
Felix LehmkÃ¹/₄hler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7798535/publications.pdf Version: 2024-02-01

FELLY LEHMKÃ1/HIED

#	Article	IF	CITATIONS
1	From Femtoseconds to Hours—Measuring Dynamics over 18 Orders of Magnitude with Coherent X-rays. Applied Sciences (Switzerland), 2021, 11, 6179.	2.5	36
2	Microsecond hydrodynamic interactions in dense colloidal dispersions probed at the European XFEL. IUCrJ, 2021, 8, 775-783.	2.2	14
3	Glass-liquid and glass-gel transitions of soft-shell particles. Physical Review E, 2021, 104, L012602.	2.1	5
4	Real-Time X-ray Scattering Discovers Rich Phase Behavior in PbS Nanocrystal Superlattices during <i>In Situ</i> Assembly. Chemistry of Materials, 2021, 33, 6553-6563.	6.7	8
5	Analysis Strategies for MHz XPCS at the European XFEL. Applied Sciences (Switzerland), 2021, 11, 8037.	2.5	11
6	Recent Notable Approaches to Study Selfâ€Assembly of Nanoparticles with Xâ€Ray Scattering and Electron Microscopy. Particle and Particle Systems Characterization, 2021, 38, 2100087.	2.3	23
7	The phase diagram of colloidal silica–PNIPAm core–shell nanogels. Soft Matter, 2020, 16, 466-475.	2.7	12
8	Structural order in plasmonic superlattices. Nature Communications, 2020, 11, 3821.	12.8	56
9	Shear-induced ordering in liquid microjets seen by x-ray cross correlation analysis. Structural Dynamics, 2020, 7, 054901.	2.3	5
10	Slowing down of dynamics and orientational order preceding crystallization in hard-sphere systems. Science Advances, 2020, 6, .	10.3	10
11	Emergence of anomalous dynamics in soft matter probed at the European XFEL. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24110-24116.	7.1	31
12	Plasmonic Supercrystals with a Layered Structure Studied by a Combined TEM AXSâ€XCCA Approach. Advanced Materials Interfaces, 2020, 7, 2000919.	3.7	8
13	Double-pulse speckle contrast correlations with near Fourier transform limited free-electron laser light using hard X-ray split-and-delay. Scientific Reports, 2020, 10, 5054.	3.3	7
14	Anisotropic and heterogeneous dynamics in an aging colloidal gel. Soft Matter, 2020, 16, 2864-2872.	2.7	19
15	Influence of TMAO as coâ€solvent on the gelation of silicaâ€PNIPAm coreâ€shell nanogels at intermediate volume fractions. ChemPhysChem, 2020, 21, 1318-1325.	2.1	5
16	An <i>in situ</i> and real time study of the formation of CdSe NCs. Nanoscale, 2020, 12, 22928-22934.	5.6	11
17	Coexistence of hcp and bct Phases during In Situ Superlattice Assembly from Faceted Colloidal Nanocrystals. Journal of Physical Chemistry Letters, 2019, 10, 6331-6338.	4.6	15
18	Supercrystal Formation of Gold Nanorods by High Pressure Stimulation. Journal of Physical Chemistry C, 2019, 123, 29994-30000.	3.1	4

Felix Lehmkühler

#	Article	IF	CITATIONS
19	Anomalous Dynamics of Concentrated Silica-PNIPAm Nanogels. Journal of Physical Chemistry Letters, 2019, 10, 5231-5236.	4.6	18
20	Kinetics of pressure-induced nanocrystal superlattice formation. Physical Chemistry Chemical Physics, 2019, 21, 21349-21354.	2.8	7
21	Monitoring Nanocrystal Selfâ€Assembly in Real Time Using In Situ Smallâ€Angle Xâ€Ray Scattering. Small, 2019, 15, e1900438.	10.0	30
22	In situ small-angle X-ray scattering environment for studying nanocrystal self-assembly upon controlled solvent evaporation. Review of Scientific Instruments, 2019, 90, 036103.	1.3	6
23	Local orientational order in self-assembled nanoparticle films: the role of ligand composition and salt. Journal of Applied Crystallography, 2019, 52, 777-782.	4.5	5
24	Structure and Stability of PEG―and Mixed PEG‣ayerâ€Coated Nanoparticles at High Particle Concentrations Studied In Situ by Smallâ€Angle Xâ€Ray Scattering. Particle and Particle Systems Characterization, 2018, 35, 1700319.	2.3	17
25	Towards ultrafast dynamics with split-pulse X-ray photon correlation spectroscopy at free electron laser sources. Nature Communications, 2018, 9, 1704.	12.8	55
26	X-ray spectroscopy with variable line spacing based on reflection zone plate optics. Optics Letters, 2018, 43, 4390.	3.3	10
27	Coherent X-rays reveal the influence of cage effects on ultrafast water dynamics. Nature Communications, 2018, 9, 1917.	12.8	59
28	Pressure-Stimulated Supercrystal Formation in Nanoparticle Suspensions. Journal of Physical Chemistry Letters, 2018, 9, 4720-4724.	4.6	14
29	Heterogeneous local order in self-assembled nanoparticle films revealed by X-ray cross-correlations. IUCrJ, 2018, 5, 354-360.	2.2	14
30	Dynamics of soft nanoparticle suspensions at hard X-ray FEL sources below the radiation-damage threshold. IUCrJ, 2018, 5, 801-807.	2.2	18
31	Temperature dependence of the hydrogen bond network in trimethylamine N-oxide and guanidine hydrochloride–water solutions. Physical Chemistry Chemical Physics, 2017, 19, 28470-28475.	2.8	7
32	Microsecond Structural Rheology. Journal of Physical Chemistry Letters, 2017, 8, 3581-3585.	4.6	8
33	Diffusive dynamics during the high-to-low density transition in amorphous ice. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8193-8198.	7.1	155
34	A liquid jet setup for x-ray scattering experiments on complex liquids at free-electron laser sources. Review of Scientific Instruments, 2016, 87, 063905.	1.3	9
35	Tuning the Interaction of Nanoparticles from Repulsive to Attractive by Pressure. Journal of Physical Chemistry C, 2016, 120, 19856-19861.	3.1	19
36	Ligand Layer Engineering To Control Stability and Interfacial Properties of Nanoparticles. Langmuir, 2016, 32, 7897-7907.	3.5	31

Felix Lehmkühler

#	Article	IF	CITATIONS
37	Colloidal crystallite suspensions studied by high pressure small angle x-ray scattering. Journal of Chemical Physics, 2016, 144, 084903.	3.0	11
38	Intramolecular structure and energetics in supercooled water down to 255 K. Physical Chemistry Chemical Physics, 2016, 18, 6925-6930.	2.8	18
39	Structure beyond pair correlations: X-ray cross-correlation from colloidal crystals. Journal of Applied Crystallography, 2016, 49, 2046-2052.	4.5	18
40	Sequential Single Shot X-ray Photon Correlation Spectroscopy at the SACLA Free Electron Laser. Scientific Reports, 2015, 5, 17193.	3.3	30
41	Nano-beam X-ray microscopy of dried colloidal films. Soft Matter, 2015, 11, 5465-5472.	2.7	16
42	Correlated heterogeneous dynamics in glass-forming polymers. Physical Review E, 2015, 91, 042309.	2.1	39
43	The Ba 4d–4f giant dipole resonance in complex Ba/Si compounds. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 045102.	1.5	7
44	Single Shot Coherence Properties of the Free-Electron Laser SACLA in the Hard X-ray Regime. Scientific Reports, 2014, 4, 5234.	3.3	69
45	Detecting orientational order in model systems by X-ray cross-correlation methods. Journal of Applied Crystallography, 2014, 47, 1315-1323.	4.5	31
46	Single shot speckle and coherence analysis of the hard X-ray free electron laser LCLS. Optics Express, 2013, 21, 24647.	3.4	37
47	Single Shot Spatial and Temporal Coherence Properties of the SLAC Linac Coherent Light Source in the Hard X-Ray Regime. Physical Review Letters, 2012, 108, 024801.	7.8	115
48	On the Spontaneous Formation of Clathrate Hydrates at Water–Guest Interfaces. Journal of Physical Chemistry C, 2012, 116, 8548-8553.	3.1	24
49	Temperature-Induced Structural Changes of Tetrahydrofuran Clathrate and of the Liquid Water/Tetrahydrofuran Mixture. Journal of Physical Chemistry C, 2011, 115, 21009-21015.	3.1	12
50	Concentration-Induced Wetting Transition in Water–Tetrahydrofuran–Isobutane Systems. Journal of Physical Chemistry C, 2011, 115, 18235-18238.	3.1	3
51	Anomalous Energetics in Tetrahydrofuran Clathrate Hydrate Revealed by X-ray Compton Scattering. Journal of Physical Chemistry Letters, 2010, 1, 2832-2836.	4.6	16
52	A sample cell to study hydrate formation with x-ray scattering. Review of Scientific Instruments, 2009, 80, 026103.	1.3	7
53	Tetrahydrofuran Clathrate Hydrate Formation. Physical Review Letters, 2009, 103, 218301.	7.8	50
54	Standing-wave excited photoemission experiments on Si/MoSi2 multilayer mirrors in the soft x-ray regime: An analytical modeling approach. Journal of Applied Physics, 2009, 106, 124906.	2.5	8

#	Article	IF	CITATIONS
55	The Carbon Dioxideâ^'Water Interface at Conditions of Gas Hydrate Formation. Journal of the American Chemical Society, 2009, 131, 585-589.	13.7	66
56	Determination of microscopic interaction constants by X-ray reflectivity measurements. Fluid Phase Equilibria, 2008, 268, 95-99.	2.5	3
57	The barium giant dipole resonance in barite: a study of soft X-ray absorption edges using hard X-rays. Journal of Analytical Atomic Spectrometry, 2008, 23, 807.	3.0	18