteome reveals dynamics of the oral microbiome. Genome Medicine, 2016, 8, 44.	8.2	170
191	p53 down-regulates SARS coronavirus replication and is targeted by the SARS-unique domain and PL ^{pro} via E3 ubiquitin ligase RCHY1. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5192-201.	7.1	172
192	Origins of mass spectrometry-based proteomics. Nature Reviews Molecular Cell Biology, 2016, 17, 678-678.	37.0	25
193	Activation of the ATR kinase by the RPA-binding protein ETAA1. Nature Cell Biology, 2016, 18, 1196-1207.	10.3	208
194	C9ORF72 interaction with cofilin modulates actin dynamics in motor neurons. Nature Neuroscience, 2016, 19, 1610-1618.	14.8	131
195	Soluble Oligomers of PolyQ-Expanded Huntingtin Target a Multiplicity of Key Cellular Factors. Molecular Cell, 2016, 63, 951-964.	9.7	181
196	Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. Nature Communications, 2016, 7, 13404.	12.8	613
197	Mass-spectrometric exploration of proteome structure and function. Nature, 2016, 537, 347-355.	27.8	1,573
198	HCD Fragmentation of Glycated Peptides. Journal of Proteome Research, 2016, 15, 2881-2890.	3.7	22

#	Article	IF	CITATIONS
199	L-Arginine Modulates T Cell Metabolism and Enhances Survival and Anti-tumor Activity. Cell, 2016, 167, 829-842.e13.	28.9	1,077
200	Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nature Communications, 2016, 7, 12429.	12.8	859
201	Glucose-regulated and drug-perturbed phosphoproteome reveals molecular mechanisms controlling insulin secretion. Nature Communications, 2016, 7, 13250.	12.8	74
202	Glutathione peroxidase 3 localizes to the epithelial lining fluid and the extracellular matrix in interstitial lung disease. Scientific Reports, 2016, 6, 29952.	3.3	30
203	SCAI promotes DNA double-strand break repair in distinct chromosomal contexts. Nature Cell Biology, 2016, 18, 1357-1366.	10.3	32
204	Integrative proteomic profiling of ovarian cancer cell lines reveals precursor cell associated proteins and functional status. Nature Communications, 2016, 7, 12645.	12.8	171
205	The Perseus computational platform for comprehensive analysis of (prote)omics data. Nature Methods, 2016, 13, 731-740.	19.0	6,181
206	A Proteomics Approach to the Protein Normalization Problem: Selection of Unvarying Proteins for MS-Based Proteomics and Western Blotting. Journal of Proteome Research, 2016, 15, 2321-2326.	3.7	51
207	PLEKHA7 Recruits PDZD11 to Adherens Junctions to Stabilize Nectins. Journal of Biological Chemistry, 2016, 291, 11016-11029.	3.4	28
208	Evidence of Extrapancreatic Glucagon Secretion in Man. Diabetes, 2016, 65, 585-597.	0.6	136
209	The Proteome of Primary Prostate Cancer. European Urology, 2016, 69, 942-952.	1.9	122
210	Cytoplasmic protein aggregates interfere with nucleocytoplasmic transport of protein and RNA. Science, 2016, 351, 173-176.	12.6	336
211	IKAP: A heuristic framework for inference of kinase activities from Phosphoproteomics data. Bioinformatics, 2016, 32, 424-431.	4.1	62
212	Plasma Proteome Profiling to Assess Human Health and Disease. Cell Systems, 2016, 2, 185-195.	6.2	549
213	Circadian control of oscillations in mitochondrial rate-limiting enzymes and nutrient utilization by PERIOD proteins. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1673-82.	7.1	190
214	C/EBPα creates elite cells for iPSC reprogramming by upregulating Klf4 and increasing the levels of Lsd1 andÂBrd4. Nature Cell Biology, 2016, 18, 371-381.	10.3	94
215	Proteomic maps of breast cancer subtypes. Nature Communications, 2016, 7, 10259.	12.8	256
216	The Rise of Mass Spectrometry and the Fall of Edman Degradation. Clinical Chemistry, 2016, 62, 293-294.	3.2	20

#	Article	IF	CITATIONS
217	Mitochondrial specialization revealed by single muscle fiber proteomics: focus on the Krebs cycle. Scandinavian Journal of Medicine and Science in Sports, 2015, 25, 41-48.	2.9	31
218	Minimal amounts of kindlin-3 suffice for basal platelet and leukocyte functions in mice. Blood, 2015, 126, 2592-2600.	1.4	45
219	Antisenseâ€mediated exon skipping: a therapeutic strategy for titinâ€based dilated cardiomyopathy. EMBO Molecular Medicine, 2015, 7, 562-576.	6.9	94
220	Time―and compartmentâ€resolved proteome profiling of the extracellular niche in lung injury and repair. Molecular Systems Biology, 2015, 11, 819.	7.2	211
221	Systems Analyses Reveal Shared and Diverse Attributes of Oct4 Regulation in Pluripotent Cells. Cell Systems, 2015, 1, 141-151.	6.2	15
222	Proteomic analysis of quail calcified eggshell matrix: a comparison to chicken and turkey eggshell proteomes. Proteome Science, 2015, 13, 22.	1.7	36
223	Histone Variant H2A.Z.2 Mediates Proliferation and Drug Sensitivity of Malignant Melanoma. Molecular Cell, 2015, 59, 75-88.	9.7	166
224	Quantitative Proteomics Identifies Serum Response Factor Binding Protein 1 as a Host Factor for Hepatitis C Virus Entry. Cell Reports, 2015, 12, 864-878.	6.4	50
225	Regulation of Liver Metabolism by the Endosomal GTPase Rab5. Cell Reports, 2015, 11, 884-892.	6.4	47
226	Accurate Protein Complex Retrieval by Affinity Enrichment Mass Spectrometry (AE-MS) Rather than Affinity Purification Mass Spectrometry (AP-MS). Molecular and Cellular Proteomics, 2015, 14, 120-135.	3.8	231
227	Arginine-rhamnosylation as new strategy to activate translation elongation factor P. Nature Chemical Biology, 2015, 11, 266-270.	8.0	116
228	Visualization of LCâ€MS/MS proteomics data in MaxQuant. Proteomics, 2015, 15, 1453-1456.	2.2	248
229	Single muscle fiber proteomics reveals unexpected mitochondrial specialization. EMBO Reports, 2015, 16, 387-395.	4.5	163
230	Deep Proteomics of Mouse Skeletal Muscle Enables Quantitation of Protein Isoforms, Metabolic Pathways, and Transcription Factors*. Molecular and Cellular Proteomics, 2015, 14, 841-853.	3.8	234
231	The focal adhesion protein PINCH-1 associates with EPLIN at integrin adhesion sites. Journal of Cell Science, 2015, 128, 1023-33.	2.0	22
232	Mass Spectrometry of Human Leukocyte Antigen Class I Peptidomes Reveals Strong Effects of Protein Abundance and Turnover on Antigen Presentation. Molecular and Cellular Proteomics, 2015, 14, 658-673.	3.8	445
233	TLR3-Mediated CD8+ Dendritic Cell Activation Is Coupled with Establishment of a Cell-Intrinsic Antiviral State. Journal of Immunology, 2015, 195, 1025-1033.	0.8	26
234	The Impact II, a Very High-Resolution Quadrupole Time-of-Flight Instrument (QTOF) for Deep Shotgun Proteomics *. Molecular and Cellular Proteomics, 2015, 14, 2014-2029.	3.8	150

#	Article	IF	CITATIONS
235	System-wide identification of wild-type SUMO-2 conjugation sites. Nature Communications, 2015, 6, 7289.	12.8	97
236	Proteomics reveals dynamic assembly of repair complexes during bypass of DNA cross-links. Science, 2015, 348, 1253671.	12.6	183
237	Acetylation site specificities of lysine deacetylase inhibitors in human cells. Nature Biotechnology, 2015, 33, 415-423.	17.5	237
238	A Double-Barrel Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) System to Quantify 96 Interactomes per Day*. Molecular and Cellular Proteomics, 2015, 14, 2030-2041.	3.8	39
239	Widespread Proteome Remodeling and Aggregation in Aging C.Âelegans. Cell, 2015, 161, 919-932.	28.9	478
240	mRNA export through an additional cap-binding complex consisting of NCBP1 and NCBP3. Nature Communications, 2015, 6, 8192.	12.8	89
241	Functional classification of memory CD8+ T cells by CX3CR1 expression. Nature Communications, 2015, 6, 8306.	12.8	231
242	Machine Learning-based Classification of Diffuse Large B-cell Lymphoma Patients by Their Protein Expression Profiles. Molecular and Cellular Proteomics, 2015, 14, 2947-2960.	3.8	73
243	Cell type– and brain region–resolved mouse brain proteome. Nature Neuroscience, 2015, 18, 1819-1831.	14.8	672
244	Protein Phosphorylation: A Major Switch Mechanism for Metabolic Regulation. Trends in Endocrinology and Metabolism, 2015, 26, 676-687.	7.1	402
245	A Human Interactome in Three Quantitative Dimensions Organized by Stoichiometries and Abundances. Cell, 2015, 163, 712-723.	28.9	1,132
246	Parallel Accumulation–Serial Fragmentation (PASEF): Multiplying Sequencing Speed and Sensitivity by Synchronized Scans in a Trapped Ion Mobility Device. Journal of Proteome Research, 2015, 14, 5378-5387.	3.7	281
247	Absolute Proteome Analysis of Colorectal Mucosa, Adenoma, and Cancer Reveals Drastic Changes in Fatty Acid Metabolism and Plasma Membrane Transporters. Journal of Proteome Research, 2015, 14, 4005-4018.	3.7	74
248	Secretome Analysis of Lipid-Induced Insulin Resistance in Skeletal Muscle Cells by a Combined Experimental and Bioinformatics Workflow. Journal of Proteome Research, 2015, 14, 4885-4895.	3.7	66
249	Histone monoubiquitination by Clock–Bmal1 complex marks Per1 and Per2 genes for circadian feedback. Nature Structural and Molecular Biology, 2015, 22, 759-766.	8.2	45
250	High-throughput phosphoproteomics reveals in vivo insulin signaling dynamics. Nature Biotechnology, 2015, 33, 990-995.	17.5	408
251	The Impact of High-Fat Diet on Metabolism and Immune Defense in Small Intestine Mucosa. Journal of Proteome Research, 2015, 14, 353-365.	3.7	53
252	C9orf72 FTLD/ALS-associated Gly-Ala dipeptide repeat proteins cause neuronal toxicity and Unc119 sequestration. Acta Neuropathologica, 2014, 128, 485-503.	7.7	300

#	Article	IF	CITATIONS
253	Ultradeep Human Phosphoproteome Reveals a Distinct Regulatory Nature of Tyr and Ser/Thr-Based Signaling. Cell Reports, 2014, 8, 1583-1594.	6.4	839
254	Overexpression of Q-rich prion-like proteins suppresses polyQ cytotoxicity and alters the polyQ interactome. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18219-18224.	7.1	52
255	The Arabidopsis Class II Sirtuin Is a Lysine Deacetylase and Interacts with Mitochondrial Energy Metabolism Â. Plant Physiology, 2014, 164, 1401-1414.	4.8	96
256	In-Vivo Quantitative Proteomics Reveals a Key Contribution of Post-Transcriptional Mechanisms to the Circadian Regulation of Liver Metabolism. PLoS Genetics, 2014, 10, e1004047.	3.5	358
257	<scp>PP</scp> 2A delays <scp>APC</scp> /Câ€dependent degradation of separaseâ€associated but not free securin. EMBO Journal, 2014, 33, 1134-1147.	7.8	57
258	Copy Number Analysis of the Murine Platelet Proteome Spanning the Complete Abundance Range. Molecular and Cellular Proteomics, 2014, 13, 3435-3445.	3.8	187
259	microRNA-mediated regulation of mTOR complex components facilitates discrimination between activation and anergy in CD4 T cells. Journal of Experimental Medicine, 2014, 211, 2281-2295.	8.5	57
260	The Q Exactive HF, a Benchtop Mass Spectrometer with a Pre-filter, High-performance Quadrupole and an Ultra-high-field Orbitrap Analyzer. Molecular and Cellular Proteomics, 2014, 13, 3698-3708.	3.8	285
261	Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ. Molecular and Cellular Proteomics, 2014, 13, 2513-2526.	3.8	4,178
262	Cell-Type-Resolved Quantitative Proteomics of Murine Liver. Cell Metabolism, 2014, 20, 1076-1087.	16.2	143
263	Deep Proteomic Evaluation of Primary and Cell Line Motoneuron Disease Models Delineates Major Differences in Neuronal Characteristics. Molecular and Cellular Proteomics, 2014, 13, 3410-3420.	3.8	51
264	The unfolded protein response affects readthrough of premature termination codons. EMBO Molecular Medicine, 2014, 6, 685-701.	6.9	31
265	The ETS family member GABPα modulates androgen receptor signalling and mediates an aggressive phenotype in prostate cancer. Nucleic Acids Research, 2014, 42, 6256-6269.	14.5	33
266	Time-resolved dissection of early phosphoproteome and ensuing proteome changes in response to TGF-β. Science Signaling, 2014, 7, rs5.	3.6	39
267	Quantitative shotgun proteomics: considerations for a high-quality workflow in immunology. Nature Immunology, 2014, 15, 112-117.	14.5	90
268	Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nature Methods, 2014, 11, 319-324.	19.0	1,447
269	A "Proteomic Ruler―for Protein Copy Number and Concentration Estimation without Spike-in Standards. Molecular and Cellular Proteomics, 2014, 13, 3497-3506.	3.8	530
270	Fractionation profiling: a fast and versatile approach for mapping vesicle proteomes and protein–protein interactions. Molecular Biology of the Cell, 2014, 25, 3178-3194.	2.1	42

#	Article	IF	CITATIONS
271	Uncovering global SUMOylation signaling networks in a site-specific manner. Nature Structural and Molecular Biology, 2014, 21, 927-936.	8.2	408
272	Structural Model of a CRISPR RNA-Silencing Complex Reveals the RNA-Target Cleavage Activity in Cmr4. Molecular Cell, 2014, 56, 43-54.	9.7	129
273	The growing landscape of lysine acetylation links metabolism and cell signalling. Nature Reviews Molecular Cell Biology, 2014, 15, 536-550.	37.0	1,153
274	Immunoproteomics Using Polyclonal Antibodies and Stable Isotope–labeled Affinity-purified Recombinant Proteins. Molecular and Cellular Proteomics, 2014, 13, 1611-1624.	3.8	27
275	The <i>Caenorhabditiselegans</i> pericentriolar material components SPD-2 and SPD-5 are monomeric in the cytoplasm before incorporation into the PCM matrix. Molecular Biology of the Cell, 2014, 25, 2984-2992.	2.1	31
276	On the extent and role of the small proteome in the parasitic eukaryote Trypanosoma brucei. BMC Biology, 2014, 12, 14.	3.8	19
277	High susceptibility to fatty liver disease in two-pore channel 2-deficient mice. Nature Communications, 2014, 5, 4699.	12.8	164
278	N-linked Glycosylation Enrichment for In-depth Cell Surface Proteomics of Diffuse Large B-cell Lymphoma Subtypes. Molecular and Cellular Proteomics, 2014, 13, 240-251.	3.8	77
279	The mitochondrial lysine acetylome of Arabidopsis. Mitochondrion, 2014, 19, 252-260.	3.4	100
280	Specificity and Commonality of the Phosphoinositide-Binding Proteome Analyzed by Quantitative Mass Spectrometry. Cell Reports, 2014, 6, 578-591.	6.4	75
281	Fifteen Years of Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC). Methods in Molecular Biology, 2014, 1188, 1-7.	0.9	28
282	MaxQuant for In-Depth Analysis of Large SILAC Datasets. Methods in Molecular Biology, 2014, 1188, 351-364.	0.9	79
283	Aim24 and MICOS modulate respiratory function, tafazzin-related cardiolipin modification and mitochondrial architecture. ELife, 2014, 3, e01684.	6.0	64
284	A role of OCRL in clathrin-coated pit dynamics and uncoating revealed by studies of Lowe syndrome cells. ELife, 2014, 3, e02975.	6.0	97
285	microRNA-mediated regulation of mTOR complex components facilitates discrimination between activation and anergy in CD4 T cells. Journal of Cell Biology, 2014, 207, 2072OIA191.	5.2	0
286	Stabilization of integrin-linked kinase by the Hsp90-CHIP axis impacts cellular force generation, migration and the fibrotic response. EMBO Journal, 2013, 32, 1409-1424.	7.8	59
287	Quantitative interaction screen of telomeric repeat-containing RNA reveals novel TERRA regulators. Genome Research, 2013, 23, 2149-2157.	5.5	69
288	Direct Proteomic Quantification of the Secretome of Activated Immune Cells. Science, 2013, 340, 475-478.	12.6	174

#	Article	IF	CITATIONS
289	The proteome of the calcified layer organic matrix of turkey (Meleagris gallopavo) eggshell. Proteome Science, 2013, 11, 40.	1.7	41
290	SILAC-Based Proteomics of Human Primary Endothelial Cell Morphogenesis Unveils Tumor Angiogenic Markers. Molecular and Cellular Proteomics, 2013, 12, 3599-3611.	3.8	55
291	A Map of General and Specialized Chromatin Readers in Mouse Tissues Generated by Label-free Interaction Proteomics. Molecular Cell, 2013, 49, 368-378.	9.7	170
292	A Systematic Mammalian Genetic Interaction Map Reveals Pathways Underlying Ricin Susceptibility. Cell, 2013, 152, 909-922.	28.9	332
293	A DNA-Centric Protein Interaction Map of Ultraconserved Elements Reveals Contribution of Transcription Factor Binding Hubs to Conservation. Cell Reports, 2013, 5, 531-545.	6.4	26
294	Initial Quantitative Proteomic Map of 28 Mouse Tissues Using the SILAC Mouse. Molecular and Cellular Proteomics, 2013, 12, 1709-1722.	3.8	204
295	The SH2 Domain Interaction Landscape. Cell Reports, 2013, 3, 1293-1305.	6.4	110
296	Proteomic Analysis of Cellular Systems. , 2013, , 3-25.		15
297	The Coming Age of Complete, Accurate, and Ubiquitous Proteomes. Molecular Cell, 2013, 49, 583-590.	9.7	329
298	Proteomic workflow for analysis of archival formalinâ€fixed and paraffinâ€embedded clinical samples to a depth of 10 000 proteins. Proteomics - Clinical Applications, 2013, 7, 225-233.	1.6	131
299	InÂVivo SILAC-Based Proteomics Reveals Phosphoproteome Changes during Mouse Skin Carcinogenesis. Cell Reports, 2013, 3, 552-566.	6.4	90
300	Proteomic Approaches in Circadian Biology. Handbook of Experimental Pharmacology, 2013, , 389-407.	1.8	15
301	High Performance Computational Analysis of Large-scale Proteome Data Sets to Assess Incremental Contribution to Coverage of the Human Genome. Journal of Proteome Research, 2013, 12, 2858-2868.	3.7	43
302	A large synthetic peptide and phosphopeptide reference library for mass spectrometry–based proteomics. Nature Biotechnology, 2013, 31, 557-564.	17.5	164
303	β1- and αv-class integrins cooperate to regulate myosinÂll during rigidity sensing of fibronectin-based microenvironments. Nature Cell Biology, 2013, 15, 625-636.	10.3	386
304	Alleles of a Polymorphic ETV6 Binding Site in DCDC2 Confer Risk of Reading and Language Impairment. American Journal of Human Genetics, 2013, 93, 19-28.	6.2	60
305	Status of Large-scale Analysis of Post-translational Modifications by Mass Spectrometry. Molecular and Cellular Proteomics, 2013, 12, 3444-3452.	3.8	491
306	Quantification of the N-glycosylated Secretome by Super-SILAC During Breast Cancer Progression and in Human Blood Samples. Molecular and Cellular Proteomics, 2013, 12, 158-171.	3.8	108

#	Article	IF	CITATIONS
307	Proteomic and Genetic Analyses Demonstrate that Plasmodium berghei Blood Stages Export a Large and Diverse Repertoire of Proteins. Molecular and Cellular Proteomics, 2013, 12, 426-448.	3.8	65
308	A SILAC-based Approach Identifies Substrates of Caspase-dependent Cleavage upon TRAIL-induced Apoptosis. Molecular and Cellular Proteomics, 2013, 12, 1436-1450.	3.8	27
309	HOT1 is a mammalian direct telomere repeat-binding protein contributing to telomerase recruitment. EMBO Journal, 2013, 32, 1681-1701.	7.8	74
310	The chromodomain helicase Chd4 is required for Polycomb-mediated inhibition of astroglial differentiation. EMBO Journal, 2013, 32, 1598-1612.	7.8	80
311	Phosphorylation Variation during the Cell Cycle Scales with Structural Propensities of Proteins. PLoS Computational Biology, 2013, 9, e1002842.	3.2	54
312	Quantitative proteomic analysis reveals concurrent RNA–protein interactions and identifies new RNA-binding proteins in <i>Saccharomyces cerevisiae</i> . Genome Research, 2013, 23, 1028-1038.	5.5	56
313	Interaction between AP-5 and the hereditary spastic paraplegia proteins SPG11 and SPG15. Molecular Biology of the Cell, 2013, 24, 2558-2569.	2.1	95
314	Protein Correlation Profiles Identify Lipid Droplet Proteins with High Confidence. Molecular and Cellular Proteomics, 2013, 12, 1115-1126.	3.8	138
315	Comparative Proteomics of Two Life Cycle Stages of Stable Isotope-labeled Trypanosoma brucei Reveals Novel Components of the Parasite's Host Adaptation Machinery. Molecular and Cellular Proteomics, 2013, 12, 172-179.	3.8	75
316	DEAD Box Protein DDX1 Regulates Cytoplasmic Localization of KSRP. PLoS ONE, 2013, 8, e73752.	2.5	12
317	Dicer-dependent and -independent Argonaute2 Protein Interaction Networks in Mammalian Cells. Molecular and Cellular Proteomics, 2012, 11, 1442-1456.	3.8	53
318	Proteome-Wide Analysis of Disease-Associated SNPs That Show Allele-Specific Transcription Factor Binding. PLoS Genetics, 2012, 8, e1002982.	3.5	92
319	Quantitative Proteomics Reveals That Hsp90 Inhibition Preferentially Targets Kinases and the DNA Damage Response. Molecular and Cellular Proteomics, 2012, 11, M111.014654.	3.8	91
320	Analysis of High Accuracy, Quantitative Proteomics Data in the MaxQB Database. Molecular and Cellular Proteomics, 2012, 11, M111.014068.	3.8	147
321	Proteomic Portrait of Human Breast Cancer Progression Identifies Novel Prognostic Markers. Cancer Research, 2012, 72, 2428-2439.	0.9	124
322	Ultra High Resolution Linear Ion Trap Orbitrap Mass Spectrometer (Orbitrap Elite) Facilitates Top Down LC MS/MS and Versatile Peptide Fragmentation Modes. Molecular and Cellular Proteomics, 2012, 11, O111.013698.	3.8	303
323	Induction of membrane circular dorsal ruffles requires co-signalling of integrin–ILK-complex and EGF receptor. Journal of Cell Science, 2012, 125, 435-448.	2.0	48
324	H2A.Z.2.2 is an alternatively spliced histone H2A.Z variant that causes severe nucleosome destabilization. Nucleic Acids Research, 2012, 40, 5951-5964.	14.5	94

#	Article	IF	CITATIONS
325	Reduced CD36-dependent tissue sequestration of <i>Plasmodium</i> -infected erythrocytes is detrimental to malaria parasite growth in vivo. Journal of Experimental Medicine, 2012, 209, 93-107.	8.5	97
326	Novel Murine Dendritic Cell Lines: A Powerful Auxiliary Tool for Dendritic Cell Research. Frontiers in Immunology, 2012, 3, 331.	4.8	137
327	Quantitative mass spectrometry and PAR-CLIP to identify RNA-protein interactions. Nucleic Acids Research, 2012, 40, 9897-9902.	14.5	45
328	System-wide Perturbation Analysis with Nearly Complete Coverage of the Yeast Proteome by Single-shot Ultra HPLC Runs on a Bench Top Orbitrap. Molecular and Cellular Proteomics, 2012, 11, M111.013722.	3.8	350
329	A Framework for Intelligent Data Acquisition and Real-Time Database Searching for Shotgun Proteomics. Molecular and Cellular Proteomics, 2012, 11, M111.013185.	3.8	50
330	A Protein Epitope Signature Tag (PrEST) Library Allows SILAC-based Absolute Quantification and Multiplexed Determination of Protein Copy Numbers in Cell Lines. Molecular and Cellular Proteomics, 2012, 11, 0111.009613.	3.8	141
331	Decoding Human Cytomegalovirus. Science, 2012, 338, 1088-1093.	12.6	546
332	Clobal analysis of genome, transcriptome and proteome reveals the response to aneuploidy in human cells. Molecular Systems Biology, 2012, 8, 608.	7.2	379
333	Consecutive Proteolytic Digestion in an Enzyme Reactor Increases Depth of Proteomic and Phosphoproteomic Analysis. Analytical Chemistry, 2012, 84, 2631-2637.	6.5	278
334	Mediator Phosphorylation Prevents Stress Response Transcription During Non-stress Conditions. Journal of Biological Chemistry, 2012, 287, 44017-44026.	3.4	33
335	Extensive quantitative remodeling of the proteome between normal colon tissue and adenocarcinoma. Molecular Systems Biology, 2012, 8, 611.	7.2	221
336	Expert System for Computer-assisted Annotation of MS/MS Spectra. Molecular and Cellular Proteomics, 2012, 11, 1500-1509.	3.8	59
337	Correction to Feasibility of Large-Scale Phosphoproteomics with Higher Energy Collisional Dissociation Fragmentation. Journal of Proteome Research, 2012, 11, 3506-3508.	3.7	11
338	Comparative Proteomic Analysis of Eleven Common Cell Lines Reveals Ubiquitous but Varying Expression of Most Proteins. Molecular and Cellular Proteomics, 2012, 11, M111.014050.	3.8	701
339	Triple SILAC to Determine Stimulus Specific Interactions in the Wnt Pathway. Journal of Proteome Research, 2012, 11, 982-994.	3.7	63
340	TNF receptor 1 genetic risk mirrors outcome of anti-TNF therapy in multiple sclerosis. Nature, 2012, 488, 508-511.	27.8	323
341	A new class of carriers that transport selective cargo from the trans Golgi network to the cell surface. EMBO Journal, 2012, 31, 3976-3990.	7.8	88
342	A Systematic Investigation into the Nature of Tryptic HCD Spectra. Journal of Proteome Research, 2012, 11, 5479-5491.	3.7	96

#	Article	IF	CITATIONS
343	Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Molecular Cell, 2012, 46, 212-225.	9.7	298
344	Mapping N-Glycosylation Sites across Seven Evolutionarily Distant Species Reveals a Divergent Substrate Proteome Despite a Common Core Machinery. Molecular Cell, 2012, 46, 542-548.	9.7	238
345	Functional Repurposing Revealed by Comparing S.Âpombe and S.Âcerevisiae Genetic Interactions. Cell, 2012, 149, 1339-1352.	28.9	154
346	In-depth proteomic analysis of a mollusc shell: acid-soluble and acid-insoluble matrix of the limpet Lottia gigantea. Proteome Science, 2012, 10, 28.	1.7	79
347	The human proteome – a scientific opportunity for transforming diagnostics, therapeutics, and healthcare. Clinical Proteomics, 2012, 9, 6.	2.1	41
348	Super-SILAC Allows Classification of Diffuse Large B-cell Lymphoma Subtypes by Their Protein Expression Profiles. Molecular and Cellular Proteomics, 2012, 11, 77-89.	3.8	155
349	SprayQc: A Real-Time LC–MS/MS Quality Monitoring System To Maximize Uptime Using Off the Shelf Components. Journal of Proteome Research, 2012, 11, 3458-3466.	3.7	60
350	1D and 2D annotation enrichment: a statistical method integrating quantitative proteomics with complementary high-throughput data. BMC Bioinformatics, 2012, 13, S12.	2.6	542
351	Advancing Cell Biology Through Proteomics in Space and Time (PROSPECTS). Molecular and Cellular Proteomics, 2012, 11, 0112.017731.	3.8	55
352	PhosphoSiteAnalyzer: A Bioinformatic Platform for Deciphering Phospho Proteomes Using Kinase Predictions Retrieved from NetworKIN. Journal of Proteome Research, 2012, 11, 3480-3486.	3.7	19
353	Polycomb group ring finger 1 cooperates with Runx1 in regulating differentiation and self-renewal of hematopoietic cells. Blood, 2012, 119, 4152-4161.	1.4	42
354	Proteomics for biomedicine: a half ompleted journey. EMBO Molecular Medicine, 2012, 4, 75-77.	6.9	7
355	Metabolic priming by a secreted fungal effector. Nature, 2011, 478, 395-398.	27.8	509
356	More than 100,000 Detectable Peptide Species Elute in Single Shotgun Proteomics Runs but the Majority is Inaccessible to Data-Dependent LCâ^'MS/MS. Journal of Proteome Research, 2011, 10, 1785-1793.	3.7	595
357	Mass Spectrometry-based Proteomics Using Q Exactive, a High-performance Benchtop Quadrupole Orbitrap Mass Spectrometer. Molecular and Cellular Proteomics, 2011, 10, M111.011015.	3.8	701
358	Andromeda: A Peptide Search Engine Integrated into the MaxQuant Environment. Journal of Proteome Research, 2011, 10, 1794-1805.	3.7	4,935
359	Deep and Highly Sensitive Proteome Coverage by LC-MS/MS Without Prefractionation. Molecular and Cellular Proteomics, 2011, 10, M110.003699.	3.8	311
360	A systematic RNAi synthetic interaction screen reveals a link between p53 and snoRNP assembly. Nature Cell Biology, 2011, 13, 809-818.	10.3	74

#	Article	IF	CITATIONS
361	System-Wide Temporal Characterization of the Proteome and Phosphoproteome of Human Embryonic Stem Cell Differentiation. Science Signaling, 2011, 4, rs3.	3.6	389
362	Deep proteome and transcriptome mapping of a human cancer cell line. Molecular Systems Biology, 2011, 7, 548.	7.2	878
363	Quantitative Analysis of the Intra- and Inter-Individual Variability of the Normal Urinary Proteome. Journal of Proteome Research, 2011, 10, 637-645.	3.7	215
364	C2 Domain-Containing Phosphoprotein CDP138 Regulates GLUT4 Insertion into the Plasma Membrane. Cell Metabolism, 2011, 14, 378-389.	16.2	64
365	Phosphatidylcholine Synthesis for Lipid Droplet Expansion Is Mediated by Localized Activation of CTP:Phosphocholine Cytidylyltransferase. Cell Metabolism, 2011, 14, 504-515.	16.2	408
366	Requirement of ATM-Dependent Monoubiquitylation of Histone H2B for Timely Repair of DNA Double-Strand Breaks. Molecular Cell, 2011, 41, 529-542.	9.7	347
367	Requirement of ATM-Dependent Monoubiquitylation of Histone H2B for Timely Repair of DNA Double-Strand Breaks. Molecular Cell, 2011, 42, 137.	9.7	3
368	Extracting gene function from protein–protein interactions using Quantitative BAC InteraCtomics (QUBIC). Methods, 2011, 53, 453-459.	3.8	96
369	Comparative Proteomic Analysis Identifies a Role for SUMO in Protein Quality Control. Science Signaling, 2011, 4, rs4.	3.6	153
370	High Recovery FASP Applied to the Proteomic Analysis of Microdissected Formalin Fixed Paraffin Embedded Cancer Tissues Retrieves Known Colon Cancer Markers. Journal of Proteome Research, 2011, 10, 3040-3049.	3.7	281
371	Systems-wide Proteomic Analysis in Mammalian Cells Reveals Conserved, Functional Protein Turnover. Journal of Proteome Research, 2011, 10, 5275-5284.	3.7	235
372	RAD21 Cooperates with Pluripotency Transcription Factors in the Maintenance of Embryonic Stem Cell Identity. PLoS ONE, 2011, 6, e19470.	2.5	109
373	Proteomic snapshot of the EGFâ€induced ubiquitin network. Molecular Systems Biology, 2011, 7, 462.	7.2	56
374	Resources for proteomics in mouse embryonic stem cells. Nature Methods, 2011, 8, 103-104.	19.0	13
375	Use of stable isotope labeling by amino acids in cell culture as a spike-in standard in quantitative proteomics. Nature Protocols, 2011, 6, 147-157.	12.0	265
376	Quantitative, High-Resolution Proteomics for Data-Driven Systems Biology. Annual Review of Biochemistry, 2011, 80, 273-299.	11.1	630
377	A Proteome-wide, Quantitative Survey of In Vivo Ubiquitylation Sites Reveals Widespread Regulatory Roles. Molecular and Cellular Proteomics, 2011, 10, M111.013284.	3.8	754
378	In Vivo Quantitative Proteomics: The SILAC Mouse. Methods in Molecular Biology, 2011, 757, 435-450.	0.9	77

#	Article	IF	CITATIONS
379	Large-scale phosphosite quantification in tissues by a spike-in SILAC method. Nature Methods, 2011, 8, 655-658.	19.0	141
380	John Bennett Fenn, 1917–2010. Journal of the American Society for Mass Spectrometry, 2011, 22, 602-603.	2.8	2
381	Software Lock Mass by Two-Dimensional Minimization of Peptide Mass Errors. Journal of the American Society for Mass Spectrometry, 2011, 22, 1373-1380.	2.8	138
382	In-depth analysis of the chicken egg white proteome using an LTQ Orbitrap Velos. Proteome Science, 2011, 9, 7.	1.7	120
383	Quantitative Proteomics for Epigenetics. ChemBioChem, 2011, 12, 224-234.	2.6	59
384	Comparison of ultrafiltration units for proteomic and N-glycoproteomic analysis by the filter-aided sample preparation method. Analytical Biochemistry, 2011, 410, 307-309.	2.4	166
385	Accurate Quantification of More Than 4000 Mouse Tissue Proteins Reveals Minimal Proteome Changes During Aging. Molecular and Cellular Proteomics, 2011, 10, S1-S7.	3.8	127
386	Effective Representation and Storage of Mass Spectrometry–Based Proteomic Data Sets for the Scientific Community. Science Signaling, 2011, 4, pe7.	3.6	17
387	Identification and characterization of a novel ubiquitous nucleolar protein †NARR' encoded by a gene overlapping the rab34 oncogene. Nucleic Acids Research, 2011, 39, 7103-7113.	14.5	10
388	Large-scale De Novo Prediction of Physical Protein-Protein Association. Molecular and Cellular Proteomics, 2011, 10, M111.010629.	3.8	44
389	β1 integrin cytoplasmic tyrosines promote skin tumorigenesis independent of their phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15213-15218.	7.1	31
390	The mitochondrial contact site complex, a determinant of mitochondrial architecture. EMBO Journal, 2011, 30, 4356-4370.	7.8	395
391	PHOSIDA 2011: the posttranslational modification database. Nucleic Acids Research, 2011, 39, D253-D260.	14.5	366
392	Profiling the Trypanosoma cruzi Phosphoproteome. PLoS ONE, 2011, 6, e25381.	2.5	68
393	The phosphoproteome of tollâ€like receptorâ€activated macrophages. Molecular Systems Biology, 2010, 6, 371.	7.2	142
394	Phosphoproteomes of Strongylocentrotus purpuratus shell and tooth matrix: identification of a major acidic sea urchin tooth phosphoprotein, phosphodontin. Proteome Science, 2010, 8, 6.	1.7	31
395	The HLA–B*2705 peptidome. Arthritis and Rheumatism, 2010, 62, 420-429.	6.7	64
396	Red blood cell (RBC) membrane proteomics — Part I: Proteomics and RBC physiology. Journal of Proteomics, 2010, 73, 403-420.	2.4	58

#	Article	IF	CITATIONS
397	Red Blood Cell (RBC) membrane proteomics — Part II: Comparative proteomics and RBC patho-physiology. Journal of Proteomics, 2010, 73, 421-435.	2.4	32
398	Quantitative Proteomics Reveals Subset-Specific Viral Recognition in Dendritic Cells. Immunity, 2010, 32, 279-289.	14.3	544
399	A plasma-membrane E-MAP reveals links of the eisosome with sphingolipid metabolism and endosomal trafficking. Nature Structural and Molecular Biology, 2010, 17, 901-908.	8.2	93
400	A domesticated transposon mediates the effects of a singleâ€nucleotide polymorphism responsible for enhanced muscle growth. EMBO Reports, 2010, 11, 305-311.	4.5	53
401	Super-SILAC mix for quantitative proteomics of human tumor tissue. Nature Methods, 2010, 7, 383-385.	19.0	480
402	Mass spectrometry in high-throughput proteomics: ready for the big time. Nature Methods, 2010, 7, 681-685.	19.0	465
403	Decoding signalling networks by mass spectrometry-based proteomics. Nature Reviews Molecular Cell Biology, 2010, 11, 427-439.	37.0	534
404	Proteomics, the red blood cell and transfusion medicine. ISBT Science Series, 2010, 5, 63-72.	1.1	1
405	Defining the transcriptome and proteome in three functionally different human cell lines. Molecular Systems Biology, 2010, 6, 450.	7.2	324
406	Proteomics on an Orbitrap Benchtop Mass Spectrometer Using All-ion Fragmentation. Molecular and Cellular Proteomics, 2010, 9, 2252-2261.	3.8	213
407	Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions. Journal of Cell Biology, 2010, 189, 739-754.	5.2	427
408	Predicting post-translational lysine acetylation using support vector machines. Bioinformatics, 2010, 26, 1666-1668.	4.1	61
409	Evolutionary Constraints of Phosphorylation in Eukaryotes, Prokaryotes, and Mitochondria. Molecular and Cellular Proteomics, 2010, 9, 2642-2653.	3.8	83
410	Brain Phosphoproteome Obtained by a FASP-Based Method Reveals Plasma Membrane Protein Topology. Journal of Proteome Research, 2010, 9, 3280-3289.	3.7	253
411	MSQuant, an Open Source Platform for Mass Spectrometry-Based Quantitative Proteomics. Journal of Proteome Research, 2010, 9, 393-403.	3.7	237
412	Quantitative Phosphoproteomics Reveals Widespread Full Phosphorylation Site Occupancy During Mitosis. Science Signaling, 2010, 3, ra3.	3.6	1,319
413	Proteome, Phosphoproteome, and N-Glycoproteome Are Quantitatively Preserved in Formalin-Fixed Paraffin-Embedded Tissue and Analyzable by High-Resolution Mass Spectrometry. Journal of Proteome Research, 2010, 9, 3688-3700.	3.7	219
414	Feasibility of Large-Scale Phosphoproteomics with Higher Energy Collisional Dissociation Fragmentation. Journal of Proteome Research, 2010, 9, 6786-6794.	3.7	149

#	Article	IF	CITATIONS
415	Yeast Expression Proteomics by High-Resolution Mass Spectrometry. Methods in Enzymology, 2010, 470, 259-280.	1.0	8
416	Regulation of Translesion Synthesis DNA Polymerase η by Monoubiquitination. Molecular Cell, 2010, 37, 396-407.	9.7	148
417	Site-Specific Identification of SUMO-2 Targets in Cells Reveals an Inverted SUMOylation Motif and a Hydrophobic Cluster SUMOylation Motif. Molecular Cell, 2010, 39, 641-652.	9.7	255
418	Integrin-Linked Kinase Controls Microtubule Dynamics Required for Plasma Membrane Targeting of Caveolae. Developmental Cell, 2010, 19, 574-588.	7.0	154
419	Precision Mapping of an In Vivo N-Glycoproteome Reveals Rigid Topological and Sequence Constraints. Cell, 2010, 141, 897-907.	28.9	789
420	Chromatin-Remodeling Components of the BAF Complex Facilitate Reprogramming. Cell, 2010, 141, 943-955.	28.9	357
421	Quantitative Interaction Proteomics and Genome-wide Profiling of Epigenetic Histone Marks and Their Readers. Cell, 2010, 142, 967-980.	28.9	710
422	Nucleosome-Interacting Proteins Regulated by DNA and Histone Methylation. Cell, 2010, 143, 470-484.	28.9	524
423	Mass spectrometry–based proteomics in cell biology. Journal of Cell Biology, 2010, 190, 491-500.	5.2	348
424	Red blood cell proteomics. Transfusion Clinique Et Biologique, 2010, 17, 151-164.	0.4	19
425	Quantitative Proteome and Transcriptome Analysis of the Archaeon <i>Thermoplasma acidophilum</i> Cultured under Aerobic and Anaerobic Conditions. Journal of Proteome Research, 2010, 9, 4839-4850.	3.7	42
426	Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) Applied to Quantitative Proteomics of <i>Bacillus subtilis</i> . Journal of Proteome Research, 2010, 9, 3638-3646.	3.7	108
427	Proteomic Changes Resulting from Gene Copy Number Variations in Cancer Cells. PLoS Genetics, 2010, 6, e1001090.	3.5	126
428	Deep-coverage rhesus red blood cell proteome: a first comparison with the human and mouse red blood cell. Blood Transfusion, 2010, 8 Suppl 3, s126-39.	0.4	10
429	A SILAC-based DNA protein interaction screen that identifies candidate binding proteins to functional DNA elements. Genome Research, 2009, 19, 284-293.	5.5	144
430	Ser/Thr/Tyr Protein Phosphorylation in the Archaeon Halobacterium salinarum—A Representative of the Third Domain of Life. PLoS ONE, 2009, 4, e4777.	2.5	84
431	Unbiased RNA–protein interaction screen by quantitative proteomics. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10626-10631.	7.1	124
432	Phosphorylation of Histone H3 Thr-45 Is Linked to Apoptosis. Journal of Biological Chemistry, 2009, 284, 16575-16583.	3.4	98

#	Article	IF	CITATIONS
433	Insights into the molecular architecture of the 26S proteasome. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11943-11947.	7.1	116
434	Quantitative proteomic analysis of single pancreatic islets. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18902-18907.	7.1	199
435	Systems-wide Analysis of a Phosphatase Knock-down by Quantitative Proteomics and Phosphoproteomics. Molecular and Cellular Proteomics, 2009, 8, 1908-1920.	3.8	94
436	Global Effects of Kinase Inhibitors on Signaling Networks Revealed by Quantitative Phosphoproteomics. Molecular and Cellular Proteomics, 2009, 8, 2796-2808.	3.8	194
437	Comparative Proteomic Phenotyping of Cell Lines and Primary Cells to Assess Preservation of Cell Type-specific Functions. Molecular and Cellular Proteomics, 2009, 8, 443-450.	3.8	426
438	A Dual Pressure Linear Ion Trap Orbitrap Instrument with Very High Sequencing Speed. Molecular and Cellular Proteomics, 2009, 8, 2759-2769.	3.8	398
439	The Phosphotyrosine Interactome of the Insulin Receptor Family and Its Substrates IRS-1 and IRS-2. Molecular and Cellular Proteomics, 2009, 8, 519-534.	3.8	128
440	Large-scale Proteomics Analysis of the Human Kinome. Molecular and Cellular Proteomics, 2009, 8, 1751-1764.	3.8	257
441	MAPU 2.0: high-accuracy proteomes mapped to genomes. Nucleic Acids Research, 2009, 37, D902-D906.	14.5	18
442	A genome-wide screen for genes affecting eisosomes reveals Nce102 function in sphingolipid signaling. Journal of Cell Biology, 2009, 185, 1227-1242.	5.2	123
443	Bioinformatics analysis of mass spectrometryâ€based proteomics data sets. FEBS Letters, 2009, 583, 1703-1712.	2.8	147
444	Highâ€accuracy identification and bioinformatic analysis of <i>in vivo</i> protein phosphorylation sites in yeast. Proteomics, 2009, 9, 4642-4652.	2.2	132
445	Differential substrate specificity of group I and group II chaperonins in the archaeon <i>Methanosarcina mazei</i> . Molecular Microbiology, 2009, 74, 1152-1168.	2.5	41
446	Universal sample preparation method for proteome analysis. Nature Methods, 2009, 6, 359-362.	19.0	6,678
447	Comparative analysis to guide quality improvements in proteomics. Nature Methods, 2009, 6, 717-719.	19.0	58
448	Reply to "Spin filter–based sample preparation for shotgun proteomics― Nature Methods, 2009, 6, 785-786.	19.0	42
449	A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nature Protocols, 2009, 4, 698-705.	12.0	769
450	Computational principles of determining and improving mass precision and accuracy for proteome measurements in an Orbitrap. Journal of the American Society for Mass Spectrometry, 2009, 20, 1477-1485.	2.8	65

#	Article	IF	CITATIONS
451	Lysine Acetylation Targets Protein Complexes and Co-Regulates Major Cellular Functions. Science, 2009, 325, 834-840.	12.6	3,883
452	System-Wide Changes to SUMO Modifications in Response to Heat Shock. Science Signaling, 2009, 2, ra24.	3.6	415
453	Mapping of Lysine Monomethylation of Linker Histones in Human Breast and Its Cancer. Journal of Proteome Research, 2009, 8, 4207-4215.	3.7	24
454	Jmjd6 Catalyses Lysyl-Hydroxylation of U2AF65, a Protein Associated with RNA Splicing. Science, 2009, 325, 90-93.	12.6	356
455	<i>Caenorhabditis elegans</i> Has a Phosphoproteome Atypical for Metazoans That Is Enriched in Developmental and Sex Determination Proteins. Journal of Proteome Research, 2009, 8, 4039-4049.	3.7	66
456	Host Cell Interactome of Tyrosine-Phosphorylated Bacterial Proteins. Cell Host and Microbe, 2009, 5, 397-403.	11.0	175
457	Proteome Differences between Brown and White Fat Mitochondria Reveal Specialized Metabolic Functions. Cell Metabolism, 2009, 10, 324-335.	16.2	205
458	Mislocalized Activation of Oncogenic RTKs Switches Downstream Signaling Outcomes. Molecular Cell, 2009, 36, 326-339.	9.7	278
459	Global and Site-Specific Quantitative Phosphoproteomics: Principles and Applications. Annual Review of Pharmacology and Toxicology, 2009, 49, 199-221.	9.4	382
460	Combination of FASP and StageTip-Based Fractionation Allows In-Depth Analysis of the Hippocampal Membrane Proteome. Journal of Proteome Research, 2009, 8, 5674-5678.	3.7	507
461	Comparative Proteomic Profiling of Membrane Proteins in Rat Cerebellum, Spinal Cord, and Sciatic Nerve. Journal of Proteome Research, 2009, 8, 2418-2425.	3.7	57
462	Two Chromatin Remodeling Activities Cooperate during Activation of Hormone Responsive Promoters. PLoS Genetics, 2009, 5, e1000567.	3.5	47
463	A high confidence, manually validated human blood plasma protein reference set. BMC Medical Genomics, 2008, 1, 41.	1.5	140
464	The chicken egg yolk plasma and granule proteomes. Proteomics, 2008, 8, 178-191.	2.2	170
465	The Ser/Thr/Tyr phosphoproteome of <i>Lactococcus lactis</i> IL1403 reveals multiply phosphorylated proteins. Proteomics, 2008, 8, 3486-3493.	2.2	145
466	Quantitative phosphoproteome analysis of a mouse liver cell line reveals specificity of phosphatase inhibitors. Proteomics, 2008, 8, 4534-4546.	2.2	93
467	Peptide separation with immobilized p <i>I</i> strips is an attractive alternative to inâ€gel protein digestion for proteome analysis. Proteomics, 2008, 8, 4862-4872.	2.2	154
468	Constitutive and dynamic phosphorylation and acetylation sites on NUCKS, a hypermodified nuclear protein, studied by quantitative proteomics. Proteins: Structure, Function and Bioinformatics, 2008, 73, 710-718.	2.6	43

#	Article	IF	CITATIONS
469	How much peptide sequence information is contained in ion trap tandem mass spectra?. Journal of the American Society for Mass Spectrometry, 2008, 19, 1813-1820.	2.8	28
470	High confidence determination of specific protein–protein interactions using quantitative mass spectrometry. Current Opinion in Biotechnology, 2008, 19, 331-337.	6.6	156
471	Integrated Analysis of the Cerebrospinal Fluid Peptidome and Proteome. Journal of Proteome Research, 2008, 7, 386-399.	3.7	162
472	Detergent-Based but Gel-Free Method Allows Identification of Several Hundred Membrane Proteins in Single LC-MS Runs. Journal of Proteome Research, 2008, 7, 5028-5032.	3.7	77
473	Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature, 2008, 455, 1251-1254.	27.8	835
474	MaxQuant enables high peptide identification rates, individualized p.p.brange mass accuracies and proteome-wide protein quantification. Nature Biotechnology, 2008, 26, 1367-1372.	17.5	12,966
475	Human Proteinpedia enables sharing of human protein data. Nature Biotechnology, 2008, 26, 164-167.	17.5	155
476	Guidelines for reporting the use of mass spectrometry in proteomics. Nature Biotechnology, 2008, 26, 860-861.	17.5	82
477	lodoacetamide-induced artifact mimics ubiquitination in mass spectrometry. Nature Methods, 2008, 5, 459-460.	19.0	268
478	Protein abundance profiling of the Escherichia coli cytosol. BMC Genomics, 2008, 9, 102.	2.8	432
479	Evidence for Insertional RNA Editing in Humans. Current Biology, 2008, 18, 1760-1765.	3.9	12
480	Absolute SILAC for Accurate Quantitation of Proteins in Complex Mixtures Down to the Attomole Level. Journal of Proteome Research, 2008, 7, 1118-1130.	3.7	200
481	The sea urchin (Strongylocentrotus purpuratus) test and spine proteomes. Proteome Science, 2008, 6, 22.	1.7	100
482	In-depth, high-accuracy proteomics of sea urchin tooth organic matrix. Proteome Science, 2008, 6, 33.	1.7	69
483	Solid Tumor Proteome and Phosphoproteome Analysis by High Resolution Mass Spectrometry. Journal of Proteome Research, 2008, 7, 5314-5326.	3.7	132
484	Ubc9 Sumoylation Regulates SUMO Target Discrimination. Molecular Cell, 2008, 31, 371-382.	9.7	191
485	Kinase-Selective Enrichment Enables Quantitative Phosphoproteomics of the Kinome across the Cell Cycle. Molecular Cell, 2008, 31, 438-448.	9.7	548
486	Combined Use of RNAi and Quantitative Proteomics to Study Gene Function in Drosophila. Molecular Cell, 2008, 31, 762-772.	9.7	93

#	Article	IF	CITATIONS
487	SILAC Mouse for Quantitative Proteomics Uncovers Kindlin-3 as an Essential Factor for Red Blood Cell Function. Cell, 2008, 134, 353-364.	28.9	631
488	Phosphorylation of SUMO-1 Occurs <i>in Vivo</i> and Is Conserved through Evolution. Journal of Proteome Research, 2008, 7, 4050-4057.	3.7	36
489	Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and Proteome Quantitation of Mouse Embryonic Stem Cells to a Depth of 5,111 Proteins. Molecular and Cellular Proteomics, 2008, 7, 672-683.	3.8	261
490	In Vivo Identification of Human Small Ubiquitin-like Modifier Polymerization Sites by High Accuracy Mass Spectrometry and an in Vitro to in Vivo Strategy. Molecular and Cellular Proteomics, 2008, 7, 132-144.	3.8	251
491	Can Proteomics Retire the Western Blot?. Journal of Proteome Research, 2008, 7, 3065-3065.	3.7	54
492	Phosphorylation of the Human Full-Length Protein Kinase CÎ ¹ . Journal of Proteome Research, 2008, 7, 2928-2935.	3.7	8
493	Dissection of the insulin signaling pathway via quantitative phosphoproteomics. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2451-2456.	7.1	250
494	Phosphoproteome Analysis of E. coli Reveals Evolutionary Conservation of Bacterial Ser/Thr/Tyr Phosphorylation. Molecular and Cellular Proteomics, 2008, 7, 299-307.	3.8	385
495	Deep Coverage Mouse Red Blood Cell Proteome. Molecular and Cellular Proteomics, 2008, 7, 1317-1330.	3.8	59
496	Motif Decomposition of the Phosphotyrosine Proteome Reveals a New N-terminal Binding Motif for SHIP2. Molecular and Cellular Proteomics, 2008, 7, 181-192.	3.8	15
497	Precision proteomics: The case for high resolution and high mass accuracy. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18132-18138.	7.1	388
498	A Novel Chromatographic Method Allows On-line Reanalysis of the Proteome. Molecular and Cellular Proteomics, 2008, 7, 1452-1459.	3.8	27
499	Multi-spectra peptide sequencing and its applications to multistage mass spectrometry. Bioinformatics, 2008, 24, i416-i423.	4.1	25
500	The Ubiquitin-Proteasome System Is a Key Component of the SUMO-2/3 Cycle. Molecular and Cellular Proteomics, 2008, 7, 2107-2122.	3.8	143
501	Proteomic Profiling of Plasmodium Sporozoite Maturation Identifies New Proteins Essential for Parasite Development and Infectivity. PLoS Pathogens, 2008, 4, e1000195.	4.7	191
502	The AU-rich element mRNA decay-promoting activity of BRF1 is regulated by mitogen-activated protein kinase-activated protein kinase 2. Rna, 2008, 14, 950-959.	3.5	75
503	Identification of new chicken egg proteins by mass spectrometry-based proteomic analysis. World's Poultry Science Journal, 2008, 64, 209-218.	3.0	28
504	Investigation of Protein-tyrosine Phosphatase 1B Function by Quantitative Proteomics. Molecular and Cellular Proteomics, 2008, 7, 1763-1777.	3.8	106

#	Article	IF	CITATIONS
505	N ε -Formylation of lysine is a widespread post-translational modification of nuclear proteins occurring at residues involved in regulation of chromatin function. Nucleic Acids Research, 2008, 36, 570-577.	14.5	152
506	Mass Spectrometry Resurrects Protein-based Approaches in Functional Genomics. Novartis Foundation Symposium, 2008, 229, 27-32.	1.1	0
507	Temporal Dynamics of EGF Receptor Signaling by Quantitative Proteomics. , 2008, , 190-198.		1
508	MAPU: Max-Planck Unified database of organellar, cellular, tissue and body fluid proteomes. Nucleic Acids Research, 2007, 35, D771-D779.	14.5	69
509	Mass Spectrometric Mapping of Linker Histone H1 Variants Reveals Multiple Acetylations, Methylations, and Phosphorylation as Well as Differences between Cell Culture and Tissue. Molecular and Cellular Proteomics, 2007, 6, 72-87.	3.8	205
510	In-depth Analysis of the Adipocyte Proteome by Mass Spectrometry and Bioinformatics. Molecular and Cellular Proteomics, 2007, 6, 1257-1273.	3.8	101
511	The Serine/Threonine/Tyrosine Phosphoproteome of the Model Bacterium Bacillus subtilis. Molecular and Cellular Proteomics, 2007, 6, 697-707.	3.8	359
512	Functional characterization of Rad18 domains for Rad6, ubiquitin, DNA binding and PCNA modification. Nucleic Acids Research, 2007, 35, 5819-5830.	14.5	85
513	Is Proteomics the New Genomics?. Cell, 2007, 130, 395-398.	28.9	410
514	Selective Anchoring of TFIID to Nucleosomes by Trimethylation of Histone H3 Lysine 4. Cell, 2007, 131, 58-69.	28.9	769
515	On the Proper Use of Mass Accuracy in Proteomics. Molecular and Cellular Proteomics, 2007, 6, 377-381.	3.8	144
516	PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites. Genome Biology, 2007, 8, R250.	9.6	410
517	Analysis of the Mouse Liver Proteome Using Advanced Mass Spectrometry. Journal of Proteome Research, 2007, 6, 2963-2972.	3.7	83
518	The Low Molecular Weight Proteome ofHalobacterium salinarum. Journal of Proteome Research, 2007, 6, 1510-1518.	3.7	63
519	Nanoelectrospray peptide mapping revisited: Composite survey spectra allow high dynamic range protein characterization without LCMS on an orbitrap mass spectrometer. International Journal of Mass Spectrometry, 2007, 268, 158-167.	1.5	10
520	Top-down quantitation and characterization of SILAC-labeled proteins. Journal of the American Society for Mass Spectrometry, 2007, 18, 2058-2064.	2.8	83
521	Phosphoproteins of the chicken eggshell calcified layer. Proteomics, 2007, 7, 106-115.	2.2	102
522	Quantitative proteomic assessment of very early cellular signaling events. Nature Biotechnology, 2007, 25, 566-568.	17.5	110

#	Article	IF	CITATIONS
523	The minimum information about a proteomics experiment (MIAPE). Nature Biotechnology, 2007, 25, 887-893.	17.5	694
524	A mass spectrometry–friendly database for cSNP identification. Nature Methods, 2007, 4, 465-466.	19.0	72
525	Higher-energy C-trap dissociation for peptide modification analysis. Nature Methods, 2007, 4, 709-712.	19.0	844
526	Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nature Protocols, 2007, 2, 1896-1906.	12.0	3,693
527	Noncovalent interaction between Ubc9 and SUMO promotes SUMO chain formation. EMBO Journal, 2007, 26, 2797-2807.	7.8	177
528	Arginine methylation at histone H3R2 controls deposition of H3K4 trimethylation. Nature, 2007, 449, 928-932.	27.8	322
529	Integral and Associated Lysosomal Membrane Proteins. Traffic, 2007, 8, 1676-1686.	2.7	166
530	Quantitative proteomic profiling of membrane proteins from the mouse brain cortex, hippocampus, and cerebellum using the HysTag reagent: Mapping of neurotransmitter receptors and ion channels. Brain Research, 2007, 1134, 95-106.	2.2	41
531	Analysis of Nucleolar Protein Dynamics Reveals the Nuclear Degradation of Ribosomal Proteins. Current Biology, 2007, 17, 749-760.	3.9	314
532	Stable Isotope Labeling by Amino Acids in Cell Culture for Quantitative Proteomics. Methods in Molecular Biology, 2007, 359, 37-52.	0.9	189
533	The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins. Genome Biology, 2006, 7, R80.	9.6	598
534	Identification of 491 proteins in the tear fluid proteome reveals a large number of proteases and protease inhibitors. Genome Biology, 2006, 7, R72.	9.6	344
535	Status of complete proteome analysis by mass spectrometry: SILAC labeled yeast as a model system. Genome Biology, 2006, 7, R50.	9.6	244
536	Large-scale and high-confidence proteomic analysis of human seminal plasma. Genome Biology, 2006, 7, R40.	9.6	321
537	Protein Identification and Sequencing by Mass Spectrometry. , 2006, , 363-369.		0
538	Quantitative Proteomic Comparison of Rat Mitochondria from Muscle, Heart, and Liver. Molecular and Cellular Proteomics, 2006, 5, 608-619.	3.8	250
539	Modular Stop and Go Extraction Tips with Stacked Disks for Parallel and Multidimensional Peptide Fractionation in Proteomics. Journal of Proteome Research, 2006, 5, 988-994.	3.7	294
540	Mild Protease Treatment as a Small-Scale Biochemical Method for Mitochondria Purification and Proteomic Mapping of Cytoplasm-Exposed Mitochondrial Proteins. Journal of Proteome Research, 2006, 5, 3277-3287.	3.7	25

#	Article	IF	CITATIONS
541	Identifying and Quantifying Sites of Protein Methylation by Heavy Methyl SILAC. Current Protocols in Protein Science, 2006, 46, Unit 14.9.	2.8	24
542	Insulin-dependent Interactions of Proteins with GLUT4 Revealed through Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)*. Journal of Proteome Research, 2006, 5, 64-75.	3.7	106
543	Top-down Protein Sequencing and MS3 on a Hybrid Linear Quadrupole Ion Trap-Orbitrap Mass Spectrometer. Molecular and Cellular Proteomics, 2006, 5, 949-958.	3.8	179
544	A Mammalian Organelle Map by Protein Correlation Profiling. Cell, 2006, 125, 187-199.	28.9	538
545	Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks. Cell, 2006, 127, 635-648.	28.9	3,201
546	A Wiring of the Human Nucleolus. Molecular Cell, 2006, 22, 285-295.	9.7	56
547	Quantitative proteomics to study mitogen-activated protein kinases. Methods, 2006, 40, 243-250.	3.8	78
548	Stable Isotope Labeling by Amino Acids in Cell Culture for Quantitative Proteomics. , 2006, , 427-436.		0
549	Regulation of ubiquitin-binding proteins by monoubiquitination. Nature Cell Biology, 2006, 8, 163-169.	10.3	279
550	Protein interaction screening by quantitative immunoprecipitation combined with knockdown (QUICK). Nature Methods, 2006, 3, 981-983.	19.0	239
551	A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nature Protocols, 2006, 1, 2650-2660.	12.0	816
552	In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature Protocols, 2006, 1, 2856-2860.	12.0	4,265
553	Functional and quantitative proteomics using SILAC. Nature Reviews Molecular Cell Biology, 2006, 7, 952-958.	37.0	865
554	Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature, 2006, 439, 204-207.	27.8	836
555	Robust Salmonella metabolism limits possibilities for new antimicrobials. Nature, 2006, 440, 303-307.	27.8	327
556	Organellar proteomics: turning inventories into insights. EMBO Reports, 2006, 7, 874-879.	4.5	185
557	NOPdb: Nucleolar Proteome Database. Nucleic Acids Research, 2006, 34, D218-D220.	14.5	93
558	Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine. Nucleic Acids Research, 2006, 34, 1588-1596.	14.5	122

#	Article	IF	CITATIONS
559	Repo-Man recruits PP1Î ³ to chromatin and is essential for cell viability. Journal of Cell Biology, 2006, 172, 679-692.	5.2	240
560	Actin homolog MreB and RNA polymerase interact and are both required for chromosome segregation in Escherichia coli. Genes and Development, 2006, 20, 113-124.	5.9	115
561	Distinct and Overlapping Sets of SUMO-1 and SUMO-2 Target Proteins Revealed by Quantitative Proteomics. Molecular and Cellular Proteomics, 2006, 5, 2298-2310.	3.8	274
562	In-depth analysis of the membrane and cytosolic proteome of red blood cells. Blood, 2006, 108, 791-801.	1.4	388
563	A Proteomic Approach to the Inventory of the Human Centrosome. , 2005, , 123-142.		6
564	Differential Expression Profiling of Membrane Proteins by Quantitative Proteomics in a Human Mesenchymal Stem Cell Line Undergoing Osteoblast Differentiation. Stem Cells, 2005, 23, 1367-1377.	3.2	185
565	Mass spectrometry–based proteomics turns quantitative. Nature Chemical Biology, 2005, 1, 252-262.	8.0	1,426
566	Nucleolar proteome dynamics. Nature, 2005, 433, 77-83.	27.8	1,061
567	A proteomic fingerprint of dissolved organic carbon and of soil particles. Oecologia, 2005, 142, 335-343.	2.0	153
568	Parts per Million Mass Accuracy on an Orbitrap Mass Spectrometer via Lock Mass Injection into a C-trap. Molecular and Cellular Proteomics, 2005, 4, 2010-2021.	3.8	1,395
569	Stable Isotope Labeling of Arabidopsis thaliana Cells and Quantitative Proteomics by Mass Spectrometry. Molecular and Cellular Proteomics, 2005, 4, 1697-1709.	3.8	189
570	Quantitative Phosphoproteomics Applied to the Yeast Pheromone Signaling Pathway. Molecular and Cellular Proteomics, 2005, 4, 310-327.	3.8	708
571	Phosphotyrosine interactome of the ErbBâ€receptor kinase family. Molecular Systems Biology, 2005, 1, 2005.0008.	7.2	468
572	Proteomic Analysis of the Arabidopsis Nucleolus Suggests Novel Nucleolar Functions. Molecular Biology of the Cell, 2005, 16, 260-269.	2.1	352
573	Proteomic Mapping of Brain Plasma Membrane Proteins. Molecular and Cellular Proteomics, 2005, 4, 402-408.	3.8	147
574	Exponentially Modified Protein Abundance Index (emPAI) for Estimation of Absolute Protein Amount in Proteomics by the Number of Sequenced Peptides per Protein. Molecular and Cellular Proteomics, 2005, 4, 1265-1272.	3.8	1,817
575	Proteome Analysis of Separated Male and Female Gametocytes Reveals Novel Sex-Specific Plasmodium Biology. Cell, 2005, 121, 675-687.	28.9	336
576	Proteome-wide Analysis of Chaperonin-Dependent Protein Folding in Escherichia coli. Cell, 2005, 122, 209-220.	28.9	590

#	Article	IF	CITATIONS
577	Mechanism of Divergent Growth Factor Effects in Mesenchymal Stem Cell Differentiation. Science, 2005, 308, 1472-1477.	12.6	531
578	BASP1 Is a Transcriptional Cosuppressor for the Wilms' Tumor Suppressor Protein WT1. Molecular and Cellular Biology, 2004, 24, 537-549.	2.3	120
579	A Novel Proteomic Screen for Peptide-Protein Interactions. Journal of Biological Chemistry, 2004, 279, 10756-10764.	3.4	262
580	Improved peptide identification in proteomics by two consecutive stages of mass spectrometric fragmentation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13417-13422.	7.1	317
581	HysTag—A Novel Proteomic Quantification Tool Applied to Differential Display Analysis of Membrane Proteins From Distinct Areas of Mouse Brain. Molecular and Cellular Proteomics, 2004, 3, 82-92.	3.8	88
582	A Proteomic Study of SUMO-2 Target Proteins. Journal of Biological Chemistry, 2004, 279, 33791-33798.	3.4	197
583	Tyrosine Phosphoproteomics of Fibroblast Growth Factor Signaling. Journal of Biological Chemistry, 2004, 279, 46438-46447.	3.4	90
584	Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nature Biotechnology, 2004, 22, 1139-1145.	17.5	680
585	Identifying and quantifying in vivo methylation sites by heavy methyl SILAC. Nature Methods, 2004, 1, 119-126.	19.0	427
586	The abc's (and xyz's) of peptide sequencing. Nature Reviews Molecular Cell Biology, 2004, 5, 699-711.	37.0	948
587	Cloning of a novel signaling molecule, AMSH-2, that potentiates transforming growth factor beta signaling. BMC Cell Biology, 2004, 5, 2.	3.0	37
588	elF4A3 is a novel component of the exon junction complex. Rna, 2004, 10, 200-209.	3.5	215
589	Trypsin Cleaves Exclusively C-terminal to Arginine and Lysine Residues. Molecular and Cellular Proteomics, 2004, 3, 608-614.	3.8	957
590	PROTEOMICS. Annual Review of Genomics and Human Genetics, 2004, 5, 267-293.	6.2	175
591	Protein Kinase CK2 Is Coassembled with Small Conductance Ca2+-Activated K+ Channels and Regulates Channel Gating. Neuron, 2004, 43, 847-858.	8.1	176
592	RNA and RNA Binding Proteins Participate in Early Stages of Cell Spreading through Spreading Initiation Centers. Cell, 2004, 117, 649-662.	28.9	237
593	Experiences and perspectives of MALDI MS and MS/MS in proteomic research. International Journal of Mass Spectrometry, 2003, 226, 223-237.	1.5	54
594	From genomics to proteomics. Nature, 2003, 422, 193-197.	27.8	886

0

#	Article	IF	CITATIONS
595	Mass spectrometry-based proteomics. Nature, 2003, 422, 198-207.	27.8	6,282
596	Proteomic characterization of the human centrosome by protein correlation profiling. Nature, 2003, 426, 570-574.	27.8	1,204
597	Proteomic analysis of post-translational modifications. Nature Biotechnology, 2003, 21, 255-261.	17.5	1,809
598	A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling. Nature Biotechnology, 2003, 21, 315-318.	17.5	702
599	Detection of Arginine Dimethylated Peptides by Parallel Precursor Ion Scanning Mass Spectrometry in Positive Ion Mode. Analytical Chemistry, 2003, 75, 3107-3114.	6.5	158
600	Properties of13C-Substituted Arginine in Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC). Journal of Proteome Research, 2003, 2, 173-181.	3.7	439
601	Stop and Go Extraction Tips for Matrix-Assisted Laser Desorption/Ionization, Nanoelectrospray, and LC/MS Sample Pretreatment in Proteomics. Analytical Chemistry, 2003, 75, 663-670.	6.5	2,337
602	Integrated Analysis of Protein Composition, Tissue Diversity, and Gene Regulation in Mouse Mitochondria. Cell, 2003, 115, 629-640.	28.9	815
603	Mass spectrometric-based approaches in quantitative proteomics. Methods, 2003, 29, 124-130.	3.8	398
604	ERCC1/XPF Removes the 3′ Overhang from Uncapped Telomeres and Represses Formation of Telomeric DNA-Containing Double Minute Chromosomes. Molecular Cell, 2003, 12, 1489-1498.	9.7	349
605	Rrp47p Is an Exosome-Associated Protein Required for the 3′ Processing of Stable RNAs. Molecular and Cellular Biology, 2003, 23, 6982-6992.	2.3	144
606	Signaling Initiated by Overexpression of the Fibroblast Growth Factor Receptor-1 Investigated by Mass Spectrometry. Molecular and Cellular Proteomics, 2003, 2, 29-36.	3.8	73
607	Phosphotyrosine Mapping in Bcr/Abl Oncoprotein Using Phosphotyrosine-specific Immonium Ion Scanning. Molecular and Cellular Proteomics, 2003, 2, 138-145.	3.8	46
608	Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5813-5818.	7.1	783
609	Identification of a gene causing human cytochrome <i>c</i> oxidase deficiency by integrative genomics. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 605-610.	7.1	526
610	Computational and experimental analysis reveals a novel Src family kinase in the C. elegans genome. Bioinformatics, 2003, 19, 169-172.	4.1	48
611	Bioinformatic analysis of the nucleolus. Biochemical Journal, 2003, 376, 553-569.	3.7	130

612 Protein Interaction Mapping by Coprecipitation and Mass Spectrometric Identification. , 2003, , 295-300.

#	Article	IF	CITATIONS
613	A Novel Src Homology 2 Domain-containing Molecule, Src-like Adapter Protein-2 (SLAP-2), Which Negatively Regulates T Cell Receptor Signaling. Journal of Biological Chemistry, 2002, 277, 19131-19138.	3.4	36
614	Inhibition of Adipocyte Differentiation by Resistin-like Molecule α. Journal of Biological Chemistry, 2002, 277, 42011-42016.	3.4	61
615	Purification of Native Survival of Motor Neurons Complexes and Identification of Gemin6 as a Novel Component. Journal of Biological Chemistry, 2002, 277, 7540-7545.	3.4	121
616	Pseudosubstrate regulation of the SCFbeta -TrCP ubiquitin ligase by hnRNP-U. Genes and Development, 2002, 16, 439-451.	5.9	110
617	Cloning of MASK, a Novel Member of the Mammalian Germinal Center Kinase III Subfamily, with Apoptosis-inducing Properties. Journal of Biological Chemistry, 2002, 277, 5929-5939.	3.4	53
618	A Novel WD Repeat Protein Component of the Methylosome Binds Sm Proteins. Journal of Biological Chemistry, 2002, 277, 8243-8247.	3.4	199
619	miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes and Development, 2002, 16, 720-728.	5.9	926
620	A Proteomic Approach for Identification of Secreted Proteins during the Differentiation of 3T3-L1 Preadipocytes to Adipocytes. Molecular and Cellular Proteomics, 2002, 1, 213-222.	3.8	227
621	Identification and Characterization of Gemin7, a Novel Component of the Survival of Motor Neuron Complex. Journal of Biological Chemistry, 2002, 277, 31957-31962.	3.4	109
622	Analysis of Tyrosine Phosphorylation Sites in Signaling Molecules by a Phosphotyrosine-Specific Immonium Ion Scanning Method. Science Signaling, 2002, 2002, pl16-pl16.	3.6	38
623	Tyrosine Phosphorylation Mapping of the Epidermal Growth Factor Receptor Signaling Pathway. Journal of Biological Chemistry, 2002, 277, 1031-1039.	3.4	175
624	Large-Scale Proteomic Analysis of the Human Spliceosome. Genome Research, 2002, 12, 1231-1245.	5.5	808
625	Axin-mediated CKI phosphorylation of beta -catenin at Ser 45: a molecular switch for the Wnt pathway. Genes and Development, 2002, 16, 1066-1076.	5.9	621
626	Gemin5, a Novel WD Repeat Protein Component of the SMN Complex That Binds Sm Proteins. Journal of Biological Chemistry, 2002, 277, 5631-5636.	3.4	139
627	Biochemie und Molekulargenetik 2001. Nachrichten Aus Der Chemie, 2002, 50, 312-326.	0.0	0
628	Identification of yeast proteins by mass spectrometry. Methods in Enzymology, 2002, 351, 296-321.	1.0	3
629	Analysis of Bromotryptophan and Hydroxyproline Modifications by High-Resolution, High-Accuracy Precursor Ion Scanning Utilizing Fragment Ions with Mass-Deficient Mass Tags. Analytical Chemistry, 2002, 74, 6230-6236.	6.5	41
630	A Mass Spectrometry-based Proteomic Approach for Identification of Serine/Threonine-phosphorylated Proteins by Enrichment with Phospho-specific Antibodies. Molecular and Cellular Proteomics, 2002, 1, 517-527.	3.8	353

#	Article	IF	CITATIONS
631	Peptide End Sequencing by Orthogonal MALDI Tandem Mass Spectrometry. Journal of Proteome Research, 2002, 1, 63-71.	3.7	34
632	Is mass spectrometry ready for proteome-wide protein expression analysis?. Genome Biology, 2002, 3, comment2008.1.	9.6	16
633	Anaphase specific auto-cleavage of separase. FEBS Letters, 2002, 528, 246-250.	2.8	49
634	Corrigendum to: Anaphase specific auto-cleavage of separase (FEBS 26464). FEBS Letters, 2002, 531, 381-381.	2.8	1
635	Multi-Protein Complexes Studied by Mass Spectrometry. Scientific World Journal, The, 2002, 2, 91-92.	2.1	1
636	Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends in Biotechnology, 2002, 20, 261-268.	9.3	877
637	Paraspeckles. Current Biology, 2002, 12, 13-25.	3.9	455
638	Directed Proteomic Analysis of the Human Nucleolus. Current Biology, 2002, 12, 1-11.	3.9	962
639	What does it mean to identify a protein in proteomics?. Trends in Biochemical Sciences, 2002, 27, 74-78.	7.5	174
640	A new derivatization strategy for the analysis of phosphopeptides by precursor ion scanning in positive ion mode. Journal of the American Society for Mass Spectrometry, 2002, 13, 996-1003.	2.8	104
641	Cloning and characterization of PAK5, a novel member of mammalianp21-activated kinase-II subfamily that is predominantly expressed in brain. Oncogene, 2002, 21, 3939-3948.	5.9	114
642	Cloning of a novel phosphotyrosine binding domain containing molecule, Odin, involved in signaling by receptor tyrosine kinases. Oncogene, 2002, 21, 8029-8036.	5.9	48
643	Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature, 2002, 418, 790-793.	27.8	758
644	RGM is a repulsive guidance molecule for retinal axons. Nature, 2002, 419, 392-395.	27.8	272
645	Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature, 2002, 419, 537-542.	27.8	596
646	Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature, 2002, 415, 180-183.	27.8	3,445
647	Mass tool for diagnosis. Nature, 2002, 418, 731-732.	27.8	13
648	A home for proteomics data?. Nature, 2002, 420, 21-21.	27.8	1

#	Article	IF	CITATIONS
649	Microcolumns with self-assembled particle frits for proteomics. Journal of Chromatography A, 2002, 979, 233-239.	3.7	327
650	The Vtc proteins in vacuole fusion: coupling NSF activity to V0trans-complex formation. EMBO Journal, 2002, 21, 259-269.	7.8	126
651	Regulation of G2/M events by Cdc25A through phosphorylation-dependent modulation of its stability. EMBO Journal, 2002, 21, 5911-5920.	7.8	272
652	"De Novo" Sequencing of Peptides Recovered from In-Gel Digested Proteins by Nanoelectrospray Tandem Mass Spectrometry. Molecular Biotechnology, 2002, 20, 107-118.	2.4	81
653	Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics. Molecular and Cellular Proteomics, 2002, 1, 376-386.	3.8	4,931
654	Detection of Tyrosine Phosphorylated Peptides by Precursor Ion Scanning Quadrupole TOF Mass Spectrometry in Positive Ion Mode. Analytical Chemistry, 2001, 73, 1440-1448.	6.5	306
655	Purification and characterization of the 1.0 MDa CCR4-NOT complex identifies two novel components of the complex 1 1Edited by D. Draper. Journal of Molecular Biology, 2001, 314, 683-694.	4.2	128
656	Maturation and Intranuclear Transport of Pre-Ribosomes Requires Noc Proteins. Cell, 2001, 105, 499-509.	28.9	206
657	AU Binding Proteins Recruit the Exosome to Degrade ARE-Containing mRNAs. Cell, 2001, 107, 451-464.	28.9	803
658	Ephrin B1 Is Expressed on Neuroepithelial Cells in Correlation with Neocortical Neurogenesis. Journal of Neuroscience, 2001, 21, 2726-2737.	3.6	38
659	Similarity between condensed phase and gas phase chemistry: Fragmentation of peptides containing oxidized cysteine residues and its implications for proteomics. Journal of the American Society for Mass Spectrometry, 2001, 12, 228-232.	2.8	59
660	Quadrupole time-of-flight versus triple-quadrupole mass spectrometry for the determination of phosphopeptides by precursor ion scanning. Journal of Mass Spectrometry, 2001, 36, 782-790.	1.6	141
661	Labile sulfogroup allows differentiation of sulfotyrosine and phosphotyrosine in peptides. Journal of Mass Spectrometry, 2001, 36, 832-833.	1.6	28
662	Mass spectrometry allows direct identification of proteins in large genomes. Proteomics, 2001, 1, 641-650.	2.2	124
663	Analysis of Proteins and Proteomes by Mass Spectrometry. Annual Review of Biochemistry, 2001, 70, 437-473.	11.1	1,044
664	Mass spectrometric analysis of a UV-cross-linked protein-DNA complex: Tryptophans 54 and 88 ofE. coliSSB cross-link to DNA. Protein Science, 2001, 10, 1989-2001.	7.6	43
665	A Novel Proliferation-Associated Variant of CFR-1 Defined by a Human Monoclonal Antibody. Laboratory Investigation, 2001, 81, 1097-1108.	3.7	27
666	Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion. Nature, 2001, 409, 581-588.	27.8	487

#	Article	IF	CITATIONS
667	Pre-mRNA splicing and mRNA export linked by direct interactions between UAP56 and Aly. Nature, 2001, 413, 644-647.	27.8	339
668	A boundless future for proteomics?. Trends in Biotechnology, 2001, 19, S1-S2.	9.3	3
669	Common pitfalls in bioinformatics-based analyses: look before you leap. Trends in Genetics, 2001, 17, 541-545.	6.7	39
670	Use of mass spectrometry-derived data to annotate nucleotide and protein sequence databases. Trends in Biochemical Sciences, 2001, 26, 54-61.	7.5	111
671	A Functional Interaction between the Survival Motor Neuron Complex and RNA Polymerase II. Journal of Cell Biology, 2001, 152, 75-86.	5.2	213
672	The Methylosome, a 20S Complex Containing JBP1 and pICln, Produces Dimethylarginine-Modified Sm Proteins. Molecular and Cellular Biology, 2001, 21, 8289-8300.	2.3	365
673	Molecular Patterning of the Oikoplastic Epithelium of the Larvacean Tunicate Oikopleura dioica. Journal of Biological Chemistry, 2001, 276, 20624-20632.	3.4	53
674	The Nuclear Export Receptor Xpo1p Forms Distinct Complexes with NES Transport Substrates and the Yeast Ran Binding Protein 1 (Yrb1p). Molecular Biology of the Cell, 2001, 12, 539-549.	2.1	55
675	SPF30 Is an Essential Human Splicing Factor Required for Assembly of the U4/U5/U6 Tri-small Nuclear Ribonucleoprotein into the Spliceosome. Journal of Biological Chemistry, 2001, 276, 31142-31150.	3.4	43
676	p70S6 kinase signals cell survival as well as growth, inactivating the pro-apoptotic molecule BAD. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 9666-9670.	7.1	487
677	Identification of Proteins in the Postsynaptic Density Fraction by Mass Spectrometry. Journal of Neuroscience, 2000, 20, 4069-4080.	3.6	380
678	Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres. Nature Genetics, 2000, 25, 347-352.	21.4	560
679	Proteomics to study genes and genomes. Nature, 2000, 405, 837-846.	27.8	2,173
680	p95-APP1 links membrane transport to Rac-mediated reorganization of actin. Nature Cell Biology, 2000, 2, 521-530.	10.3	119
681	Protein-interaction mapping for functional proteomics. Trends in Biotechnology, 2000, 18, 43-47.	9.3	1
682	Model for stathmin/OP18 binding to tubulin. EMBO Journal, 2000, 19, 213-222.	7.8	62
683	Euplotes telomerase contains an La motif protein produced by apparent translational frameshifting. EMBO Journal, 2000, 19, 6230-6239.	7.8	85
684	Functional analysis of the human CDC5L complex and identification of its components by mass spectrometry. EMBO Journal, 2000, 19, 6569-6581.	7.8	183

#	Article	IF	CITATIONS
685	Identification and characterization of PaMTH1, a putative O -methyltransferase accumulating during senescence of Podospora anserina cultures. Current Genetics, 2000, 37, 200-208.	1.7	43
686	The RING-H2 finger protein APC11 and the E2 enzyme UBC4 are sufficient to ubiquitinate substrates of the anaphase-promoting complex. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 8973-8978.	7.1	173
687	Purification of Protein A-tagged Yeast Ran Reveals Association with a Novel Karyopherin Î ² Family Member, Pdr6p. Journal of Biological Chemistry, 2000, 275, 467-471.	3.4	15
688	Use of Mass Spectrometry to Study Signaling Pathways. Science Signaling, 2000, 2000, pl1-pl1.	3.6	95
689	Analysis of receptor signaling pathways by mass spectrometry: Identification of Vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 179-184.	7.1	410
690	A Urokinase Receptor-associated Protein with Specific Collagen Binding Properties. Journal of Biological Chemistry, 2000, 275, 1993-2002.	3.4	134
691	Association of Yeast RNA Polymerase I with a Nucleolar Substructure Active in Rrna Synthesis and Processing. Journal of Cell Biology, 2000, 149, 575-590.	5.2	54
692	Gemin4. Journal of Cell Biology, 2000, 148, 1177-1186.	5.2	219
693	Tumor Necrosis Factor-induced Microtubule Stabilization Mediated by Hyperphosphorylated Oncoprotein 18 Promotes Cell Death. Journal of Biological Chemistry, 2000, 275, 33876-33882.	3.4	31
694	Mlp2p, A Component of Nuclear Pore Attached Intranuclear Filaments, Associates with Nic96p. Journal of Biological Chemistry, 2000, 275, 343-350.	3.4	81
695	Mitotic Regulation of the APC Activator Proteins CDC20 and CDH1. Molecular Biology of the Cell, 2000, 11, 1555-1569.	2.1	405
696	A New Variant of the Î ³ Subunit of Renal Na,K-ATPase. Journal of Biological Chemistry, 2000, 275, 18441-18446.	3.4	84
697	Nup116p Associates with the Nup82p-Nsp1p-Nup159p Nucleoporin Complex. Journal of Biological Chemistry, 2000, 275, 23540-23548.	3.4	52
698	Functional genomics by mass spectrometry. FEBS Letters, 2000, 480, 25-31.	2.8	107
699	De Novo Peptide Sequencing by Nanoelectrospray Tandem Mass Spectrometry Using Triple Quadrupole and Quadrupole/Time-of-Flight Instruments. , 2000, 146, 1-16.		98
700	Detailed Analysis of the Phosphorylation of the Human La (SS-B) Autoantigen. (De)phosphorylation Does Not Affect Its Subcellular Distributionâ€. Biochemistry, 2000, 39, 3023-3033.	2.5	42
701	The Post-Genomic World Analytical Chemistry, 2000, 72, 565 A-565 A.	6.5	1
702	A Generic Strategy To Analyze the Spatial Organization of Multi-Protein Complexes by Cross-Linking and Mass Spectrometry. Analytical Chemistry, 2000, 72, 267-275.	6.5	202

#	Article	IF	CITATIONS
703	Identification of a Novel Immunoreceptor Tyrosine-based Activation Motif-containing Molecule, STAM2, by Mass Spectrometry and Its Involvement in Growth Factor and Cytokine Receptor Signaling Pathways. Journal of Biological Chemistry, 2000, 275, 38633-38639.	3.4	103
704	Proteins complexed to the P1 adhesin of Mycoplasma pneumoniae. Microbiology (United Kingdom), 2000, 146, 741-747.	1.8	78
705	Nucleolin and YB-1 are required for JNK-mediated interleukin-2 mRNA stabilization during T-cell activation. Genes and Development, 2000, 14, 1236-1248.	5.9	314
706	The protein encoded by the proto-oncogene DEK changes the topology of chromatin and reduces the efficiency of DNA replication in a chromatin-specific manner. Genes and Development, 2000, 14, 1308-1312.	5.9	118
707	Deciphering Functionally Important Multiprotein Complexes by Mass Spectrometry. , 2000, , 237-269.		1
708	Nucleolin and YB-1 are required for JNK-mediated interleukin-2 mRNA stabilization during T-cell activation. Genes and Development, 2000, 14, 1236-48.	5.9	259
709	The protein encoded by the proto-oncogene DEK changes the topology of chromatin and reduces the efficiency of DNA replication in a chromatin-specific manner. Genes and Development, 2000, 14, 1308-12.	5.9	103
710	Sample Preparation Methods for Mass Spectrometric Peptide Mapping Directly from 2-DE Gels. , 1999, 112, 513-530.		211
711	Peptide Sequencing of 2-DE Gel-Isolated Proteins by Nanoelectrospray Tandem Mass Spectrometry. , 1999, 112, 571-588.		62
712	Posttranslational modification of GÂo1 generates GÂo3, an abundant G protein in brain. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 1327-1332.	7.1	41
713	Gemin3. Journal of Cell Biology, 1999, 147, 1181-1194.	5.2	251
714	SHP2-interacting Transmembrane Adaptor Protein (SIT), A Novel Disulfide-linked Dimer Regulating Human T Cell Activation. Journal of Experimental Medicine, 1999, 189, 1181-1194.	8.5	71
715	Characterization of the DOC1/APC10 Subunit of the Yeast and the Human Anaphase-promoting Complex. Journal of Biological Chemistry, 1999, 274, 14500-14507.	3.4	84
716	Use of Mass Spectrometric Methods for Protein Identification in Receptor Research. Journal of Receptor and Signal Transduction Research, 1999, 19, 659-672.	2.5	7
717	Quantitative proteomics?. Nature Biotechnology, 1999, 17, 954-955.	17.5	84
718	A generic protein purification method for protein complex characterization and proteome exploration. Nature Biotechnology, 1999, 17, 1030-1032.	17.5	2,543
719	Identification by mass spectrometry and functional analysis of novel proteins of the yeast [U4/U6middle dotU5] tri-snRNP. EMBO Journal, 1999, 18, 4535-4548.	7.8	154
720	The Mex67p-mediated nuclear mRNA export pathway is conserved from yeast to human. EMBO Journal, 1999, 18, 2593-2609.	7.8	387

#	Article	IF	CITATIONS
721	Two-dimensional gel protein database ofSaccharomyces cerevisiae (update 1999). Electrophoresis, 1999, 20, 2280-2298.	2.4	128
722	Mapping of Phosphorylation Sites of Gel-Isolated Proteins by Nanoelectrospray Tandem Mass Spectrometry: A Potentials and Limitations. Analytical Chemistry, 1999, 71, 235-242.	6.5	256
723	Control of the Terminal Step of Intracellular Membrane Fusion by Protein Phosphatase 1 . Science, 1999, 285, 1084-1087.	12.6	152
724	Phosphorylation and Inactivation of BAD by Mitochondria-Anchored Protein Kinase A. Molecular Cell, 1999, 3, 413-422.	9.7	593
725	Identification of Phosphorylation Sites in Native Lamina-Associated Polypeptide 2βâ€. Biochemistry, 1999, 38, 9426-9434.	2.5	38
726	18O-Labeling of N-Glycosylation Sites To Improve the Identification of Gel-Separated Glycoproteins Using Peptide Mass Mapping and Database Searching. Analytical Chemistry, 1999, 71, 1431-1440.	6.5	154
727	The yeast exosome and human PM-Scl are related complexes of 3' right-arrow 5' exonucleases. Genes and Development, 1999, 13, 2148-2158.	5.9	402
728	lκB Kinase (IKK)-Associated Protein 1, a Common Component of the Heterogeneous IKK Complex. Molecular and Cellular Biology, 1999, 19, 1526-1538.	2.3	320
729	Characterization of glycosylphosphatidylinositol-linked molecule CD55/decay-accelerating factor as the receptor for antibody SC-1-induced apoptosis. Cancer Research, 1999, 59, 5299-306.	0.9	43
730	Nup116p and Nup100p are interchangeable through a conserved motif which constitutes a docking site for the mRNA transport factor Gle2p. EMBO Journal, 1998, 17, 1107-1119.	7.8	127
731	In mouse brain profilin I and profilin II associate with regulators of the endocytic pathway and actin assembly. EMBO Journal, 1998, 17, 967-976.	7.8	317
732	Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex. Nature Genetics, 1998, 20, 46-50.	21.4	470
733	Identification of the receptor component of the lκBα–ubiquitin ligase. Nature, 1998, 396, 590-594.	27.8	650
734	Correlation of acidic and basic carrier ampholyte and immobilized pH gradient two-dimensional gel electrophoresis patterns based on mass spectrometric protein identification. Electrophoresis, 1998, 19, 1024-1035.	2.4	53
735	Identifying proteins and post-translational modifications by mass spectrometry. Current Opinion in Structural Biology, 1998, 8, 393-400.	5.7	98
736	An ESP1/PDS1 Complex Regulates Loss of Sister Chromatid Cohesion at the Metaphase to Anaphase Transition in Yeast. Cell, 1998, 93, 1067-1076.	28.9	564
737	A novel complex of membrane proteins required for formation of a spherical nucleus. EMBO Journal, 1998, 17, 6449-6464.	7.8	213
738	The NOT proteins are part of the CCR4 transcriptional complex and affect gene expression both positively and negatively. EMBO Journal, 1998, 17, 1096-1106.	7.8	190

#	Article	IF	CITATIONS
739	ER-60, a chaperone with thiol-dependent reductase activity involved in MHC class I assembly. EMBO Journal, 1998, 17, 2186-2195.	7.8	199
740	Mtr10p functions as a nuclear import receptor for the mRNA-binding protein Npl3p. EMBO Journal, 1998, 17, 2196-2207.	7.8	174
741	Mass Spectrometric Analysis of the Anaphase-Promoting Complex from Yeast: Identification of a Subunit Related to Cullins. Science, 1998, 279, 1216-1219.	12.6	317
742	Analysis of the Saccharomyces Spindle Pole by Matrix-assisted Laser Desorption/Ionization (MALDI) Mass Spectrometry. Journal of Cell Biology, 1998, 141, 967-977.	5.2	317
743	Molecular Cloning of pTAC12 an Alternative Splicing Product of the CD3Î ³ Chain as a Component of the Pre-T Cell Antigen-Receptor Complex. Journal of Biological Chemistry, 1998, 273, 30675-30679.	3.4	8
744	T Cell Receptor (TCR) Interacting Molecule (TRIM), A Novel Disulfide-linked Dimer Associated with the TCR–CD3–ζ Complex, Recruits Intracellular Signaling Proteins to the Plasma Membrane. Journal of Experimental Medicine, 1998, 188, 561-575.	8.5	121
745	Spindle Checkpoint Protein Xmad1 Recruits Xmad2 to Unattached Kinetochores. Journal of Cell Biology, 1998, 143, 283-295.	5.2	295
746	Polymerization of Purified Yeast Septins: Evidence That Organized Filament Arrays May Not Be Required for Septin Function. Journal of Cell Biology, 1998, 143, 737-749.	5.2	237
747	Cbf5p, a potential pseudouridine synthase, and Nhp2p, a putative RNA-binding protein, are present together with Gar1p in all H BOX/ACA-motif snoRNPs and constitute a common bipartite structure. Rna, 1998, 4, 1549-1568.	3.5	195
748	A comprehensive biochemical and genetic analysis of the yeast U1 snRNP reveals five novel proteins. Rna, 1998, 4, 374-93.	3.5	130
749	Thrombomucin, a Novel Cell Surface Protein that Defines Thrombocytes and Multipotent Hematopoietic Progenitors. Journal of Cell Biology, 1997, 138, 1395-1407.	5.2	118
750	Nup93, a Vertebrate Homologue of Yeast Nic96p, Forms a Complex with a Novel 205-kDa Protein and Is Required for Correct Nuclear Pore Assembly. Molecular Biology of the Cell, 1997, 8, 2017-2038.	2.1	147
751	Rapid Protein Sequencing by Tandem Mass Spectrometry and cDNA Cloning of p20-CGGBP. Journal of Biological Chemistry, 1997, 272, 16761-16768.	3.4	44
752	Automation of Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Using Fuzzy Logic Feedback Control. Analytical Chemistry, 1997, 69, 1706-1714.	6.5	98
753	Reverse Transcriptase Motifs in the Catalytic Subunit of Telomerase. Science, 1997, 276, 561-567.	12.6	1,172
754	IKK-1 and IKK-2: Cytokine-Activated lκB Kinases Essential for NF-κB Activation. Science, 1997, 278, 860-866.	12.6	1,995
755	Actin: A Target of Lipopolysaccharid-Induced Phosphorylation in Human Monocytes. Biochemical and Biophysical Research Communications, 1997, 241, 670-674.	2.1	15
756	Identification of the Components of Simple Protein Mixtures by High-Accuracy Peptide Mass Mapping and Database Searching. Analytical Chemistry, 1997, 69, 4741-4750.	6.5	253

#	Article	IF	CITATIONS
757	mRNA Silencing in Erythroid Differentiation: hnRNP K and hnRNP E1 Regulate 15-Lipoxygenase Translation from the 3′ End. Cell, 1997, 89, 597-606.	28.9	467
758	SH2 Signaling in a Lower Eukaryote: A STAT Protein That Regulates Stalk Cell Differentiation in Dictyostelium. Cell, 1997, 89, 909-916.	28.9	221
759	A Novel Rab5 GDP/GTP Exchange Factor Complexed to Rabaptin-5 Links Nucleotide Exchange to Effector Recruitment and Function. Cell, 1997, 90, 1149-1159.	28.9	552
760	The Exosome: A Conserved Eukaryotic RNA Processing Complex Containing Multiple 3′→5′ Exoribonucleases. Cell, 1997, 91, 457-466.	28.9	859
761	Synthesis of oligodeoxynucleotides containing 5-aminouracil and its N-acetyl derivative. Journal of the Chemical Society Perkin Transactions 1, 1997, , 2051-2058.	0.9	11
762	Identification of the proteins of the yeast U1 small nuclear ribonucleoprotein complex by mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 385-390.	7.1	191
763	Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells. Nature, 1997, 388, 492-495.	27.8	586
764	Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature, 1997, 388, 598-602.	27.8	484
765	Gln 63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor-1. Nature, 1997, 387, 725-729.	27.8	534
766	The complex containing actin-related proteins Arp2 and Arp3 is required for the motility and integrity of yeast actin patches. Current Biology, 1997, 7, 519-529.	3.9	239
767	Cell biology and the genome projects a concerted strategy for characterizing multiprotein complexes by using mass spectrometry. Trends in Cell Biology, 1997, 7, 139-142.	7.9	65
768	FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). EMBO Journal, 1997, 16, 2794-2804.	7.8	1,073
769	Two functionally distinct domains generated by invivo cleavage of Nup145p: a novel biogenesis pathway for nucleoporins. EMBO Journal, 1997, 16, 5086-5097.	7.8	93
770	Peptide sequencing by mass spectrometry for homology searches and cloning of genes. The Protein Journal, 1997, 16, 481-490.	1.1	127
771	Automated protein preparation techniques using a digest robot. The Protein Journal, 1997, 16, 343-348.	1.1	41
772	Title is missing!. International Journal of Peptide Research and Therapeutics, 1997, 4, 57-65.	0.1	6
773	The application of robotics and mass spectrometry to the characterisation of theDrosophila melanogaster indirect flight muscle proteome. International Journal of Peptide Research and Therapeutics, 1997, 4, 57-65.	0.1	7
774	Identification of components oftrans-Golgi network-derived transport vesicles and detergent-insoluble complexes by nanoelectrospray tandem mass spectrometry. Electrophoresis, 1997, 18, 2591-2600.	2.4	47

#	Article	IF	CITATIONS
775	Parent Ion Scans of Large Molecules. Journal of Mass Spectrometry, 1997, 32, 94-98.	1.6	21
776	Rapid â€~de novo' peptide sequencing by a combination of nanoelectrospray, isotopic labeling and a quadrupole/time-of-flight mass spectrometer. Rapid Communications in Mass Spectrometry, 1997, 11, 1015-1024.	1.5	426
777	Parent Ion Scans of Unseparated Peptide Mixtures. Analytical Chemistry, 1996, 68, 527-533.	6.5	287
778	Isoprenylation of the G Protein γ Subunit Is both Necessary and Sufficient for βγ Dimer-Mediated Stimulation of Phospholipase Câ€. Biochemistry, 1996, 35, 15174-15182.	2.5	26
779	Analytical Properties of the Nanoelectrospray Ion Source. Analytical Chemistry, 1996, 68, 1-8.	6.5	1,828
780	FLICE, A Novel FADD-Homologous ICE/CED-3–like Protease, Is Recruited to the CD95 (Fas/APO-1) Death-Inducing Signaling Complex. Cell, 1996, 85, 817-827.	28.9	2,944
781	Sequence tag identification of intact proteins by matching tanden mass spectral data against sequence data bases Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 8264-8267.	7.1	219
782	The yeast protein Arc1p binds to tRNA and functions as a cofactor for the methionyl- and glutamyl-tRNA synthetases EMBO Journal, 1996, 15, 5437-5448.	7.8	207
783	Linking genome and proteome by mass spectrometry: Large-scale identification of yeast proteins from two dimensional gels. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 14440-14445.	7.1	1,415
784	Applications of sustained off-resonance irradiation (SORI) and quadrupolar excitation axialization (QEA) for the characterization of biomolecules by Fourier-transform mass spectrometry (FTMS). Biochemical Society Transactions, 1996, 24, 943-947.	3.4	9
785	Mass Spectrometric Sequencing of Proteins from Silver-Stained Polyacrylamide Gels. Analytical Chemistry, 1996, 68, 850-858.	6.5	8,535
786	The Purification and Characterization of the Catalytic Domain of Src Expressed in Schizosaccharomyces Pombe. Comparison of Unphosphorylated and Tyrosine Phosphorylated Species. FEBS Journal, 1996, 240, 756-764.	0.2	36
787	A shortcut to interesting human genes: peptide sequence tags, expressed-sequence tags and computers. Trends in Biochemical Sciences, 1996, 21, 494-495.	7.5	69
788	Sequence patterns produced by incomplete enzymatic digestion or one-step Edman degradation of peptide mixtures as probes for protein database searches. Electrophoresis, 1996, 17, 938-944.	2.4	58
789	Aspects of the Sequencing of Carbohydrates and Oligonucleotides by Matrix-assisted Laser Desorption/Ionization Post-source Decay. Rapid Communications in Mass Spectrometry, 1996, 10, 100-103.	1.5	78
790	Delayed Extraction Improves Specificity in Database Searches by Matrix-assisted Laser Desorption/Ionization Peptide Maps. Rapid Communications in Mass Spectrometry, 1996, 10, 1371-1378.	1.5	307
791	New carbamate supports for the preparation of 3′-amino-modified oligonucleotides. Bioorganic and Medicinal Chemistry, 1996, 4, 1649-1658.	3.0	21
792	Nano electrospray combined with a quadrupole ion trap for the analysis of peptides and protein digests. Journal of the American Society for Mass Spectrometry, 1996, 7, 150-156.	2.8	60

#	Article	IF	CITATIONS
793	Developments in matrix-assisted laser desorption/ionization peptide mass spectrometry. Current Opinion in Biotechnology, 1996, 7, 11-19.	6.6	115
794	Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature, 1996, 379, 466-469.	27.8	1,723
795	A strategy for identifying gel-separated proteins in sequence databases by MS alone. Biochemical Society Transactions, 1996, 24, 893-896.	3.4	212
796	Clostridium novyi α-Toxin-catalyzed Incorporation of GlcNAc into Rho Subfamily Proteins. Journal of Biological Chemistry, 1996, 271, 25173-25177.	3.4	128
797	Delayed Extraction Improves Specificity in Database Searches by Matrixâ€assisted Laser Desorption/Ionization Peptide Maps. Rapid Communications in Mass Spectrometry, 1996, 10, 1371-1378.	1.5	7
798	Approaches to the Practical Use of MS/MS in a Protein Sequencing Facility. , 1996, , 245-265.		9
799	Identification of the major membrane and core proteins of vaccinia virus by two-dimensional electrophoresis. Journal of Virology, 1996, 70, 7485-7497.	3.4	109
800	The yeast protein Arc1p binds to tRNA and functions as a cofactor for the methionyl- and glutamyl-tRNA synthetases. EMBO Journal, 1996, 15, 5437-48.	7.8	88
801	Electrospray mass spectrometry for protein characterization. Trends in Biochemical Sciences, 1995, 20, 219-224.	7.5	212
802	Preparation of oligonucleotide-dexamethasone conjugates. Bioorganic and Medicinal Chemistry Letters, 1995, 5, 1577-1580.	2.2	20
803	Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature, 1995, 375, 500-503.	27.8	1,030
804	The Enterotoxin from Clostridium difficile (ToxA) Monoglucosylates the Rho Proteins. Journal of Biological Chemistry, 1995, 270, 13932-13936.	3.4	450
805	Automation of microâ€preparation and enzymatic cleavage of gel electrophoretically separated proteins. FEBS Letters, 1995, 376, 91-94.	2.8	64
806	Identification of hnRNP P2 as TLS/FUS using electrospray mass spectrometry. Rna, 1995, 1, 724-33.	3.5	89
807	Electrospray and Taylor-Cone theory, Dole's beam of macromolecules at last?. International Journal of Mass Spectrometry and Ion Processes, 1994, 136, 167-180.	1.8	828
808	MPSA short communications. The Protein Journal, 1994, 13, 431-512.	1.1	0
809	Identification of transformation sensitive proteins recorded in human two-dimensional gel protein databases by mass spectrometric peptide mapping alone and in combination with microsequencing. Electrophoresis, 1994, 15, 406-416.	2.4	93
810	Identification of proteins in polyacrylamide gels by mass spectrometric peptide mapping combined with database search. Biological Mass Spectrometry, 1994, 23, 249-261.	0.5	149

#	Article	IF	CITATIONS
811	Improved mass accuracy in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of peptides. Journal of the American Society for Mass Spectrometry, 1994, 5, 955-958.	2.8	140
812	Improved Resolution and Very High Sensitivity in MALDI TOF of Matrix Surfaces Made by Fast Evaporation. Analytical Chemistry, 1994, 66, 3281-3287.	6.5	679
813	Metamorphosin A: A Novel Peptide Controlling Development of the Lower Metazoan Hydractinia echinata (Coelenterata, Hydrozoa). Developmental Biology, 1994, 163, 440-446.	2.0	117
814	Error-Tolerant Identification of Peptides in Sequence Databases by Peptide Sequence Tags. Analytical Chemistry, 1994, 66, 4390-4399.	6.5	1,521
815	Distinction Between Phosphorylated and Sulfated Peptides by Matrix Assisted Laser Desorption Ionization Reflector Mass Spectrometry at the Sub Picomole Level. Techniques in Protein Chemistry, 1994, 5, 105-113.	0.3	8
816	Use of mass spectrometric molecular weight information to identify proteins in sequence databases. Biological Mass Spectrometry, 1993, 22, 338-345.	0.5	832
817	Oxidation of peptides during electrospray ionization. Rapid Communications in Mass Spectrometry, 1993, 7, 738-743.	1.5	119
818	Electrospray Mass Spectrometry. , 1992, , 1-35.		9
819	Electrospray Mass Spectrometry. , 1992, , 145-163.		3
820	Some biochemical applications of electrospray-magnetic sector mass spectrometry. Biochemical Society Transactions, 1991, 19, 940-943.	3.4	2
821	Mass spectrometry of proteins: studies of parvalbumins by plasma desorption, laser desorption and electrospray mass spectrometry. International Journal of Mass Spectrometry and Ion Processes, 1991, 111, 151-172.	1.8	9
822	Design and performance of an electrospray ionization source for a doubly-focusing magnetic sector mass spectrometer. Rapid Communications in Mass Spectrometry, 1990, 4, 369-372.	1.5	37
823	Electrospray ionization-principles and practice. Mass Spectrometry Reviews, 1990, 9, 37-70.	5.4	1,511
824	Electrospray: Its potential and limitations as an ionization method for biomolecules. Organic Mass Spectrometry, 1990, 25, 575-587.	1.3	217
825	Electrospray Ionization for Mass Spectrometry of Large Biomolecules. Science, 1989, 246, 64-71.	12.6	6,875
826	Interpreting mass spectra of multiply charged ions. Analytical Chemistry, 1989, 61, 1702-1708.	6.5	587
827	Of protons or proteins. Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1988, 10, 361-368.	1.0	227

828 Sequence Database Searching by Mass Spectrometric Data. , 0, , 223-245.

#	Article	IF	CITATIONS
829	Cbf5p, a potential pseudouridine synthase, and Nhp2p, a putative RNA-binding protein, are present together with Gar1p in all H BOX/ACA-motif snoRNPs and constitute a common bipartite structure. , 0, .		1