
Simon R Arridge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7799454/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Detection Efficiency Modeling and Joint Activity and Attenuation Reconstruction in Non-TOF 3-D PET From Multiple-Energy Window Data. IEEE Transactions on Radiation and Plasma Medical Sciences, 2022, 6, 87-97.	3.7	1
2	A Model-Based Iterative Learning Approach for Diffuse Optical Tomography. IEEE Transactions on Medical Imaging, 2022, 41, 1289-1299.	8.9	17
3	Deep Learning for Instrumented Ultrasonic Tracking: From Synthetic Training Data to <i>In Vivo</i> Application. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 543-552.	3.0	7
4	Neural Network Kalman Filtering for 3-D Object Tracking From Linear Array Ultrasound Data. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 1691-1702.	3.0	9
5	Evaluation of a pipeline for simulation, reconstruction, and classification in ultrasound-aided diffuse optical tomography of breast tumors. Journal of Biomedical Optics, 2022, 27, .	2.6	6
6	Adaptive stochastic Gauss–Newton method with optical Monte Carlo for quantitative photoacoustic tomography. Journal of Biomedical Optics, 2022, 27, .	2.6	5
7	Diffuse optical tomography utilizing model-based learning. , 2022, , .		0
8	Uncertainty quantification in medical image synthesis. , 2022, , 601-641.		1
9	Penalized PET/CT Reconstruction Algorithms With Automatic Realignment for Anatomical Priors. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 5, 362-372.	3.7	1
10	Quantifying Model Uncertainty in Inverse Problems via Bayesian Deep Gradient Descent. , 2021, , .		4
11	Photoacoustic Reconstruction Using Sparsity in Curvelet Frame: Image Versus Data Domain. IEEE Transactions on Computational Imaging, 2021, 7, 879-893.	4.4	3
12	On Learned Operator Correction in Inverse Problems. SIAM Journal on Imaging Sciences, 2021, 14, 92-127.	2.2	24
13	(An overview of) Synergistic reconstruction for multimodality/multichannel imaging methods. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200205.	3.4	10
14	Realâ€ŧime deep artifact suppression using recurrent Uâ€Nets for lowâ€latency cardiac MRI. Magnetic Resonance in Medicine, 2021, 86, 1904-1916.	3.0	16
15	Enhanced diffuse optical tomographic reconstruction using concurrent ultrasound information. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200195.	3.4	5
16	A Helmholtz equation solver using unsupervised learning: Application to transcranial ultrasound. Journal of Computational Physics, 2021, 441, 110430.	3.8	11
17	Deep artifact suppression for spiral real-time phase contrast cardiac magnetic resonance imaging in congenital heart disease. Magnetic Resonance Imaging, 2021, 83, 125-132.	1.8	4
18	Material Decomposition in Spectral CT Using Deep Learning: A Sim2Real Transfer Approach. IEEE Access, 2021, 9, 25632-25647.	4.2	18

#	Article	IF	CITATIONS
19	Pyroelectric ultrasound sensor model: directional response. Measurement Science and Technology, 2021, 32, 035106.	2.6	2
20	Stochastic EM methods with variance reduction for penalised PET reconstructions. Inverse Problems, 2021, 37, 115006.	2.0	5
21	Joint reconstruction and low-rank decomposition for dynamic inverse problems. Inverse Problems and Imaging, 2021, .	1.1	1
22	Scalable full-wave simulation of coherent light propagation through biological tissue. , 2021, , .		3
23	Benefits of Using a Spatially-Variant Penalty Strength With Anatomical Priors in PET Reconstruction. IEEE Transactions on Medical Imaging, 2020, 39, 11-22.	8.9	10
24	Joint BO and image estimation integrated with model based reconstruction for field map update and distortion correction in prostate diffusion MRI. Magnetic Resonance Imaging, 2020, 65, 90-99.	1.8	4
25	PET/MRI attenuation estimation in the lung: A review of past, present, and potential techniques. Medical Physics, 2020, 47, 790-811.	3.0	19
26	Rapid whole-heart CMR with single volume super-resolution. Journal of Cardiovascular Magnetic Resonance, 2020, 22, 56.	3.3	39
27	Multi-Scale Learned Iterative Reconstruction. IEEE Transactions on Computational Imaging, 2020, 6, 843-856.	4.4	21
28	Preface to special issue on joint reconstruction and multi-modality/multi-spectral imaging. Inverse Problems, 2020, 36, 020302.	2.0	4
29	Joint Activity and Attenuation Reconstruction From Multiple Energy Window Data With Photopeak Scatter Re-Estimation in Non-TOF 3-D PET. IEEE Transactions on Radiation and Plasma Medical Sciences, 2020, 4, 410-421.	3.7	12
30	Dual wavelength spread-spectrum time-resolved diffuse optical instrument for the measurement of human brain functional responses. Biomedical Optics Express, 2020, 11, 3477.	2.9	1
31	Efficient inversion strategies for estimating optical properties with Monte Carlo radiative transport models. Journal of Biomedical Optics, 2020, 25, .	2.6	6
32	Representation and reconstruction of covariance operators in linear inverse problems. Inverse Problems, 2020, 36, 085002.	2.0	2
33	Characterization of B0-field fluctuations in prostate MRI. Physics in Medicine and Biology, 2020, 65, 21NT01.	3.0	1
34	Preface for the special issue †Variational methods and effective algorithms for imaging and vision'. Inverse Problems, 2020, 36, 110401.	2.0	0
35	Multi Simulation Platform for Time Domain Diffuse Optical Tomography: An Application to a Compact Hand-Held Reflectance Probe. Applied Sciences (Switzerland), 2019, 9, 2849.	2.5	5
36	Solving inverse problems using data-driven models. Acta Numerica, 2019, 28, 1-174.	10.7	359

#	Article	IF	CITATIONS
37	Expectation propagation for Poisson data. Inverse Problems, 2019, 35, 085006.	2.0	8
38	A pseudospectral method for solution of the radiative transport equation. Journal of Computational Physics, 2019, 384, 376-382.	3.8	10
39	Joint reconstruction of activity and attenuation in non-TOF PET using a synergistic prior to enforce structural similarities. , 2019, , .		Ο
40	Iterative PET Image Reconstruction using Adaptive Adjustment of Subset Size and Random Subset Sampling. , 2019, , .		3
41	Realâ€ŧime cardiovascular MR with spatioâ€ŧemporal artifact suppression using deep learning–proof of concept in congenital heart disease. Magnetic Resonance in Medicine, 2019, 81, 1143-1156.	3.0	146
42	Modelâ€based reconstruction framework for correction of signal pileâ€up and geometric distortions in prostate diffusion MRI. Magnetic Resonance in Medicine, 2019, 81, 1979-1992.	3.0	10
43	Single-pixel camera photoacoustic tomography. Journal of Biomedical Optics, 2019, 24, 1.	2.6	16
44	Hybrid time-domain and continuous-wave diffuse optical tomography instrument with concurrent, clinical magnetic resonance imaging for breast cancer imaging. Journal of Biomedical Optics, 2019, 24, 1.	2.6	26
45	Incorporating structural prior information and sparsity into EIT using parallel level sets. Inverse Problems and Imaging, 2019, 13, 285-307.	1.1	16
46	A dual-wavelength spread spectrum-based spectroscopic system For time-domain near-infrared diffuse optical imaging. , 2019, , .		0
47	Multi-wavelength time domain diffuse optical tomography for breast cancer: initial results on silicone phantoms. , 2019, , .		1
48	An adaptive scheme for diffuse-optical tomography based on combined structured-light illumination and single-pixel camera detection. , 2019, , .		2
49	Fitting a spectral model for component analysis in diffuse optical tomography. , 2019, , .		0
50	Fast Quasi-Newton Algorithms for Penalized Reconstruction in Emission Tomography and Further Improvements via Preconditioning. IEEE Transactions on Medical Imaging, 2018, 37, 1000-1010.	8.9	14
51	Dynamic causal modelling on infant fNIRS data: A validation study on a simultaneously recorded fNIRS-fMRI dataset. NeuroImage, 2018, 175, 413-424.	4.2	30
52	DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction. IEEE Transactions on Medical Imaging, 2018, 37, 1310-1321.	8.9	724
53	Variational Gaussian approximation for Poisson data. Inverse Problems, 2018, 34, 025005.	2.0	9
54	NiftyPET: a High-throughput Software Platform for High Quantitative Accuracy and Precision PET Imaging and Analysis. Neuroinformatics, 2018, 16, 95-115.	2.8	40

#	Article	IF	CITATIONS
55	Model-Based Learning for Accelerated, Limited-View 3-D Photoacoustic Tomography. IEEE Transactions on Medical Imaging, 2018, 37, 1382-1393.	8.9	212
56	Clinical Impact of Respiratory Motion Correction in Simultaneous PET/MR, Using a Joint PET/MR Predictive Motion Model. Journal of Nuclear Medicine, 2018, 59, 1467-1473.	5.0	16
57	Non-invasive kinetic modelling of PET tracers with radiometabolites using a constrained simultaneous estimation method: evaluation with 11C-SB201745. EJNMMI Research, 2018, 8, 58.	2.5	17
58	Enhancing Compressed Sensing 4D Photoacoustic Tomography by Simultaneous Motion Estimation. SIAM Journal on Imaging Sciences, 2018, 11, 2224-2253.	2.2	25
59	Three dimensional photoacoustic tomography in Bayesian framework. Journal of the Acoustical Society of America, 2018, 144, 2061-2071.	1.1	16
60	Maximum-likelihood estimation of emission and attenuation images in 3D PET from multiple energy window measurements. , 2018, , .		6
61	Algorithms for Solving Misalignment Issues in Penalized PET/CT Reconstruction Using Anatomical Priors. , 2018, , .		5
62	Incorporating reflection boundary conditions in the Neumann series radiative transport equation: application to photon propagation and reconstruction in diffuse optical imaging. Biomedical Optics Express, 2018, 9, 1389.	2.9	3
63	A spread spectrum approach to time-domain near-infrared diffuse optical imaging using inexpensive optical transceiver modules. Biomedical Optics Express, 2018, 9, 2648.	2.9	11
64	Approximate k-Space Models and Deep Learning for Fast Photoacoustic Reconstruction. Lecture Notes in Computer Science, 2018, , 103-111.	1.3	12
65	Time-resolved diffuse optical tomography system based on adaptive structured light illumination and compressive sensing detection. , 2018, , .		2
66	Slice-illuminated optical projection tomography. Optics Letters, 2018, 43, 5555.	3.3	5
67	Photoacoustic image reconstruction in Bayesian framework. , 2018, , .		0
68	Basis mapping methods for forward and inverse problems. International Journal for Numerical Methods in Engineering, 2017, 109, 3-28.	2.8	5
69	Estimation of an image derived input function with MR-defined carotid arteries in FDG-PET human studies using a novel partial volume correction method. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 1398-1409.	4.3	48
70	Direct Parametric Reconstruction With Joint Motion Estimation/Correction for Dynamic Brain PET Data. IEEE Transactions on Medical Imaging, 2017, 36, 203-213.	8.9	25
71	Bayesian Estimation of Intrinsic Tissue Oxygenation and Perfusion From RCB Images. IEEE Transactions on Medical Imaging, 2017, 36, 1491-1501.	8.9	12
72	Utilising the radiative transfer equation in quantitative photoacoustic tomography. , 2017, , .		2

5

#	Article	IF	CITATIONS
73	Three-dimensional photoacoustic imaging and inversion for accurate quantification of chromophore distributions. , 2017, , .		5
74	Sub-sampled Fabry-Perot photoacoustic scanner for fast 3D imaging. Proceedings of SPIE, 2017, , .	0.8	8
75	A generalized framework unifying image registration and respiratory motion models and incorporating image reconstruction, for partial image data or full images. Physics in Medicine and Biology, 2017, 62, 4273-4292.	3.0	43
76	Evaluation of a direct motion estimation/correction method in respiratory-gated PET/MRI with motion-adjusted attenuation. Medical Physics, 2017, 44, 2379-2390.	3.0	11
77	Sign determination methods for the respiratory signal in data-driven PET gating. Physics in Medicine and Biology, 2017, 62, 3204-3220.	3.0	22
78	Radiance Monte-Carlo for application of the radiative transport equation in the inverse problem of diffuse optical tomography. Proceedings of SPIE, 2017, , .	0.8	2
79	Multiple-view time-resolved diffuse optical tomography based on structured illumination and compressive detection. , 2017, , .		0
80	A simulation study of spectral ÄŒerenkov luminescence imaging for tumour margin estimation. , 2017, , .		0
81	Acoustic Wave Field Reconstruction From Compressed Measurements With Application in Photoacoustic Tomography. IEEE Transactions on Computational Imaging, 2017, 3, 710-721.	4.4	22
82	Potential benefits of incorporating energy information when estimating attenuation from PET data. , 2017, , .		10
83	Multiple-view diffuse optical tomography system based on time-domain compressive measurements. Optics Letters, 2017, 42, 2822.	3.3	19
84	Time-Domain Functional Diffuse Optical Tomography System Based on Fiber-Free Silicon Photomultipliers. Applied Sciences (Switzerland), 2017, 7, 1235.	2.5	16
85	Detection of Lung Density Variations With Principal Component Analysis in PET. , 2017, , .		2
86	Spatially-variant Strength for Anatomical Priors in PET Reconstruction. , 2017, , .		2
87	Improvement of the Sign Determination Method for Data-Driven respiratory signal in TOF-PET. , 2017, , .		1
88	Fast Estimation of Haemoglobin Concentration in Tissue Via Wavelet Decomposition. Lecture Notes in Computer Science, 2017, , 100-108.	1.3	1
89	Estimation and uncertainty quantification of optical properties directly from the photoacoustic time series. , 2017, , .		0
90	Time-resolved Diffuse Optical Tomography based on Single pixel camera. , 2016, , .		0

#	Article	IF	CITATIONS
91	Performance improvement and validation of a new MAP reconstruction algorithm. , 2016, , .		3
92	Direct Estimation of Optical Parameters From Photoacoustic Time Series in Quantitative Photoacoustic Tomography. IEEE Transactions on Medical Imaging, 2016, 35, 2497-2508.	8.9	35
93	Quantitative photoacoustic tomography using forward and adjoint Monte Carlo models of radiance. Journal of Biomedical Optics, 2016, 21, 126004.	2.6	36
94	Heterodyne frequencyâ€domain multispectral diffuse optical tomography of breast cancer in the parallelâ€plane transmission geometry. Medical Physics, 2016, 43, 4383-4395.	3.0	21
95	Accelerated high-resolution photoacoustic tomography via compressed sensing. Physics in Medicine and Biology, 2016, 61, 8908-8940.	3.0	112
96	Reconstruction of an optical inhomogeneity map improves fluorescence diffuse optical tomography. Biomedical Physics and Engineering Express, 2016, 2, 055020.	1.2	4
97	Image reconstruction with noise and error modelling in quantitative photoacoustic tomography. , 2016, , .		1
98	On the adjoint operator in photoacoustic tomography. Inverse Problems, 2016, 32, 115012.	2.0	79
99	Data driven respiratory signal detection in PET taking advantage of time-of-flight data. , 2016, , .		8
100	Photonics advancements in time-domain diffuse imaging: towards hand-held and wearable devices. , 2016, , .		0
101	Joint PET-MR respiratory motion models for clinical PET motion correction. Physics in Medicine and Biology, 2016, 61, 6515-6530.	3.0	27
102	Bayesian parameter estimation in spectral quantitative photoacoustic tomography. , 2016, , .		1
103	Multispectral reconstruction methods for quantitative photoacoustic tomography. , 2016, , .		2
104	PET Reconstruction With an Anatomical MRI Prior Using Parallel Level Sets. IEEE Transactions on Medical Imaging, 2016, 35, 2189-2199.	8.9	82
105	Patch-based anisotropic diffusion scheme for fluorescence diffuse optical tomography—part 1: technical principles. Physics in Medicine and Biology, 2016, 61, 1439-1451.	3.0	4
106	Maximum-Likelihood Joint Image Reconstruction/Motion Estimation in Attenuation-Corrected Respiratory Gated PET/CT Using a Single Attenuation Map. IEEE Transactions on Medical Imaging, 2016, 35, 217-228.	8.9	41
107	Gradient-Based Quantitative Image Reconstruction in Ultrasound-Modulated Optical Tomography: First Harmonic Measurement Type in a Linearised Diffusion Formulation. IEEE Transactions on Medical Imaging, 2016, 35, 456-467.	8.9	9
108	Improved Parameter-Estimation With MRI-Constrained PET Kinetic Modeling: A Simulation Study. IEEE Transactions on Nuclear Science, 2016, 63, 2464-2470.	2.0	2

#	Article	IF	CITATIONS
109	Maximum-likelihood joint image reconstruction and motion estimation with misaligned attenuation in TOF-PET/CT. Physics in Medicine and Biology, 2016, 61, L11-L19.	3.0	14
110	Patch-based anisotropic diffusion scheme for fluorescence diffuse optical tomography—part 2: image reconstruction. Physics in Medicine and Biology, 2016, 61, 1452-1475.	3.0	8
111	Single-pixel optical camera for video rate ultrasonic imaging. Optica, 2016, 3, 26.	9.3	66
112	MR Imaging–Guided Partial Volume Correction of PET Data in PET/MR Imaging. PET Clinics, 2016, 11, 161-177.	3.0	32
113	Quantitative in vivo optical tomography of cancer progression & vasculature development in adult zebrafish. Oncotarget, 2016, 7, 43939-43948.	1.8	23
114	Approximate marginalization of absorption and scattering in fluorescence diffuse optical tomography. Inverse Problems and Imaging, 2016, 10, 227-246.	1.1	8
115	Multimodal Structural Priors for Spatially-Dense Diffuse Optical Tomography of Breast Cancer. , 2016, , .		1
116	Inference of Tissue Haemoglobin Concentration from Stereo RGB. Lecture Notes in Computer Science, 2016, , 50-58.	1.3	3
117	Real-time dynamic image reconstruction in time-domain diffuse optical tomography. , 2016, , .		Ο
118	Evaluating real-time image reconstruction in diffuse optical tomography using physiologically realistic test data. Biomedical Optics Express, 2015, 6, 4719.	2.9	10
119	Rapid workflow of mMR PET list-mode data processing using CUDA. EJNMMI Physics, 2015, 2, A42.	2.7	Ο
120	A fast boundary element method for the scattering analysis of high-intensity focused ultrasound. Journal of the Acoustical Society of America, 2015, 138, 2726-2737.	1.1	26
121	Performance evaluation of MAP algorithms with different penalties, object geometries and noise levels. , 2015, , .		5
122	Sign determination methods for the respiratory signal in data-driven PET gating. , 2015, , .		0
123	Adaptive adjustment of the number of subsets during iterative image reconstruction. , 2015, , .		2
124	Forward and adjoint radiance Monte Carlo models for quantitative photoacoustic imaging. , 2015, , .		1
125	Practical PET Respiratory Motion Correction in Clinical PET/MR. Journal of Nuclear Medicine, 2015, 56, 890-896.	5.0	76
126	Reconstruction-classification method for quantitative photoacoustic tomography. Journal of Biomedical Optics, 2015, 20, 126004.	2.6	11

#	Article	IF	CITATIONS
127	First-harmonic sensitivity functions for a linearised diffusion model of ultrasound-modulated optical tomography. , 2015, , .		0
128	Multi-contrast attenuation map synthesis for PET/MR scanners: assessment on FDG and Florbetapir PET tracers. European Journal of Nuclear Medicine and Molecular Imaging, 2015, 42, 1447-1458.	6.4	35
129	Incorporation of MRI-AIF Information For Improved Kinetic Modelling of Dynamic PET Data. IEEE Transactions on Nuclear Science, 2015, 62, 612-618.	2.0	4
130	Towards next generation time-domain diffuse optics devices. , 2015, , .		2
131	Whole-head functional brain imaging of neonates at cot-side using time-resolved diffuse optical tomography. Proceedings of SPIE, 2015, , .	0.8	3
132	Quantitative photoacoustic tomography using illuminations from a single direction. Journal of Biomedical Optics, 2015, 20, 036015.	2.6	21
133	Joint reconstruction of PET-MRI by exploiting structural similarity. Inverse Problems, 2015, 31, 015001.	2.0	106
134	A real-time ultrasonic field mapping system using a Fabry Pérot single pixel camera for 3D photoacoustic imaging. Proceedings of SPIE, 2015, , .	0.8	4
135	Dynamic image reconstruction in time-resolved diffuse optical tomography. Proceedings of SPIE, 2015, ,	0.8	2
136	A Reconstruction-Classification Method for Multifrequency Electrical Impedance Tomography. IEEE Transactions on Medical Imaging, 2015, 34, 1486-1497.	8.9	32
137	Towards next-generation time-domain diffuse optics for extreme depth penetration and sensitivity. Biomedical Optics Express, 2015, 6, 1749.	2.9	100
138	Fast silicon photomultiplier improves signal harvesting and reduces complexity in time-domain diffuse optics. Optics Express, 2015, 23, 13937.	3.4	68
139	Practical PET respiratory motion correction in clinical simultaneous PET/MR. , 2015, , .		3
140	Solving Boundary Integral Problems with BEM++. ACM Transactions on Mathematical Software, 2015, 41, 1-40.	2.9	134
141	Nonlinear approach to difference imaging in diffuse optical tomography. Journal of Biomedical Optics, 2015, 20, 105001.	2.6	8
142	Improved parameter-estimation with combined PET-MRI kinetic modelling. EJNMMI Physics, 2015, 2, A25.	2.7	2
143	CT synthesis in the head & neck region for PET/MR attenuation correction: an iterative multi-atlas approach. EJNMMI Physics, 2015, 2, A31.	2.7	7
144	Time-domain diffuse optics: towards next generation devices. , 2015, , .		1

9

#	Article	IF	CITATIONS
145	Finite element approximation of the radiative transport equation in a medium with piece-wise constant refractive index. Journal of Computational Physics, 2015, 282, 345-359.	3.8	22
146	Optical Imaging. , 2015, , 1033-1079.		2
147	Detail-Preserving PET Reconstruction with Sparse Image Representation and Anatomical Priors. Lecture Notes in Computer Science, 2015, 24, 540-551.	1.3	12
148	Robust CT Synthesis for Radiotherapy Planning: Application to the Head and Neck Region. Lecture Notes in Computer Science, 2015, , 476-484.	1.3	20
149	Accelerated Optical Projection Tomography Applied to In Vivo Imaging of Zebrafish. PLoS ONE, 2015, 10, e0136213.	2.5	45
150	Whole-head functional brain imaging of neonates at cot-side using time-resolved diffuse optical tomography. , 2015, , .		2
151	Subject-specific Models for the Analysis of Pathological FDG PET Data. Lecture Notes in Computer Science, 2015, , 651-658.	1.3	1
152	Optical Tomography: Applications. , 2015, , 1092-1096.		0
153	Time-domain diffuse optics: towards next generation devices. , 2015, , .		0
154	Low-rank and (X-F)-space sparsity via fast composite splitting for accelerated dynamic MR imaging. , 2014, , .		0
155	Patterned interrogation scheme for compressed sensing photoacoustic imaging using a Fabry Perot planar sensor. Proceedings of SPIE, 2014, , .	0.8	2
156	Compensation of modeling errors due to unknown domain boundary in diffuse optical tomography. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31, 1847.	1.5	16
157	Efficient Determination of the Uncertainty for the Optimization of SPECT System Design: A Subsampled Fisher Information Matrix. IEEE Transactions on Medical Imaging, 2014, 33, 618-635.	8.9	5
158	Multifrequency Electrical Impedance Tomography Using Spectral Constraints. IEEE Transactions on Medical Imaging, 2014, 33, 340-350.	8.9	82
159	The Toast++ software suite for forward and inverse modeling in optical tomography. Journal of Biomedical Optics, 2014, 19, 040801.	2.6	202
160	Dynamic MR Image Reconstruction–Separation From Undersampled (\${f k},t\$)-Space via Low-Rank Plus Sparse Prior. IEEE Transactions on Medical Imaging, 2014, 33, 1689-1701.	8.9	106
161	A novel technique to incorporate structural prior information into multi-modal tomographic reconstruction. Inverse Problems, 2014, 30, 065004.	2.0	19
162	Stroke type differentiation using spectrally constrained multifrequency EIT: evaluation of feasibility in a realistic head model. Physiological Measurement, 2014, 35, 1051-1066.	2.1	61

#	Article	IF	CITATIONS
163	A 4D neonatal head model for diffuse optical imaging of pre-term to term infants. NeuroImage, 2014, 100, 385-394.	4.2	61
164	Vector-Valued Image Processing by Parallel Level Sets. IEEE Transactions on Image Processing, 2014, 23, 9-18.	9.8	66
165	Radiative transfer equation for media with spatially varying refractive index. Physical Review A, 2014, 90, .	2.5	3
166	Attenuation Correction Synthesis for Hybrid PET-MR Scanners: Application to Brain Studies. IEEE Transactions on Medical Imaging, 2014, 33, 2332-2341.	8.9	311
167	4-D PET joint image reconstruction/non-rigid motion estimation with limited MRI prior information. EJNMMI Physics, 2014, 1, A27.	2.7	2
168	Incorporation of MRI-AIF information for improved kinetic modelling of dynamic PET data. EJNMMI Physics, 2014, 1, A43.	2.7	7
169	Image reconstruction of mMR PET data using the open source software STIR. EJNMMI Physics, 2014, 1, A44.	2.7	1
170	Attenuation correction synthesis for hybrid PET-MR scanners: validation for brain study applications. EJNMMI Physics, 2014, 1, A52.	2.7	3
171	Modelling the impact of injection time on the bolus shapes in PET-MRI AIF Conversion. EJNMMI Physics, 2014, 1, A54.	2.7	6
172	Direct parametric reconstruction from undersampled (k, t)-space data in dynamic contrast enhanced MRI. Medical Image Analysis, 2014, 18, 989-1001.	11.6	33
173	Exploiting an MRI derived arterial input function to improve the PET simultaneous estimation method: Validation of assumptions. , 2014, , .		2
174	An algorithm for direct 4-D PET image reconstruction/non-rigid motion estimation with limited MRI prior information. , 2014, , .		1
175	Effect of scatter correction when comparing attenuation maps: Application to brain PET/MR. , 2014, , .		10
176	Joint reconstruction of PET-MRI by parallel level sets. , 2014, , .		4
177	Joint Parametric Reconstruction and Motion Correction Framework for Dynamic PET Data. Lecture Notes in Computer Science, 2014, 17, 114-121.	1.3	6
178	Compensation of optode position and sensitivity errors in diffuse optical tomography. , 2014, , .		2
179	Approximate marginalization of unknown scattering in quantitative photoacoustic tomography. Inverse Problems and Imaging, 2014, 8, 811-829.	1.1	16
180	Deblurring Multispectral Laparoscopic Images. Lecture Notes in Computer Science, 2014, , 216-225.	1.3	1

#	Article	IF	CITATIONS
181	Preconditioning of complex symmetric linear systems with applications in optical tomography. Applied Numerical Mathematics, 2013, 74, 35-48.	2.1	13
182	Utilising the coupled radiative transfer - diffusion model in diffuse optical tomography. Proceedings of SPIE, 2013, , .	0.8	1
183	Use of measured scatter data for the attenuation correction of single photon emission tomography without transmission scanning. Medical Physics, 2013, 40, 082506.	3.0	22
184	Fast dynamic MRI via nuclear norm minimization and accelerated proximal gradient. , 2013, , .		2
185	Bayesian Image Reconstruction in Quantitative Photoacoustic Tomography. IEEE Transactions on Medical Imaging, 2013, 32, 2287-2298.	8.9	48
186	Fluorescence molecular tomography of an animal model using structured light rotating view acquisition. Journal of Biomedical Optics, 2013, 18, 020503.	2.6	39
187	Compensation of optode sensitivity and position errors in diffuse optical tomography using the approximation error approach. Biomedical Optics Express, 2013, 4, 2015.	2.9	18
188	Quantitative fluorescence diffuse optical tomography in the presence of heterogeneities. Optics Letters, 2013, 38, 1903.	3.3	14
189	Use of Split Bregman denoising for iterative reconstruction in fluorescence diffuse optical tomography. Journal of Biomedical Optics, 2013, 18, 076016.	2.6	27
190	Wavelet-based data and solution compression for efficient image reconstruction in fluorescence diffuse optical tomography. Journal of Biomedical Optics, 2013, 18, 086008.	2.6	14
191	Joint reconstruction of low-rank and sparse components from undersampled (k, t)-space small bowel data. , 2013, , .		1
192	Image reconstruction in quantitative photoacoustic tomography using the radiative transfer equation and the diffusion approximation. , 2013, , .		0
193	Efficient image reconstruction in fluorescence diffuse optical tomography (fDOT) using data and solution compression. , 2013, , .		Ο
194	Attenuation Correction Synthesis for Hybrid PET-MR Scanners. Lecture Notes in Computer Science, 2013, 16, 147-154.	1.3	31
195	Approximation error method can reduce artifacts due to scalp blood flow in optical brain activation imaging. Journal of Biomedical Optics, 2012, 17, 0960121.	2.6	15
196	A virtual source pattern method for fluorescence tomography with structured light. Physics in Medicine and Biology, 2012, 57, 3811-3832.	3.0	24
197	Quantitative spectroscopic photoacoustic imaging: a review. Journal of Biomedical Optics, 2012, 17, 061202.	2.6	550
198	Utilising Approximation Error Modelling in Linear Reconstruction in Diffuse Optical Tomography. , 2012, , .		0

#	Article	IF	CITATIONS
199	Use of the Fisher Information Matrix to optimize the acquisition protocol for a D-SPECT system. , 2012, , .		1
200	Subsampled Fisher Information Matrix for efficient estimation of the uncertainty in emission tomography. , 2012, , .		1
201	Tomographic imaging with polarized light. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2012, 29, 980.	1.5	12
202	Monotonic algorithm for joint entropy-based anatomical priors in parametric PET image reconstruction. , 2012, , .		2
203	Unifying global and local statistical measures for anatomy-guided emission tomography reconstruction. , 2012, , .		Ο
204	Inverse Born series for the Calderon problem. Inverse Problems, 2012, 28, 035003.	2.0	17
205	A comparison of the options for brain partial volume correction using PET/MRI. , 2012, , .		3
206	An anatomically driven anisotropic diffusion filtering method for 3D SPECT reconstruction. Physics in Medicine and Biology, 2012, 57, 3793-3810.	3.0	27
207	Influence of absorption and scattering on the quantification of fluorescence diffuse optical tomography using normalized data. Journal of Biomedical Optics, 2012, 17, 036013.	2.6	14
208	Markov random field and Gaussian mixture for segmented MRI-based partial volume correction in PET. Physics in Medicine and Biology, 2012, 57, 6681-6705.	3.0	32
209	Joint Registration and Limited-Angle Reconstruction of Digital Breast Tomosynthesis. Lecture Notes in Computer Science, 2012, , 713-720.	1.3	5
210	Steady-State Model of the Radio-Pharmaceutical Uptake for MR-PET. Lecture Notes in Computer Science, 2012, 15, 289-297.	1.3	2
211	Approximation Errors and Model Reduction in Three-Dimensional Diffuse Optical Tomography. , 2012, , .		0
212	Methods in diffuse optical imaging. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 4558-4576.	3.4	58
213	Attenuation map estimation without transmission scanning using measured scatter data. , 2011, , .		2
214	Comparison of independent forward solvers for photon migration through layered media. Proceedings of SPIE, 2011, , .	0.8	0
215	Fluorescence lifetime optical tomography in weakly scattering media in the presence of highly scattering inclusions. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2011, 28, 1513.	1.5	6
216	Förster resonance energy transfer imaging in vivo with approximated radiative transfer equation. Applied Optics, 2011, 50, 6583.	2.1	1

#	Article	IF	CITATIONS
217	Optical Tomography in weakly scattering media in the presence of highly scattering inclusions. Biomedical Optics Express, 2011, 2, 440.	2.9	27
218	Diffuse optical cortical mapping using the boundary element method. Biomedical Optics Express, 2011, 2, 568.	2.9	8
219	In vivo fluorescence lifetime tomography of a FRET probe expressed in mouse. Biomedical Optics Express, 2011, 2, 1907.	2.9	47
220	Split operator method for fluorescence diffuse optical tomography using anisotropic diffusion regularisation with prior anatomical information. Biomedical Optics Express, 2011, 2, 2632.	2.9	38
221	Multiple-view fluorescence optical tomography reconstruction using compression of experimental data. Optics Letters, 2011, 36, 1377.	3.3	28
222	Accelerated boundary element method for diffuse optical imaging. Optics Letters, 2011, 36, 4101.	3.3	6
223	Optical projection tomography for light scattering media. Proceedings of SPIE, 2011, , .	0.8	0
224	MARGINALIZATION OF UNINTERESTING DISTRIBUTED PARAMETERS IN INVERSE PROBLEMS—APPLICATION TO DIFFUSE OPTICAL TOMOGRAPHY. , 2011, 1, 1-17.		62
225	Fluorescence diffuse optical tomography using the split Bregman method. Medical Physics, 2011, 38, 6275-6284.	3.0	57
226	Variable order spherical harmonic expansion scheme for the radiative transport equation using finite elements. Journal of Computational Physics, 2011, 230, 7364-7383.	3.8	39
227	Image reconstruction in diffuse optical tomography using the coupled radiative transport–diffusion model. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112, 2600-2608.	2.3	34
228	PET Image Reconstruction Using Information Theoretic Anatomical Priors. IEEE Transactions on Medical Imaging, 2011, 30, 537-549.	8.9	96
229	A Nonrigid Registration Framework Using Spatially Encoded Mutual Information and Free-Form Deformations. IEEE Transactions on Medical Imaging, 2011, 30, 1819-1828.	8.9	90
230	Discontinuous Galerkin method for the forward modelling in optical diffusion tomography. International Journal for Numerical Methods in Engineering, 2011, 85, 562-574.	2.8	1
231	Angularly selective mesoscopic tomography. Physical Review E, 2011, 84, 051915.	2.1	5
232	Edge preserving bowsher prior with nonlocal weighting for 3D spect reconstruction. , 2011, , .		17
233	Electrical impedance tomography in anisotropic media with known eigenvectors. Inverse Problems, 2011, 27, 065004.	2.0	12
234	Novel approaches based on structured light for fast diffuse optical tomography. Proceedings of SPIE, 2011, , .	0.8	1

#	Article	IF	CITATIONS
235	Optical Imaging. , 2011, , 735-780.		6
236	4-D Generative Model for PET/MRI Reconstruction. Lecture Notes in Computer Science, 2011, 14, 581-588.	1.3	12
237	Tomographic imaging of flourescence resonance energy transfer in highly light scattering media. Proceedings of SPIE, 2010, , .	0.8	1
238	Combination of Boundary Element Method and Finite Element Method in Diffuse Optical Tomography. IEEE Transactions on Biomedical Engineering, 2010, 57, 2737-2745.	4.2	12
239	Finite element approximation of the Fokker–Planck equation for diffuse optical tomography. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111, 1406-1417.	2.3	11
240	Image Reconstruction in Optical Tomography Using the Finite Element Solution of the Radiative Transfer Equation. , 2010, , .		2
241	Development of in-vivo fluorescence imaging with the Matrix-Free method. Journal of Physics: Conference Series, 2010, 255, 012006.	0.4	5
242	Corrections to linear methods for diffuse optical tomography using approximation error modelling. Biomedical Optics Express, 2010, 1, 209.	2.9	31
243	Fast 3D optical reconstruction in turbid media using spatially modulated light. Biomedical Optics Express, 2010, 1, 471.	2.9	42
244	Fluorescence lifetime optical tomography with Discontinuous Galerkin discretisation scheme. Biomedical Optics Express, 2010, 1, 998.	2.9	7
245	Fast image reconstruction in fluoresence optical tomography using data compression. Optics Letters, 2010, 35, 763.	3.3	39
246	Full-wavelet approach for fluorescence diffuse optical tomography with structured illumination. Optics Letters, 2010, 35, 3676.	3.3	45
247	3D level set reconstruction of model and experimental data in Diffuse Optical Tomography. Optics Express, 2010, 18, 150.	3.4	20
248	Collimator design in SPECT, an optimisation tool. , 2010, , .		3
249	Combined Reconstruction and Registration of Digital Breast Tomosynthesis. Lecture Notes in Computer Science, 2010, , 760-768.	1.3	3
250	Approximation Error Approach for Compensating Modelling Errors in Optical Tomography. , 2010, , .		1
251	Fast 3-D reconstruction in highly scattering media using structured light. , 2010, , .		0
252	Förster Resonance Energy Transfer Reconstruction from Optical Backprojections in Turbid Media. , 2010, , .		0

#	Article	IF	CITATIONS
253	Estimation of volumetric myocardial apparent conductivity from endocardial electro-anatomical mapping. , 2009, 2009, 2907-10.		4
254	Diffusion optical tomography using entropic priors. , 2009, , .		0
255	Voxel Based Adaptive Meshless Method for Cardiac Electrophysiology Simulation. Lecture Notes in Computer Science, 2009, , 182-190.	1.3	4
256	Personalised Electromechanical Model of the Heart for the Prediction of the Acute Effects of Cardiac Resynchronisation Therapy. Lecture Notes in Computer Science, 2009, , 239-248.	1.3	11
257	Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography. Journal of Biomedical Optics, 2009, 14, 024020.	2.6	189
258	Optical tomography: forward and inverse problems. Inverse Problems, 2009, 25, 123010.	2.0	468
259	Detection of inhomogeneities in diffusive media using spatially modulated light. Optics Letters, 2009, 34, 2156.	3.3	33
260	Three-dimensional imaging of Förster resonance energy transfer in heterogeneous turbid media by tomographic fluorescent lifetime imaging. Optics Letters, 2009, 34, 2772.	3.3	21
261	Information theoretic regularization in diffuse optical tomography. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2009, 26, 1277.	1.5	26
262	Approximation errors and model reduction in three-dimensional diffuse optical tomography. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2009, 26, 2257.	1.5	45
263	A matrix-free algorithm for multiple wavelength fluorescence tomography. Optics Express, 2009, 17, 3042.	3.4	40
264	3D shape based reconstruction of experimental data in Diffuse Optical Tomography. Optics Express, 2009, 17, 18940.	3.4	24
265	Combined reconstruction of fluorescent and optical parameters using time-resolved data. Applied Optics, 2009, 48, 28.	2.1	18
266	Structured illumination and time gated detection for diffuse optical imaging. , 2009, , .		0
267	A Finite Element Method for the Even-Parity Radiative Transfer Equation Using the P N Approximation. , 2009, , 39-48.		1
268	Model-Based Imaging of Cardiac Apparent Conductivity and Local Conduction Velocity for Diagnosis and Planning of Therapy. IEEE Transactions on Medical Imaging, 2008, 27, 1631-1642.	8.9	63
269	Temporal propagation of spatial information in turbid media. Optics Letters, 2008, 33, 2836.	3.3	37
270	Adjoint time domain method for fluorescent imaging in turbid media. Applied Optics, 2008, 47, 2303.	2.1	6

#	Article	IF	CITATIONS
271	Use of anisotropic modelling in electrical impedance tomography; Description of method and preliminary assessment of utility in imaging brain function in the adult human head. NeuroImage, 2008, 43, 258-268.	4.2	105
272	Comparison of methods for optimal choice of the regularization parameter for linear electrical impedance tomography of brain function. Physiological Measurement, 2008, 29, 1319-1334.	2.1	25
273	Parameter and structure reconstruction in optical tomography. Journal of Physics: Conference Series, 2008, 135, 012001.	0.4	12
274	3D Digital Breast Tomosynthesis Using Total Variation Regularization. Lecture Notes in Computer Science, 2008, , 621-627.	1.3	6
275	Utilizing the Radiative Transfer Equation in Optical Tomography. Progress in Electromagnetics Research Symposium: [proceedings] Progress in Electromagnetics Research Symposium, 2008, 4, 655-660.	0.4	5
276	Validation of a finite-element solution for electrical impedance tomography in an anisotropic medium. Physiological Measurement, 2007, 28, S129-S140.	2.1	18
277	k-space propagation models for acoustically heterogeneous media: Application to biomedical photoacoustics. Journal of the Acoustical Society of America, 2007, 121, 3453.	1.1	203
278	Applying time-dependent data for fluorescence tomography. Proceedings of SPIE, 2007, , .	0.8	0
279	Fluorescence lifetime tomography of live cells expressing enhanced green fluorescent protein embedded in a scattering medium exhibiting background autofluorescence. Optics Letters, 2007, 32, 2034.	3.3	29
280	Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans. Optics Express, 2007, 15, 6696.	3.4	357
281	Light propagation in multilayered scattering media beyond the diffusive regime. Applied Optics, 2007, 46, 2528.	2.1	12
282	Image reconstruction in optical tomography in the presence of coupling errors. Applied Optics, 2007, 46, 2743.	2.1	46
283	Three-dimensional time-resolved optical mammography of the uncompressed breast. Applied Optics, 2007, 46, 3628.	2.1	87
284	Fluorescence lifetime imaging by using time-gated data acquisition. Applied Optics, 2007, 46, 7384.	2.1	47
285	Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate. NeuroImage, 2006, 30, 521-528.	4.2	120
286	Dynamic physiological modeling for functional diffuse optical tomography. NeuroImage, 2006, 30, 88-101.	4.2	105
287	Three dimensional optical imaging of blood volume and oxygenation in the neonatal brain. NeuroImage, 2006, 31, 1426-1433.	4.2	86
288	3D Shape Reconstruction in Optical Tomography Using Spherical Harmonics and BEM. Journal of Electromagnetic Waves and Applications, 2006, 20, 1827-1836.	1.6	21

#	Article	IF	CITATIONS
289	Reconstructing absorption and diffusion shape profiles in optical tomography by a level set technique. Optics Letters, 2006, 31, 471.	3.3	40
290	Information content of data types in time-domain optical tomography. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2006, 23, 2989.	1.5	11
291	Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method. Applied Optics, 2006, 45, 1866.	2.1	207
292	Diffuse photon propagation in multilayered geometries. Physics in Medicine and Biology, 2006, 51, 497-516.	3.0	56
293	Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spherical harmonic parametrization and a boundary element method. Inverse Problems, 2006, 22, 1509-1532.	2.0	68
294	Modeling photon migration in tissues with the coupled radiative transfer equation and diffusion approximation. , 2006, , .		0
295	White light diffuse optical tomography and validation of optimum wavelengths for CW DOT. , 2006, , .		0
296	Anatomically constrained optical tomography of the neonatal brain. , 2006, , .		0
297	Instrumentation and calibration methods for the multichannel measurement of phase and amplitude in optical tomography. Review of Scientific Instruments, 2005, 76, 044302.	1.3	55
298	Time-resolved optical mammography using a liquid coupled interface. Journal of Biomedical Optics, 2005, 10, 054011.	2.6	29
299	Reconstruction of optical properties of phantom and breast lesionin vivofrom paraxial scanning data. Physics in Medicine and Biology, 2005, 50, 2519-2542.	3.0	30
300	Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI. Medical Physics, 2005, 32, 1128-1139.	3.0	261
301	Computational calibration method for optical tomography. Applied Optics, 2005, 44, 1879.	2.1	25
302	Monitoring recovery after laser surgery of the breast with optical tomography: a case study. Applied Optics, 2005, 44, 1898.	2.1	23
303	Diffuse optical tomography with spectral constraints and wavelength optimization. Applied Optics, 2005, 44, 2082.	2.1	192
304	Linear and nonlinear reconstruction for optical tomography of phantoms with nonscattering regions. Applied Optics, 2005, 44, 3925.	2.1	19
305	Local diffusion regularization method for optical tomography reconstruction by using robust statistics. Optics Letters, 2005, 30, 2439.	3.3	24
306	Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions. Physics in Medicine and Biology, 2005, 50, 4913-4930.	3.0	100

#	Article	IF	CITATIONS
307	Optical tomography of the breast using a multi-channel time-resolved imager. Physics in Medicine and Biology, 2005, 50, 2503-2517.	3.0	97
308	Gauss–Newton method for image reconstruction in diffuse optical tomography. Physics in Medicine and Biology, 2005, 50, 2365-2386.	3.0	189
309	An Inverse Problem Approach to the Estimation of Volume Change. Lecture Notes in Computer Science, 2005, 8, 616-623.	1.3	4
310	Physiological System Identification with the Kalman Filter in Diffuse Optical Tomography. Lecture Notes in Computer Science, 2005, 8, 649-656.	1.3	15
311	Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography. Physics in Medicine and Biology, 2004, 49, 1117-1130.	3.0	145
312	Diffusion tensor magnetic resonance image regularization. Medical Image Analysis, 2004, 8, 47-67.	11.6	82
313	Computational calibration method for optical tomography. , 2004, , .		0
314	Application of a B-spline active surface technique to the measurement of cervical cord volume in multiple sclerosis from three-dimensional MR images. Journal of Magnetic Resonance Imaging, 2003, 18, 368-371.	3.4	23
315	Anisotropic effects in highly scattering media. Physical Review E, 2003, 68, 031908.	2.1	105
316	Optical tomography of a realistic neonatal head phantom. Applied Optics, 2003, 42, 3109.	2.1	48
317	Optode positional calibration in diffuse optical tomography. Applied Optics, 2003, 42, 3154.	2.1	37
318	Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography. Optics Letters, 2003, 28, 2339.	3.3	168
319	State-estimation approach to the nonstationary optical tomography problem. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2003, 20, 876.	1.5	59
320	Validity conditions for the radiative transfer equation. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2003, 20, 2046.	1.5	35
321	Computing in optics - Computational aspects of diffuse optical tomography. Computing in Science and Engineering, 2003, 5, 33-41.	1.2	42
322	Image reconstruction in optical tomography using local basis functions. Journal of Electronic Imaging, 2003, 12, 583.	0.9	30
323	Time-series estimation of biological factors in optical diffusion tomography. Physics in Medicine and Biology, 2003, 48, 1491-1504.	3.0	108
324	Validation of the use of homogeneous reference phantoms for optical tomography of the neonatal brain. , 2003, , .		3

#	Article	IF	CITATIONS
325	Three-dimensional optical tomography of the premature infant brain. Physics in Medicine and Biology, 2002, 47, 4155-4166.	3.0	254
326	Optical tomography of the breast using a 32-channel time-resolved imager. , 2002, , .		0
327	Time resolved optical imaging of the newborn infant brain: initial clinical results. , 2002, , .		Ο
328	Oxygen saturation and blood-volume derivation from multiwavelength time-resolved optical tomography data , 2002, , .		0
329	Three-dimensional time-resolved optical tomography of a conical breast phantom. Applied Optics, 2001, 40, 3278.	2.1	128
330	Effect of roughness in nondiffusive regions within diffusive media. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2001, 18, 940.	1.5	8
331	Simultaneous imaging and optode calibration with diffuse optical tomography. Optics Express, 2001, 8, 263.	3.4	109
332	Time resolved optical tomography of the human forearm. Physics in Medicine and Biology, 2001, 46, 1117-1130.	3.0	137
333	<title>Radiosity diffusion model in 3D</title> . , 2001, , .		3
334	<title>Optical tomography of a 3D multilayered head model</title> ., 2001, , .		1
335	<title>Differential imaging in heterogeneous media: limitations of linearization assumptions in optical tomography</title> . , 2001, , .		7
336	<title>Fast 3D image reconstruction in optical tomography using a coarse-gain parallelization strategy</title> ., 2001, , .		3
337	<title>Relationship between position of brain activity and change in optical density for NIR
imaging</title> . , 2000, , .		2
338	Spatially varying detectability for optical tomography. , 2000, , .		3
339	A method for three-dimensional time-resolved optical tomography. International Journal of Imaging Systems and Technology, 2000, 11, 2-11.	4.1	77
340	Topographic Distribution of Photon Measurement Density Functions on the Brain Surface by Hybrid Radiosity-Diffusion Method. Optical Review, 2000, 7, 426-431.	2.0	7
341	<title>Effect of roughness in nondiffusive regions within diffusive media</title> . , 2000, 4160, 185.		Ο
342	Calibration techniques and datatype extraction for time-resolved optical tomography. Review of Scientific Instruments, 2000, 71, 3415-3427.	1.3	84

4

141Optical concegraphy in the presence of void regions, Journal of the Optical Society of America A: Optical and Image Science, and Vision, 2000, 17, 1659.1.58.2144Beundary conditions for light progragation in diffusion media with nonscattering regions, Journal of Applied Optical Society of America A: Optics and Image Science, and Vision, 2000, 17, 1651.1.559144Multiple-Sice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography.2.141146The finite element model for the propagation of light in scattering media: A direct method for domains with nonscattering regions. Medical Physics, 2000, 27, 252-264.3.0103147America for threesel-dimensional timesel resolved optical tomography. International Journal of Imaging4.14148Uncar and Non-Linear Methods in Optical Tomography. 2000,0.00.0149Application of temporal fittees to time resolved data in optical tomography. Physics in Medicine and bology, 1999, 44, 1699-1717.3.0100159Assurey of Interactrical non-linear medical image registration. Pattern Recognition, 1999, 32, 129-149.3.46159Optical tomography using the SCIRun problem solving environment: Preliminary results for prely temporal data. Optica Littees, 1999, 24, 534.3.46159Simultaneous reconstruction of absorption and scattering images by multichannel measurement of prely temporal data. Optica Littees, 1999, 24, 534.3.46150Imaging of tissue-equivalent phantoms using the UCL multi-channel time-resolved instrument., 1999,5.26150Imaging of tissue-equiva	#	Article	IF	CITATIONS
344the Optical Society of América A: Optics and Image Science, and Vision, 2000, 17, 1671.1.550345Multiple elice Imaging of a tissue-equivalent phantom by use of time-resolved aptical tomography.2.141346The finite element model for the propagation of light in scattering media: A direct method for domains with nonscattering regions. Medical Physics, 2000, 27, 252-264.3.0153347A method for thread-dimensional time&resolved optical tomography. International lournal of Imaging Systems and Technology, 2000, 11, 2-11.4.14348Linear and Non-Linear Methods in Optical Tomography., 2000,00349Application of temporal filters to time resolved data in optical tomography. Physics in Medicine and Biology, 1999, 44, 1699-1717.8.1422350A survey of hierarchical non-linear medical image registration. Pattern Recognition, 1999, 32, 129-149.8.1422351Active shape focusing. Image and Vision Computing, 1999, 17, 419-428.4.510352Optical tomography using the SCIRun problem solving environment: Preliminary results for tiree-dimensional geometries and parallel processing. Optics Express, 1999, 4, 263.3.46353Simultaneous reconstruction of absorption and scattering Images by multichannel measurement of sement Method. The IMA Volumes in Mathematics and Its Applications, 1999, 45, 70.2354Mely Optical Tomography is Hard., 1999,222355Imaging of tissue equivalent phantoms using the UCL multi-channel time-resolved Instrument., 1999,22356Why Optical Tomography is H	343		1.5	82
345 Applied Optics, 2000, 39, 3380. 21 41 346 The finite element model for the propagation of light in scattering media: A direct method for domains with nonscattering regions. Medical Physics, 2000, 27, 252-264. 8.0 153 347 Amethod for three&Edimensional time&Gresolved optical tomography. International Journal of Imaging Systems and Technology, 2000, 11, 2-11. 4.1 4 348 Linear and Non-Linear Methods in Optical Tomography. , 2000, 0 0 349 Application of temporal filters to time resolved data in optical tomography. Physics in Medicine and Biology, 1999, 44, 1699-1717. 8.0 105 350 A survey of hierarchical non-linear medical image registration. Pattern Recognition, 1999, 32, 129-149. 8.1 422 351 Active shape focusing. Image and Vision Computing, 1999, 17, 419-428. 4.5 10 352 Optical tomography using the SCIRun problem solving environment: Preliminary results for three-dimensional geometries and parallel processing. Optics Express, 1999, 4, 263. 3.4 6 353 Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data. Optics Letters, 1999, 24, 534. 3.5 12 354 A General Framework for Iterative Reconstruction Agorithms in Optical Tomography. Using a Finite Element Method. The IMA Volumes in Math	344		1.5	59
344domains with nonscattering regions. Medical Physics, 2000, 27, 252-264.3.0133347A method for three&Gdimensional time&Gresolved optical tomography. International Journal of Imaging Systems and Technology, 2000, 11, 2-11.4.14348Linear and Non-Linear Methods in Optical Tomography., 2000,0349Application of temporal filters to time resolved data in optical tomography. Physics in Medicine and Biology, 1999, 44, 1699-1717.3.0105350A survey of hierarchical non-linear medical image registration. Pattern Recognition, 1999, 32, 129-149.8.1422351Active shape focusing. Image and Vision Computing, 1999, 17, 419-428.4.510352Optical tomography using the SCIRun problem solving environment: Proliminary results for three-dimensional geometries and parallel processing. Optics Express, 1999, 4, 263.3.46353Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data. Optics Letters, 1999, 24, 534.3.360354A Ceneral Framework for Iterative Reconstruction Agorithms in Optical Tomography. Using a Finite Element Method. The IMA Volumes in Mathematics and Its Applications, 1999, 4, 5-70.0355Imaging of tissue-equivalent phantoms using the UCL multi-channel time-resolved instrument., 1999,2356Why Optical Tomography is Hard., 1999,2357Comparison of two- and three-dimensional reconstruction methods in optical tomography. Applied pptics, 1998, 37, 7419.2.162358Nonuniqueness in diffusion-based optical tomography. Optics Letters, 1998	345		2.1	41
Systems and Technology, 2000, 11, 2-11. 0 348 Linear and Non-Linear Methods in Optical Tomography., 2000, , . 0 349 Application of temporal filters to time resolved data in optical tomography. Physics in Medicine and Biology, 1999, 44, 1699-1717. 3.0 105 350 A survey of hierarchical non-linear medical image registration. Pattern Recognition, 1999, 32, 129-149. 8.1 422 351 Active shape focusing. Image and Vision Computing, 1999, 17, 419-428. 4.5 10 352 Optical tomography using the SCIRun problem solving environment. Preliminary results for three-dimensional geometries and parallel processing. Optics Express, 1999, 4, 263. 3.4 6 353 Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data. Optics Letters, 1999, 24, 534. 3.3 66 354 A Ceneral Framework for Iterative Reconstruction Algorithms in Optical Tomography. Using a Finite Element Method. The IMA Volumes in Mathematics and its Applications, 1999, 45:70. 0 12 355 Imaging of tissue-equivalent phantoms using the UCL multi-channel time-resolved instrument., 1999, 0 356 Why Optical Tomography is Hard., 1999, 2 62 357 Comparison of two- and three-dimensional reconstruction methods in optical tomography. Applied Optics, 1998, 37, 7419. <td>346</td> <td></td> <td>3.0</td> <td>153</td>	346		3.0	153
349Application of temporal filters to time resolved data in optical tomography. Physics in Medicine and Biology, 1999, 44, 1699-1717.3.0105350A survey of hierarchical non-linear medical image registration. Pattern Recognition, 1999, 32, 129-149.8.1422351Active shape focusing. Image and Vision Computing, 1999, 17, 419-428.4.510352Optical tomography using the SCIRun problem solving environment: Preliminary results for three-dimensional geometries and parallel processing. Optics Express, 1999, 4, 263.3.46353Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data. Optics Letters, 1999, 24, 534.3.366354A General Framework for Herative Reconstruction Algorithms in Optical Tomography. Using a Finite Element Method. The IMA Volumes in Mathematics and Its Applications, 1999, 4, 4570.0356Imaging of tissue-equivalent phantoms using the UCL multi-channel time-resolved instrument., 1999,0357Comparison of two- and three-dimensional reconstruction methods in optical tomography. Applied Optics, 1998, 37, 7419.2.162358Nonuniqueness in diffusion-based optical tomography. Optics Letters, 1998, 23, 882.3.3327	347		4.1	4
349Biology, 1999, 44, 1699-1717.100103350A survey of hierarchical non-linear medical image registration. Pattern Recognition, 1999, 32, 129-149.8.1422351Active shape focusing. Image and Vision Computing, 1999, 17, 419-428.4.510352Optical tomography using the SCIRun problem solving environment: Preliminary results for three-dimensional geometries and parallel processing. Optics Express, 1999, 4, 263.3.46353Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data. Optics Letters, 1999, 24, 534.3.366354A Ceneral Framework for Iterative Reconstruction Algorithms in Optical Tomography, Using a Finite Element Method. The IMA Volumes in Mathematics and Its Applications, 1999, , 45-70.0.512355Imaging of tissue-equivalent phantoms using the UCL multi-channel time-resolved instrument., 1999,0356Why Optical Tomography is Hard., 1999,2357Comparison of two- and three-dimensional reconstruction methods in optical tomography. Applied Optics, 1998, 37, 7419.2.162358Nonuniqueness in diffusion-based optical tomography. Optics Letters, 1998, 23, 882.3.3327	348	Linear and Non-Linear Methods in Optical Tomography. , 2000, , .		0
351Active shape focusing. Image and Vision Computing, 1999, 17, 419-428.4.510352Optical tomography using the SCIRun problem solving environment: Preliminary results for three-dimensional geometries and parallel processing. Optics Express, 1999, 4, 263.3.46353Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data. Optics Letters, 1999, 24, 534.3.366364A General Framework for Iterative Reconstruction Algorithms in Optical Tomography. Using a Finite Element Method. The IMA Volumes in Mathematics and its Applications, 1999, 4, 57-0.0.512355Imaging of tissue-equivalent phantoms using the UCL multi-channel time-resolved instrument. , 1999,0356Why Optical Tomography is Hard. , 1999,2357Comparison of two- and three-dimensional reconstruction methods in optical tomography. Applied Optics, 1998, 37, 7419.2.162358Nonuniqueness in diffusion-based optical tomography. Optics Letters, 1998, 23, 882.3.3327	349	Application of temporal filters to time resolved data in optical tomography. Physics in Medicine and Biology, 1999, 44, 1699-1717.	3.0	105
362Optical tomography using the SCIRun problem solving environment: Preliminary results for three-dimensional geometries and parallel processing. Optics Express, 1999, 4, 263.3.46353Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data. Optics Letters, 1999, 24, 534.3.366354A General Framework for Iterative Reconstruction Algorithms in Optical Tomography, Using a Finite Element Method. The IMA Volumes in Mathematics and Its Applications, 1999, 45-70.0.512355Imaging of tissue-equivalent phantoms using the UCL multi-channel time-resolved instrument., 1999,0356Why Optical Tomography is Hard., 1999,2357Comparison of two- and three-dimensional reconstruction methods in optical tomography. Applied Optics, 1998, 37, 7419.2.162358Nonuniqueness in diffusion-based optical tomography. Optics Letters, 1998, 23, 882.3.3327	350	A survey of hierarchical non-linear medical image registration. Pattern Recognition, 1999, 32, 129-149.	8.1	422
352three-dimensional geometries and parallel processing. Optics Express, 1999, 4, 263.3.46353Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data. Optics Letters, 1999, 24, 534.3.366354A General Framework for Iterative Reconstruction Algorithms in Optical Tomography, Using a Finite Element Method. The IMA Volumes in Mathematics and Its Applications, 1999, , 45-70.0.512355Imaging of tissue-equivalent phantoms using the UCL multi-channel time-resolved instrument. , 1999, , .0356Why Optical Tomography is Hard. , 1999, , .2357Comparison of two- and three-dimensional reconstruction methods in optical tomography. Applied Optics, 1998, 37, 7419.2.162358Nonuniqueness in diffusion-based optical tomography. Optics Letters, 1998, 23, 882.3.3327	351	Active shape focusing. Image and Vision Computing, 1999, 17, 419-428.	4.5	10
353purely temporal data. Optics Letters, 1999, 24, 534.35360354A General Framework for Iterative Reconstruction Algorithms in Optical Tomography, Using a Finite Element Method. The IMA Volumes in Mathematics and Its Applications, 1999, , 45-70.0.512355Imaging of tissue-equivalent phantoms using the UCL multi-channel time-resolved instrument. , 1999, , .0356Why Optical Tomography is Hard. , 1999, , .2357Comparison of two- and three-dimensional reconstruction methods in optical tomography. Applied Optics, 1998, 37, 7419.2.1358Nonuniqueness in diffusion-based optical tomography. Optics Letters, 1998, 23, 882.3.3327	352		3.4	6
354Element Method. The IMA Volumes in Mathematics and Its Applications, 1999, 45-70.0.512355Imaging of tissue-equivalent phantoms using the UCL multi-channel time-resolved instrument., 1999, ,.0356Why Optical Tomography is Hard., 1999, ,.2357Comparison of two- and three-dimensional reconstruction methods in optical tomography. Applied2.1358Nonuniqueness in diffusion-based optical tomography. Optics Letters, 1998, 23, 882.3.3327	353	Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data. Optics Letters, 1999, 24, 534.	3.3	66
356Why Optical Tomography is Hard., 1999, ,.2357Comparison of two- and three-dimensional reconstruction methods in optical tomography. Applied2.162358Nonuniqueness in diffusion-based optical tomography. Optics Letters, 1998, 23, 882.3.3327	354	A General Framework for Iterative Reconstruction Algorithms in Optical Tomography, Using a Finite Element Method. The IMA Volumes in Mathematics and Its Applications, 1999, , 45-70.	0.5	12
357Comparison of two- and three-dimensional reconstruction methods in optical tomography. Applied Optics, 1998, 37, 7419.2.162358Nonuniqueness in diffusion-based optical tomography. Optics Letters, 1998, 23, 882.3.3327	355	Imaging of tissue-equivalent phantoms using the UCL multi-channel time-resolved instrument. , 1999, , .		0
357Optics, 1998, 37, 7419.2.162358Nonuniqueness in diffusion-based optical tomography. Optics Letters, 1998, 23, 882.3.3327	356	Why Optical Tomography is Hard. , 1999, , .		2
	357		2.1	62
A gradient-based optimisation scheme for optical tomography. Optics Express, 1998, 2, 213. 3.4 212	358	Nonuniqueness in diffusion-based optical tomography. Optics Letters, 1998, 23, 882.	3.3	327
	359	A gradient-based optimisation scheme for optical tomography. Optics Express, 1998, 2, 213.	3.4	212

360 Investigation of Alternative Data Types for Time-Resolved Optical Tomography. , 1998, , .

#	Article	IF	CITATIONS
361	The finite-element method for the propagation of light in scattering media: Frequency domain case. Medical Physics, 1997, 24, 895-902.	3.0	61
362	<title>Performance of a nullspace-map image reconstruction algorithm</title> ., 1997, 2979, 185.		2
363	Image reconstruction in optical tomography. Philosophical Transactions of the Royal Society B: Biological Sciences, 1997, 352, 717-726.	4.0	133
364	Optical imaging in medicine: I. Experimental techniques. Physics in Medicine and Biology, 1997, 42, 825-840.	3.0	422
365	Optical imaging in medicine: II. Modelling and reconstruction. Physics in Medicine and Biology, 1997, 42, 841-853.	3.0	489
366	Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head. Applied Optics, 1997, 36, 21.	2.1	383
367	Direct calculation with a finite-element method of the Laplace transform of the distribution of photon time of flight in tissue. Applied Optics, 1997, 36, 9042.	2.1	24
368	Multi-spectral probabilistic diffusion using bayesian classification. Lecture Notes in Computer Science, 1997, , 224-235.	1.3	16
369	Experimental validation of Monte Carlo and finite-element methods for the estimation of the optical path length in inhomogeneous tissue. Applied Optics, 1996, 35, 3362.	2.1	32
370	Imaging through scattering media by the use of an analytical model of perturbation amplitudes in the time domain. Applied Optics, 1996, 35, 6788.	2.1	50
371	An investigation of light transport through scattering bodies with non-scattering regions. Physics in Medicine and Biology, 1996, 41, 767-783.	3.0	208
372	<title>Multiscale shape description of MR brain images using active contour models</title> . , 1996, , .		11
373	Simulation of MRI cluster plots and application to neurological segmentation. Magnetic Resonance Imaging, 1996, 14, 73-92.	1.8	62
374	<title>Sensitivity to prior knowledge in optical tomographic reconstruction</title> ., 1995, , .		30
375	<title>Near-infrared imaging: photon measurement density functions</title> . , 1995, 2389, 366.		12
376	Direct calculation of the moments of the distribution of photon time of flight in tissue with a finite-element method. Applied Optics, 1995, 34, 2683.	2.1	74
377	Photon-measurement density functions Part I: Analytical forms. Applied Optics, 1995, 34, 7395.	2.1	274
378	Photon-measurement density functions Part 2: Finite-element-method calculations. Applied Optics, 1995, 34, 8026.	2.1	270

#	Article	IF	CITATIONS
379	Sources of intensity nonuniformity in spin echo images at 1.5 T. Magnetic Resonance in Medicine, 1994, 32, 121-128.	3.0	239
380	Improvements to the quality of MRI cluster analysis. Magnetic Resonance Imaging, 1994, 12, 1191-1204.	1.8	29
381	A method for visualization of MRI partial volume regions—PAIR (PArtial volume sensitised Inversion) Tj ETQq1 1	0.784314 1.8	rgBT /Overle
382	Application of the finite-element method for the forward and inverse models in optical tomography. Journal of Mathematical Imaging and Vision, 1993, 3, 263-283.	1.3	146
383	A finite element approach for modeling photon transport in tissue. Medical Physics, 1993, 20, 299-309.	3.0	554
384	<title>Performance of an iterative reconstruction algorithm for near-infrared absorption and scatter imaging</title> . , 1993, , .		29
385	<title>Comparison of a finite-element forward model with experimental phantom results: application to image reconstruction</title> . , 1993, 1888, 179.		10
386	<title>Use of multiple data types in time-resolved optical absorption and scattering
tomography</title> . , 1993, , .		10
387	<title>Application of the finite element method for the forward model in infrared absorption
imaging</title> . , 1992, , .		9
388	<title>Iterative reconstruction of near-infrared absorption images</title> ., 1992, 1767, 372.		48
389	<title>Data analysis methods for near-infrared spectroscopy of tissue: problems in determining the relative cytochrome aa<formula><inf><roman>3</roman></inf></formula> concentration</title> . , 1991, 1431, 251.		62
390	<title>Reconstruction methods for infrared absorption imaging</title> ., 1991, 1431, 204.		81
391	Measurement of Optical Path Length for Cerebral Near-Infrared Spectroscopy in Newborn Infants. Developmental Neuroscience, 1990, 12, 140-144.	2.0	164
392	A computer system for the interactive planning and prediction of maxillofacial surgery. American Journal of Orthodontics and Dentofacial Orthopedics, 1988, 94, 469-475.	1.7	87
393	Three dimensionaldigitization of the face and skull. Journal of Maxillofacial Surgery, 1985, 13, 136-143.	0.5	125