
Robert A Martienssen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7796562/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dicer promotes genome stability via the bromodomain transcriptional co-activator BRD4. Nature Communications, 2022, 13, 1001.	12.8	10
2	Loss of Small-RNA-Directed DNA Methylation in the Plant Cell Cycle Promotes Germline Reprogramming and Somaclonal Variation. Current Biology, 2021, 31, 591-600.e4.	3.9	36
3	Small RNAs guide histone methylation in <i>Arabidopsis</i> embryos. Genes and Development, 2021, 35, 841-846.	5.9	31
4	Regulation of retrotransposition in Arabidopsis. Biochemical Society Transactions, 2021, 49, 2241-2251.	3.4	3
5	Male fertility in Arabidopsis requires active DNA demethylation of genes that control pollen tube function. Nature Communications, 2021, 12, 410.	12.8	41
6	Genome and time-of-day transcriptome of <i>Wolffia australiana</i> link morphological minimization with gene loss and less growth control. Genome Research, 2021, 31, 225-238.	5.5	56
7	Phase separation in plant miRNA processing. Nature Cell Biology, 2021, 23, 5-6.	10.3	4
8	The genetic and epigenetic landscape of the <i>Arabidopsis</i> centromeres. Science, 2021, 374, eabi7489.	12.6	188
9	Targeted reprogramming of H3K27me3 resets epigenetic memory in plant paternal chromatin. Nature Cell Biology, 2020, 22, 621-629.	10.3	149
10	Conserved chromosomal functions of RNA interference. Nature Reviews Genetics, 2020, 21, 311-331.	16.3	62
11	Polymerase IV Plays a Crucial Role in Pollen Development in <i>Capsella</i> . Plant Cell, 2020, 32, 950-966.	6.6	46
12	Arabidopsis DNA Replication Initiates in Intergenic, AT-Rich Open Chromatin. Plant Physiology, 2020, 183, 206-220.	4.8	9
13	<i>Arabidopsis</i> retrotransposon virus-like particles and their regulation by epigenetically activated small RNA. Genome Research, 2020, 30, 576-588.	5.5	33
14	Comparing DNA replication programs reveals large timing shifts at centromeres of endocycling cells in maize roots. PLoS Genetics, 2020, 16, e1008623.	3.5	4
15	RNA-induced initiation of transcriptional silencing (RITS) complex structure and function. RNA Biology, 2019, 16, 1133-1146.	3.1	19
16	Getting in LINE with Replication. Molecular Cell, 2019, 74, 415-417.	9.7	0
17	Small RNA Function in Plants: From Chromatin to the Next Generation. Cold Spring Harbor Symposia on Quantitative Biology, 2019, 84, 133-140.	1.1	0
18	Transposon-derived small RNAs triggered by miR845 mediate genome dosage response in Arabidopsis. Nature Genetics, 2018, 50, 186-192.	21.4	126

#	Article	IF	CITATIONS
19	Genome-Wide Analysis of the Arabidopsis Replication Timing Program. Plant Physiology, 2018, 176, 2166-2185.	4.8	36
20	Nucleosomes and DNA methylation shape meiotic DSB frequency in <i>Arabidopsis thaliana</i> transposons and gene regulatory regions. Genome Research, 2018, 28, 532-546.	5.5	190
21	Epigenetic activation of meiotic recombination near <i>Arabidopsis thaliana</i> centromeres via loss of H3K9me2 and non-CG DNA methylation. Genome Research, 2018, 28, 519-531.	5.5	138
22	Tie-Break: Host and Retrotransposons Play tRNA. Trends in Cell Biology, 2018, 28, 793-806.	7.9	38
23	Live-cell analysis of DNA methylation during sexual reproduction in <i>Arabidopsis</i> reveals context and sex-specific dynamics controlled by noncanonical RdDM. Genes and Development, 2017, 31, 72-83.	5.9	96
24	Natural variation and dosage of the HEI10 meiotic E3 ligase control <i>Arabidopsis</i> crossover recombination. Genes and Development, 2017, 31, 306-317.	5.9	147
25	Transcriptional reprogramming in cellular quiescence. RNA Biology, 2017, 14, 843-853.	3.1	50
26	The Conserved RNA Binding Cyclophilin, Rct1, Regulates Small RNA Biogenesis and Splicing Independent of Heterochromatin Assembly. Cell Reports, 2017, 19, 2477-2489.	6.4	6
27	Genetic and epigenetic variation of transposable elements in Arabidopsis. Current Opinion in Plant Biology, 2017, 36, 135-141.	7.1	79
28	Genomic Analysis of the DNA Replication Timing Program during Mitotic S Phase in Maize (<i>Zea) Tj ETQq0 0 0</i>	rgBT /Ove 6.6	rlock 10 Tf 50
29	New roles for Dicer in the nucleolus and its relevance to cancer. Cell Cycle, 2017, 16, 1643-1653.	2.6	16
30	Barbara McClintock's Final Years as Nobelist and Mentor: A Memoir. Cell, 2017, 170, 1049-1054.	28.9	2
31	The Arabidopsis thaliana mobilome and its impact at the species level. ELife, 2016, 5, .	6.0	271
32	A diffusion model for the coordination of DNA replication in Schizosaccharomyces pombe. Scientific Reports, 2016, 6, 18757.	3.3	15
33	RNA interference is essential for cellular quiescence. Science, 2016, 354, .	12.6	52
34	Dicer in action at replication-transcription collisions. Molecular and Cellular Oncology, 2015, 2, e991224.	0.7	2
35	The histone methyltransferase SDG8 mediates the epigenetic modification of light and carbon responsive genes in plants. Genome Biology, 2015, 16, 79.	8.8	91
36	Argonautes team up to silence transposable elements in <i>Arabidopsis</i> . EMBO Journal, 2015, 34, 579-580.	7.8	2

ROBERT A MARTIENSSEN

#	Article	lF	CITATIONS
37	RNAi and Heterochromatin Assembly. Cold Spring Harbor Perspectives in Biology, 2015, 7, a019323.	5.5	236
38	The expanding world of small RNAs in plants. Nature Reviews Molecular Cell Biology, 2015, 16, 727-741.	37.0	932
39	Loss of Karma transposon methylation underlies theÂmantled somaclonal variant of oil palm. Nature, 2015, 525, 533-537.	27.8	405
40	Differential sRNA Regulation in Leaves and Roots of Sugarcane under Water Depletion. PLoS ONE, 2014, 9, e93822.	2.5	37
41	The oil palm VIRESCENS gene controls fruit colour and encodes a R2R3-MYB. Nature Communications, 2014, 5, 4106.	12.8	67
42	miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis. Nature, 2014, 508, 411-415.	27.8	331
43	Selective Methylation of Histone H3 Variant H3.1 Regulates Heterochromatin Replication. Science, 2014, 343, 1249-1253.	12.6	165
44	Transgenerational Epigenetic Inheritance: Myths and Mechanisms. Cell, 2014, 157, 95-109.	28.9	1,393
45	Dicer Promotes Transcription Termination at Sites of Replication Stress to Maintain Genome Stability. Cell, 2014, 159, 572-583.	28.9	102
46	RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nature Reviews Genetics, 2013, 14, 100-112.	16.3	871
47	Establishing epigenetic variation during genome reprogramming. RNA Biology, 2013, 10, 490-494.	3.1	23
48	RNA-directed DNA methylation regulates parental genomic imprinting at several loci in <i>Arabidopsis</i> . Development (Cambridge), 2013, 140, 2953-2960.	2.5	80
49	The maize methylome influences mRNA splice sites and reveals widespread paramutation-like switches guided by small RNA. Genome Research, 2013, 23, 1651-1662.	5.5	260
50	Oil palm genome sequence reveals divergence of interfertile species in Old and New worlds. Nature, 2013, 500, 335-339.	27.8	468
51	Reprogramming of DNA Methylation in Pollen Guides Epigenetic Inheritance via Small RNA. Cell, 2012, 151, 194-205.	28.9	506
52	Lsd1 and Lsd2 Control Programmed Replication Fork Pauses and Imprinting in Fission Yeast. Cell Reports, 2012, 2, 1513-1520.	6.4	33
53	FACS-based purification of Arabidopsis microspores, sperm cells and vegetative nuclei. Plant Methods, 2012, 8, 44.	4.3	76

54 Origins of Novel Phenotypic Variation in Polyploids. , 2012, , 57-76.

#	Article	IF	CITATIONS
55	RNA Interference and Heterochromatin Assembly. Cold Spring Harbor Perspectives in Biology, 2011, 3, a003731-a003731.	5.5	62
56	Genome reprogramming and small interfering RNA in the Arabidopsis germline. Current Opinion in Genetics and Development, 2011, 21, 134-139.	3.3	30
57	Multiple roles for small RNAs during plant reproduction. Current Opinion in Plant Biology, 2011, 14, 588-593.	7.1	60
58	RNAi promotes heterochromatic silencing through replication-coupled release of RNA Pol II. Nature, 2011, 479, 135-138.	27.8	142
59	H3K9me-Independent Gene Silencing in Fission Yeast Heterochromatin by Clr5 and Histone Deacetylases. PLoS Genetics, 2011, 7, e1001268.	3.5	28
60	Heterochromatin, small RNA and postâ€fertilization dysgenesis in allopolyploid and interploid hybrids of <i>Arabidopsis</i> . New Phytologist, 2010, 186, 46-53.	7.3	86
61	Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature, 2010, 464, 628-632.	27.8	574
62	Small RNA Makes Its Move. Science, 2010, 328, 834-835.	12.6	22
63	Arabidopsis thaliana Chromosome 4 Replicates in Two Phases That Correlate with Chromatin State. PLoS Genetics, 2010, 6, e1000982.	3.5	65
64	Germline Reprogramming of Heterochromatin in Plants. Cold Spring Harbor Symposia on Quantitative Biology, 2010, 75, 269-274.	1.1	6
65	Epigenetic Reprogramming and Small RNA Silencing of Transposable Elements in Pollen. Cell, 2009, 136, 461-472.	28.9	908
66	The B73 Maize Genome: Complexity, Diversity, and Dynamics. Science, 2009, 326, 1112-1115.	12.6	3,612
67	Endogenous TasiRNAs Mediate Non-Cell Autonomous Effects on Gene Regulation in Arabidopsis thaliana. PLoS ONE, 2009, 4, e5980.	2.5	92
68	RNAi, heterochromatin and the cell cycle. Trends in Genetics, 2008, 24, 511-517.	6.7	68
69	Nucleolar Dominance and DNA Methylation Directed by Small Interfering RNA. Molecular Cell, 2008, 32, 753-754.	9.7	7
70	Epigenetic Inheritance and Reprogramming in Plants and Fission Yeast. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 265-271.	1.1	31
71	Epigenomic Consequences of Immortalized Plant Cell Suspension Culture. PLoS Biology, 2008, 6, e302.	5.6	179
72	Arabidopsis TFL2/LHP1 Specifically Associates with Genes Marked by Trimethylation of Histone H3 Lysine 27. PLoS Genetics, 2007, 3, e86.	3.5	537

ROBERT A MARTIENSSEN

#	Article	IF	CITATIONS
73	Noncoding RNAs and Gene Silencing. Cell, 2007, 128, 763-776.	28.9	372
74	S. pombe LSD1 Homologs Regulate Heterochromatin Propagation and Euchromatic Gene Transcription. Molecular Cell, 2007, 26, 89-101.	9.7	102
75	Transposable elements and the epigenetic regulation of the genome. Nature Reviews Genetics, 2007, 8, 272-285.	16.3	1,709
76	Epigenetic Natural Variation in Arabidopsis thaliana. PLoS Biology, 2007, 5, e174.	5.6	400
77	Ribonuclease Activity of Dis3 Is Required for Mitotic Progression and Provides a Possible Link between Heterochromatin and Kinetochore Function. PLoS ONE, 2007, 2, e317.	2.5	75
78	Slicing and Spreading of Heterochromatic Silencing by RNA Interference. Cold Spring Harbor Symposia on Quantitative Biology, 2006, 71, 497-503.	1.1	15
79	Specification of Leaf Polarity in Arabidopsis via the trans-Acting siRNA Pathway. Current Biology, 2006, 16, 933-938.	3.9	340
80	MicroRNA-Targeted and Small Interfering RNA–Mediated mRNA Degradation Is Regulated by Argonaute, Dicer, and RNA-Dependent RNA Polymerase in Arabidopsis. Plant Cell, 2006, 18, 1559-1574.	6.6	141
81	Argonaute Slicing Is Required for Heterochromatic Silencing and Spreading. Science, 2006, 313, 1134-1137.	12.6	182
82	Genomic changes in synthetic Arabidopsis polyploids. Plant Journal, 2005, 41, 221-230.	5.7	320
83	RNA interference and heterochromatin in the fission yeast Schizosaccharomyces pombe. Trends in Genetics, 2005, 21, 450-456.	6.7	129
84	Epigenomic mapping in Arabidopsis using tiling microarrays. Chromosome Research, 2005, 13, 299-308.	2.2	46
85	Differential Regulation of Strand-Specific Transcripts from Arabidopsis Centromeric Satellite Repeats. PLoS Genetics, 2005, 1, e79.	3.5	162
86	Global Effects on Gene Expression in Fission Yeast by Silencing and RNA Interference Machineries. Molecular and Cellular Biology, 2005, 25, 590-601.	2.3	132
87	RNA Polymerase II Is Required for RNAi-Dependent Heterochromatin Assembly. Science, 2005, 309, 467-469.	12.6	258
88	The role of ARGONAUTE1 (AGO1) in meristem formation and identity. Developmental Biology, 2005, 280, 504-517.	2.0	148
89	Global expression changes resulting from loss of telomeric DNA in fission yeast. Genome Biology, 2004, 6, R1.	9.6	35
90	RNA interference is required for normal centromere function in fission yeast. Chromosome Research, 2003, 11, 137-146.	2.2	284

ROBERT A MARTIENSSEN

#	Article	IF	CITATIONS
91	Understanding mechanisms of novel gene expression in polyploids. Trends in Genetics, 2003, 19, 141-147.	6.7	812
92	The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nature Structural and Molecular Biology, 2003, 10, 1026-1032.	8.2	487
93	Maintenance of heterochromatin by RNA interference of tandem repeats. Nature Genetics, 2003, 35, 213-214.	21.4	188
94	Genes and Transposons Are Differentially Methylated in Plants, but Not in Mammals. Genome Research, 2003, 13, 2658-2664.	5.5	122
95	Regulation of Heterochromatic Silencing and Histone H3 Lysine-9 Methylation by RNAi. Science, 2002, 297, 1833-1837.	12.6	1,889
96	Dependence of Heterochromatic Histone H3 Methylation Patterns on the <i>Arabidopsis</i> Gene <i>DDM1</i> . Science, 2002, 297, 1871-1873.	12.6	417
97	DNA Methylation and Epigenetic Inheritance in Plants and Filamentous Fungi. Science, 2001, 293, 1070-1074.	12.6	456
98	Robertson's <i>Mutator</i> transposons in <i>A. thaliana</i> are regulated by the chromatin-remodeling gene <i>Decrease in DNA Methylation</i> (<i>DDM1</i>). Genes and Development, 2001, 15, 591-602.	5.9	294
99	Differential methylation of genes and retrotransposons facilitates shotgun sequencing of the maize genome. Nature Genetics, 1999, 23, 305-308.	21.4	237
100	Genetic Definition and Sequence Analysis of <i>Arabidopsis</i> Centromeres. Science, 1999, 286, 2468-2474.	12.6	417
101	Chromosomal imprinting in plants. Current Opinion in Genetics and Development, 1998, 8, 240-244.	3.3	51
102	Arabidopsis thaliana DNA methylation mutants. Science, 1993, 260, 1926-1928.	12.6	668