Michael E Jung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7798944/publications.pdf

Version: 2024-02-01

66911 109321 6,822 125 35 78 citations g-index h-index papers 127 127 127 9777 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Insight into the molecular basis of substrate recognition by the wall teichoic acid glycosyltransferase TagA. Journal of Biological Chemistry, 2022, 298, 101464.	3.4	3
2	Intramolecular Nâ^'Hâ‹â‹â‹F Hydrogen Bonding Interaction in a Series of 4â€Anilinoâ€5â€Fluoroquinazolines: Experimental and Theoretical Characterization of Electronic and Conformational Effects. Chemistry - A European Journal, 2022, 28, .	s: 3.3	6
3	Development of Novel Mitochondrial Pyruvate Carrier Inhibitors to Treat Hair Loss. Journal of Medicinal Chemistry, 2021, 64, 2046-2063.	6.4	16
4	Classes of Drugs that Mitigate Radiation Syndromes. Frontiers in Pharmacology, 2021, 12, 666776.	3.5	4
5	Conformational dynamics of androgen receptors bound to agonists and antagonists. Scientific Reports, 2021, 11, 15887.	3.3	11
6	Metabolic Modifier Screen Reveals Secondary Targets of Protein Kinase Inhibitors within Nucleotide Metabolism. Cell Chemical Biology, 2020, 27, 197-205.e6.	5.2	16
7	Development and preclinical pharmacology of a novel dCK inhibitor, DI-87. Biochemical Pharmacology, 2020, 172, 113742.	4.4	8
8	Isoquinoline thiosemicarbazone displays potent anticancer activity with in vivo efficacy against aggressive leukemias. RSC Medicinal Chemistry, 2020, 11, 392-410.	3.9	6
9	Development of a Potent Brain-Penetrant EGFR Tyrosine Kinase Inhibitor against Malignant Brain Tumors. ACS Medicinal Chemistry Letters, 2020, 11, 1799-1809.	2.8	17
10	A Cell-based Screen in Actinomyces oris to Identify Sortase Inhibitors. Scientific Reports, 2020, 10, 8520.	3.3	15
11	PTPÏ f inhibitors promote hematopoietic stem cell regeneration. Nature Communications, 2019, 10, 3667.	12.8	21
12	Phenylalanine Monitoring via Aptamer-Field-Effect Transistor Sensors. ACS Sensors, 2019, 4, 3308-3317.	7.8	57
13	A Novel Therapeutic Induces DEPTOR Degradation in Multiple Myeloma Cells with Resulting Tumor Cytotoxicity. Molecular Cancer Therapeutics, 2019, 18, 1822-1831.	4.1	7
14	Cover Image, Volume 39, Issue 1. Medicinal Research Reviews, 2019, 39, i-i.	10.5	1
15	Synthesis of \hat{l}^2 -Amino Diaryldienones Using the Mannich Reaction. Organic Letters, 2019, 21, 4039-4043.	4.6	7
16	Formation of Aryl [1-Cyano-4-(dialkylamino)butadienyl] Ketones from Pyridines. Synthesis, 2019, 51, 2548-2552.	2.3	1
17	Aqueous Dearomatization/Diels–Alder Cascade to a Grandifloracin Precursor. Journal of Chemical Education, 2019, 96, 998-1001.	2.3	5
18	Molecules targeting the androgen receptor (AR) signaling axis beyond the ARâ€Ligand binding domain. Medicinal Research Reviews, 2019, 39, 910-960.	10.5	41

#	Article	IF	Citations
19	The Aftermath of Surviving Acute Radiation Hematopoietic Syndrome and its Mitigation. Radiation Research, 2019, 191, 323.	1.5	17
20	Synthesis and Structure–Activity Relationship (SAR) Studies of Novel Pyrazolopyridine Derivatives as Inhibitors of Enterovirus Replication. Journal of Medicinal Chemistry, 2018, 61, 1688-1703.	6.4	41
21	A small molecule ApoE4-targeted therapeutic candidate that normalizes sirtuin 1 levels and improves cognition in an Alzheimer's disease mouse model. Scientific Reports, 2018, 8, 17574.	3.3	25
22	Broad-spectrum antiviral JL122 blocks infection and inhibits transmission of aquatic rhabdoviruses. Virology, 2018, 525, 143-149.	2.4	19
23	<scp>NMR</scp> structureâ€based optimization of <i>Staphylococcus aureus</i> sortase A pyridazinone inhibitors. Chemical Biology and Drug Design, 2017, 90, 327-344.	3.2	20
24	Inhibition of an Aquatic Rhabdovirus Demonstrates Promise of a Broad-Spectrum Antiviral for Use in Aquaculture. Journal of Virology, 2017, 91, .	3.4	29
25	Fluorinated Nucleotide Modifications Modulate Allele Selectivity of SNP-Targeting Antisense Oligonucleotides. Molecular Therapy - Nucleic Acids, 2017, 7, 20-30.	5.1	24
26	Structure-activity relationship study of small molecule inhibitors of the DEPTOR-mTOR interaction. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4714-4724.	2.2	11
27	Specific blockade of Rictor-mTOR association inhibits mTORC2 activity and is cytotoxic in glioblastoma. PLoS ONE, 2017, 12, e0176599.	2.5	70
28	4-(Nitrophenylsulfonyl)piperazines mitigate radiation damage to multiple tissues. PLoS ONE, 2017, 12, e0181577.	2.5	14
29	Mechanistic Target of Rapamycin (mTOR) Inhibition Synergizes with Reduced Internal Ribosome Entry Site (IRES)-mediated Translation of Cyclin D1 and c-MYC mRNAs to Treat Glioblastoma. Journal of Biological Chemistry, 2016, 291, 14146-14159.	3.4	44
30	Partial Amelioration of Peripheral and Central Symptoms of Huntington's Disease via Modulation of Lipid Metabolism. Journal of Huntington's Disease, 2016, 5, 65-81.	1.9	17
31	The "Lid―in the <i>Streptococcus pneumoniae</i> SrtC1 Sortase Adopts a Rigid Structure that Regulates Substrate Access to the Active Site. Journal of Physical Chemistry B, 2016, 120, 8302-8312.	2.6	11
32	Synthesis of 2-Ethenylcyclopropyl Aryl Ketones via Intramolecular S _N 2-like Displacement of an Ester. Organic Letters, 2016, 18, 5138-5141.	4.6	3
33	Cytotoxic Properties of a DEPTOR-mTOR Inhibitor in Multiple Myeloma Cells. Cancer Research, 2016, 76, 5822-5831.	0.9	20
34	Thermodynamic Control of Isomerizations of Bicyclic Radicals: Interplay of Ring Strain and Radical Stabilization. Organic Letters, 2016, 18, 32-35.	4.6	7
35	A Small Molecule Inhibitor of Protein Tyrosine Phosphatase-Sigma (PTPÏf) Promotes Hematopoietic Stem Cell (HSC) Regeneration. Blood, 2016, 128, 822-822.	1.4	0
36	CSF1 Receptor Targeting in Prostate Cancer Reverses Macrophage-Mediated Resistance to Androgen Blockade Therapy. Cancer Research, 2015, 75, 950-962.	0.9	150

#	Article	IF	Citations
37	2-Hydroxyglutarate Inhibits ATP Synthase and mTOR Signaling. Cell Metabolism, 2015, 22, 508-515.	16.2	190
38	Development of 2-Deoxy-2-[¹⁸ F]fluororibose for Positron Emission Tomography Imaging Liver Function in Vivo. Journal of Medicinal Chemistry, 2015, 58, 5538-5547.	6.4	14
39	Synthesis and Duplexâ€Stabilizing Properties of Fluorinated <i>N</i> â€Methanocarbathymidine Analogues Locked in the C3′â€ <i>endo</i> Conformation. Angewandte Chemie - International Edition, 2014, 53, 9893-9897.	13.8	23
40	The macrophage LBP gene is an LXR target that promotes macrophage survival and atherosclerosis. Journal of Lipid Research, 2014, 55, 1120-1130.	4.2	21
41	Synthesis of \hat{l}_{\pm} -Diketones from Alkylaryl- and Diarylalkynes Using Mercuric Salts. Organic Letters, 2014, 16, 2142-2145.	4.6	54
42	The metabolite \hat{l}_{\pm} -ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature, 2014, 510, 397-401.	27.8	485
43	The LXR–Idol Axis Differentially Regulates Plasma LDL Levels in Primates and Mice. Cell Metabolism, 2014, 20, 910-918.	16.2	72
44	Synthesis of Highly Substituted Adamantanones from Bicyclo[3.3.1]nonanes. Journal of Organic Chemistry, 2014, 79, 10547-10552.	3.2	8
45	Calcium Signaling via Orai1 Is Essential for Induction of the Nuclear Orphan Receptor Pathway To Drive Th17 Differentiation. Journal of Immunology, 2014, 192, 110-122.	0.8	66
46	Palladium Hydride Promoted Stereoselective Isomerization of Unactivated Di(exo)methylenes to Endocyclic Dienes. Organic Letters, 2014, 16, 2382-2385.	4.6	10
47	Fatty acid epoxyisoprostane E2 stimulates an oxidative stress response in endothelial cells. Biochemical and Biophysical Research Communications, 2014, 444, 69-74.	2.1	16
48	Structure–Activity Relationship of Semicarbazone EGA Furnishes Photoaffinity Inhibitors of Anthrax Toxin Cellular Entry. ACS Medicinal Chemistry Letters, 2014, 5, 363-367.	2.8	10
49	Studies Toward the Enantiospecific Total Synthesis of Rhodexin A. Journal of Organic Chemistry, 2013, 78, 7518-7526.	3.2	20
50	<i>Se</i> â€Phenyl Propâ€2â€eneselenoate: An Ethylene Equivalent for Diels–Alder Reactions. Angewandte Chemie - International Edition, 2013, 52, 2060-2062.	13.8	23
51	Total Synthesis of the Proposed Structure of Mycosporulone: Structural Revision and an Unexpected Retro-Aldol/Aldol Reaction. Organic Letters, 2012, 14, 4898-4901.	4.6	11
52	Synthesis of the 1-Monoester of 2-Ketoalkanedioic Acids, for Example, Octyl \hat{l}_{\pm} -Ketoglutarate. Journal of Organic Chemistry, 2012, 77, 11002-11005.	3.2	13
53	Trimethylaluminum–Triflimide Complexes for the Catalysis of Highly Hindered Diels–Alder Reactions. Organic Letters, 2012, 14, 5169-5171.	4.6	16
54	Synthesis and Validation of Cyanine-Based Dyes for DIGE. Methods in Molecular Biology, 2012, 854, 67-85.	0.9	2

#	Article	IF	CITATIONS
55	An Efficient Synthesis of the Protected Carbohydrate Moiety of Brasilicardin A. Organic Letters, 2011, 13, 3710-3713.	4.6	23
56	First Total Synthesis of Rhodexin A. Organic Letters, 2011, 13, 2698-2701.	4.6	48
57	Synthesis and evaluation of compounds that induce readthrough of premature termination codons. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5842-5848.	2.2	35
58	Structureâ^'Activity Relationship for Thiohydantoin Androgen Receptor Antagonists for Castration-Resistant Prostate Cancer (CRPC). Journal of Medicinal Chemistry, 2010, 53, 2779-2796.	6.4	230
59	Total Synthesis of Auripyrone B Using a Non-Aldol Aldolâ^'Cuprate Opening Process. Organic Letters, 2010, 12, 2872-2875.	4.6	20
60	Enantiospecific Formal Total Synthesis of (+)-Fawcettimine. Organic Letters, 2010, 12, 2962-2965.	4.6	66
61	Synthesis of atrans, syn, trans-Dodeca hydrophenanthrene via a Bicyclic Transannular Dielsâ 'Alder Reaction: Intermediate for the Synthesis of Fusidic Acid. Journal of Organic Chemistry, 2010, 75, 6933-6940.	3.2	14
62	Total Synthesis of Auripyroneâ€A Using a Tandem Nonâ€Aldol Aldol/Paterson Aldol Process as a Key Step. Angewandte Chemie - International Edition, 2009, 48, 8766-8769.	13.8	34
63	Use of 4-Cyanocoumarins as Dienophiles in a Facile Synthesis of Highly Substituted Dibenzopyranones. Organic Letters, 2009, 11, 757-760.	4.6	41
64	Synthesis of 2-Substituted 7-Hydroxybenzofuran-4-carboxylates via Addition of Silyl Enol Ethers to <i>>o</i> -Benzoquinone Esters. Organic Letters, 2009, 11, 2165-2167.	4.6	23
65	Development of a Second-Generation Antiandrogen for Treatment of Advanced Prostate Cancer. Science, 2009, 324, 787-790.	12.6	1,955
66	Total Synthesis of Racemic Laurenditerpenol, an HIF-1 Inhibitor. Journal of Organic Chemistry, 2009, 74, 8739-8753.	3.2	41
67	Total Synthesis of $(\hat{A}\pm)$ -Kellermanoldione: Stepwise Cycloaddition of a Functionalized Diene and Allenoate. Organic Letters, 2009, 11, 3882-3885.	4.6	35
68	Preparation of a Functionalized Tetracyclic Intermediate for the Synthesis of Rhodexin A. Organic Letters, 2008, 10, 3647-3649.	4.6	22
69	Improved Synthesis of the Epoxy Isoprostane Phospholipid PEIPC and its Reactivity with Amines. Organic Letters, 2008, 10, 4207-4209.	4.6	35
70	Anti Aldol Selectivity in a Synthetic Approach to the C $<$ sub $>$ 1 $<$ /sub $>$ â $^{\circ}$ C $<$ sub $>$ 12 $<$ /sub $>$ Fragment of the Tedanolides. Organic Letters, 2008, 10, 137-140.	4.6	20
71	Facile Synthesis of <i>cis</i> -2-Alkyl-3-trialkylsilyloxycycloalkanones via the Non-Aldol Aldol Rearrangement of 2,3-Epoxycycloalkanols. Organic Letters, 2008, 10, 2039-2041.	4.6	18
72	Total Synthesis of (±)-Hedychilactone B: Stepwise Allenoate Diene Cycloaddition To Prepare Trimethyldecalin Systems. Organic Letters, 2007, 9, 461-463.	4.6	29

#	Article	IF	Citations
73	Stepwise Acid-Promoted Double-Michael Process:Â An Alternative to Dielsâ'Alder Cycloadditions for Hindered Silyloxydieneâ'Dienophile Pairs. Organic Letters, 2007, 9, 375-378.	4.6	49
74	Unprecedented Rearrangement of a 4-Alkoxy-5-bromoalk-2-en-1-ol to a Cyclopentenone via an Iso-Nazarov Cyclization Process. Journal of Organic Chemistry, 2007, 72, 8565-8568.	3.2	16
75	Synthesis of the C1â^'C12 Fragment of the Tedanolides. Aldolâ^'Non-Aldol Aldol Approach. Organic Letters, 2007, 9, 3543-3546.	4.6	19
76	Total Synthesis of (±)-Hedychenone:  Trimethyldecalin Terpene Systems via Stepwise Allenoate Diene Cycloaddition. Organic Letters, 2006, 8, 5857-5859.	4.6	20
77	Practical syntheses of dyes for difference gel electrophoresis. Bioorganic and Medicinal Chemistry, 2006, 14, 92-97.	3.0	41
78	Synthesis of (2R,3S) 3-amino-4-mercapto-2-butanol, a threonine analogue for covalent inhibition of sortases. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 5076-5079.	2.2	25
79	gem-Disubstituent Effect:  Theoretical Basis and Synthetic Applications. Chemical Reviews, 2005, 105, 1735-1766.	47.7	783
80	Synthesis of Highly Substituted Cyclohexenes via Mixed Lewis Acid-Catalyzed Dielsâ^'Alder Reactions of Highly Substituted Dienes and Dienophiles. Organic Letters, 2005, 7, 1649-1651.	4.6	39
81	Versatile Diastereoselectivity in Formal [3,3]-Sigmatropic Shifts of Substituted 1-Alkenyl-3-alkylidenecyclobutanols and Their Silyl Ethers. Journal of the American Chemical Society, 2005, 127, 11206-11207.	13.7	19
82	Total Synthesis of the Epoxy Isoprostane Phospholipids PEIPC and PECPC. Organic Letters, 2005, 7, 3933-3935.	4.6	38
83	Intramolecular Dielsâ^Alder Reactions of Optically Active Allenic Ketones:Â Chirality Transfer in the Preparation of Substituted Oxa-Bridged Octalones. Journal of the American Chemical Society, 2005, 127, 10834-10835.	13.7	39
84	Microwave-Assisted Allylation of Acetals with Allyltrimethylsilane in the Presence of CuBr. Journal of Organic Chemistry, 2004, 69, 7755-7757.	3.2	35
85	Synthesis and Relative Stability of 3,5-Diacyl-4,5-dihydro-1H-pyrazoles Prepared by Dipolar Cycloaddition of Enones and α-Diazoketones. Journal of Organic Chemistry, 2004, 69, 9085-9089.	3.2	33
86	Synthesis, stereochemistry, and reactions of 2,5-diphenylsilacyclopentenes. Silicon Chemistry, 2003, 2, 99-107.	0.8	2
87	Synthetic Approach to the AB Ring System of Ouabain. Journal of Organic Chemistry, 2003, 68, 2572-2582.	3.2	24
88	Use of Hindered Silyl Ethers as Protecting Groups for the Non-aldol Aldol Process. Organic Letters, 2003, 5, 3159-3161.	4.6	28
89	Unexpected Syn Hydride Migration in the Non-aldol Aldol Reaction. Organic Letters, 2003, 5, 3375-3378.	4.6	19
90	First Synthesis of the A/B Ring of Ouabain. Organic Letters, 2003, 5, 137-140.	4.6	23

#	Article	IF	Citations
91	A Tandem Non-Aldol Aldol Mukaiyama Aldol Reaction. Organic Letters, 2003, 5, 4705-4707.	4.6	14
92	Studies towards the total synthesis of an epoxy isoprostane phospholipid, a potent activator of endothelial cells. Chemical Communications, 2003, , 196-197.	4.1	12
93	Synthetic Approach to Analogues of the Original Structure of Sclerophytin A. Journal of Organic Chemistry, 2002, 67, 6848-6851.	3.2	22
94	Novel Rearrangements of 4-Silyl-3-buten-2-ones. Journal of Organic Chemistry, 2002, 67, 3911-3914.	3.2	22
95	Efficient Synthesis of a Tricyclic BCD Analogue of Ouabain: Lewis Acid Catalyzed Diels–Alder Reactions of Sterically Hindered Systems. Angewandte Chemie - International Edition, 2002, 41, 4125-4128.	13.8	35
96	Synthesis and Biological Activity of a Series of Methylene-Expanded Oxetanocin Nucleoside Analogues. Monatshefte Für Chemie, 2002, 133, 499-520.	1.8	8
97	Conclusive Evidence of the Trapping of Primary Ozonides. Organic Letters, 2001, 3, 627-629.	4.6	33
98	The First Reported Anionic Oxy Retro-Ene Reaction. Organic Letters, 2001, 3, 3025-3027.	4.6	24
99	Preparation of 4â€~-Substituted Thymidines by Substitution of the Thymidine 5â€~-Esters. Journal of Organic Chemistry, 2001, 66, 2624-2635.	3.2	40
100	Enantioselective Formal Total Synthesis of (â^')-Dysidiolide. Organic Letters, 2001, 3, 2113-2115.	4.6	50
101	Origins of Stereoselectivity in Intramolecular Dielsâ^'Alder Cycloadditions of Dienes and Dienophiles Linked by Ester and Amide Tethers. Journal of Organic Chemistry, 2001, 66, 1938-1940.	3.2	62
102	Efficient Synthesis of Carbocyclic Nucleoside, (±)-Homocarbovir Via π-Allylpalladium Complex Formation from the Allyl N,N-Ditosylimide Substrate. Nucleosides, Nucleotides and Nucleic Acids, 2000, 19, 619-628.	1.1	17
103	Efficient Synthesis of the C1â^'C11Fragment of the Tedanolides. The Nonaldol Aldol Process in Synthesis. Organic Letters, 2000, 2, 1669-1672.	4.6	56
104	Use of Optically Active CyclicN,N-Dialkyl Aminals in Asymmetric Induction. Organic Letters, 2000, 2, 2659-2661.	4.6	101
105	Unusual Diastereoselectivity in Intramolecular Dielsâ^'Alder Reactions of Substituted 3,5-Hexadienyl Acrylates. Preference for a Boatlike Structure of the Six-Atom Tether Due to Ester Overlap. Organic Letters, 2000, 2, 1835-1837.	4.6	34
106	Synthesis and Testing of New Modified Nucleosides. Nucleosides & Nucleotides, 1999, 18, 541-546.	0.5	12
107	A Short, Convenient Synthesis of 2-ArylglycidatesviaAryl-Grignard Addition to an α-Bromopyruvate. Synthetic Communications, 1999, 29, 3659-3666.	2.1	2
108	Intramolecular Glycosylation to Form 4-Methoxy-2,6-Dioxopyrimidine Nucleosides via O6,5′-Cyclonucleosides. Nucleosides & Nucleotides, 1999, 18, 2415-2423.	0.5	3

#	Article	IF	CITATIONS
109	Conversion of Homoallylic Alcohols with Alkene Protection to the Corresponding Methyl Ketones. Journal of Organic Chemistry, 1999, 64, 663-665.	3.2	37
110	Synthesis of Four Diastereomeric 3,5-Dialkoxy-2,4-dimethylalkanals by a Simple Extension of the Non-Aldol Aldol Process to Bis(propionates). Organic Letters, 1999, 1, 307-310.	4.6	32
111	New Efficient Method for the Total Synthesis of (S,S)-Isodityrosine from Natural Amino Acids. Journal of Organic Chemistry, 1999, 64, 2976-2977.	3.2	79
112	Facile Preparation of Allenic Hydroxyketones via Rearrangement of Propargylic Alcohols. Organic Letters, 1999, 1, 367-370.	4.6	16
113	Unusual Cyclization Products Derived from Photolysis of Breslow's Steroidal Benzophenone Esters. Journal of Organic Chemistry, 1999, 64, 7651-7653.	3.2	7
114	Efficient Synthesis of 2-Deoxy l-Ribose from l-Arabinose:  Mechanistic Information on the 1,2-Acyloxy Shift in Alkyl Radicals. Organic Letters, 1999, 1, 1517-1519.	4.6	18
115	Total Syntheses of the Cytotoxic Marine Natural Product, Aplysiapyranoid C1. Journal of Organic Chemistry, 1998, 63, 2982-2987.	3.2	28
116	Enantiospecific Total Synthesis of l-2â€~,3â€~-Dideoxyisonucleosides via Regioselective Opening of Optically Active C2-Symmetric 1,4-Pentadiene Bis-epoxide1. Journal of Organic Chemistry, 1998, 63, 2975-2981.	3.2	38
117	Novel Lewis Acid-Catalyzed Rearrangement of a Sugar-Base Hybrid to Afford an Anhydronucleoside. Nucleosides & Nucleotides, 1998, 17, 2383-2387.	0.5	7
118	Substituent Effects in the Intramolecular Dielsâ^'Alder Reaction of 6-Furylhexenoates. Journal of Organic Chemistry, 1998, 63, 2968-2974.	3.2	44
119	Stereospecific Formation of Optically Active 5-Alkyl-4-methyl-3-[(trialkylsilyl)oxy]-2-([(trialkylsilyl)oxy]- methyl)tetrahydrofurans via Diastereoselective Epoxidation and Rearrangement of 5-[(Trialkylsilyl)oxy]-2-alken-1-ols1. Journal of the American Chemical Society, 1997, 119, 12150-12158.	13.7	47
120	Generation of [5.5.n] Tricyclic Ring Systems by Radical-Promoted Inter- and Intramolecular [3 + 2] Cycloadditions. Journal of Organic Chemistry, 1997, 62, 4601-4609.	3.2	48
121	Molecular Mechanics/Continuum Reaction Field/Quantum Mechanics Study of the Intramolecular Dielsâ^'Alder Reaction of 2-Furfuryl Derivatives. Journal of Organic Chemistry, 1997, 62, 1439-1448.	3.2	13
122	Synthesis of Several Naturally Occurring Polyhalogenated Monoterpenes of the Halomon Class1. Journal of Organic Chemistry, 1997, 62, 7094-7095.	3.2	23
123	Complete Diastereocontrol in Intramolecular 1,3-Dipolar Cycloadditions of 2-Substituted 5-Hexenyl and 5-Heptenyl Nitrones:Â Application to the Synthesis of the \hat{I}^2 -Lactam Antibiotic $1\hat{I}^2$ -Methylthienamycin. Journal of Organic Chemistry, 1996, 61, 4427-4433.	3.2	28
124	A Novel Tandem [1,2]-Brook/Retro-[1,6]-Brook Rearrangement of a 1-(Trimethylsilyl)-2,4-pentadien-1-ol Anion. Journal of Organic Chemistry, 1996, 61, 9065-9067.	3.2	23
125	An Improved Synthesis of 4-Methylene-2-cyclohexen-1-one. Synthetic Communications, 1994, 24, 197-203.	2.1	13