Phuong H Nguyen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7796074/publications.pdf

Version: 2024-02-01

172457 128289 3,738 61 29 60 citations h-index g-index papers 61 61 61 2820 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Computer Simulations Aimed at Exploring Protein Aggregation and Dissociation. Methods in Molecular Biology, 2022, 2340, 175-196.	0.9	1
2	Elastic moduli of normal and cancer cell membranes revealed by molecular dynamics simulations. Physical Chemistry Chemical Physics, 2022, 24, 6225-6237.	2.8	10
3	Dynamics of Amyloid Formation from Simplified Representation to Atomistic Simulations. Methods in Molecular Biology, 2022, 2405, 95-113.	0.9	1
4	Effect of Cholesterol Molecules on Al̂21-42 Wild-Type and Mutants Trimers. Molecules, 2022, 27, 1395.	3.8	13
5	Small Oligomers of Al 2 42 Protein in the Bulk Solution with AlphaFold2. ACS Chemical Neuroscience, 2022, 13, 711-713.	3. 5	14
6	Molecular Dynamics Simulations of the Tau R3–R4 Domain Monomer in the Bulk Solution and at the Surface of a Lipid Bilayer Model. Journal of Physical Chemistry B, 2022, 126, 3431-3438.	2.6	11
7	Molecular Dynamics Simulations of the Tau Amyloid Fibril Core Dimer at the Surface of a Lipid Bilayer Model: I. In Alzheimer's Disease. Journal of Physical Chemistry B, 2022, 126, 4849-4856.	2.6	10
8	Nonequilibrium molecular dynamics simulations of infrared laser-induced dissociation of a tetrameric AÎ ² 42 Î ² -barrel in a neuronal membrane model. Chemistry and Physics of Lipids, 2021, 234, 105030.	3.2	2
9	Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chemical Reviews, 2021, 121, 2545-2647.	47.7	406
10	Cholesterol Molecules Alter the Energy Landscape of Small Al̂21–42 Oligomers. Journal of Physical Chemistry B, 2021, 125, 2299-2307.	2.6	12
11	Impact of the Rat R5G, Y10F, and H13R Mutations on Tetrameric AÎ ² 42 Î ² -Barrel in a Lipid Bilayer Membrane Model. Journal of Physical Chemistry B, 2021, 125, 3105-3113.	2.6	3
12	Molecular Mechanism of Ultrasound-Induced Structural Defects in Liposomes: A Nonequilibrium Molecular Dynamics Simulation Study. Langmuir, 2021, 37, 7945-7954.	3 . 5	5
13	Aggregation of disease-related peptides. Progress in Molecular Biology and Translational Science, 2020, 170, 435-460.	1.7	19
14	Molecular mechanism of ultrasound interaction with a blood brain barrier model. Journal of Chemical Physics, 2020, 153, 045104.	3.0	15
15	Infrared Laser-Induced Amyloid Fibril Dissociation: A Joint Experimental/Theoretical Study on the GNNQQNY Peptide. Journal of Physical Chemistry B, 2020, 124, 6266-6277.	2.6	16
16	Tau R3–R4 Domain Dimer of the Wild Type and Phosphorylated Ser356 Sequences. I. In Solution by Atomistic Simulations. Journal of Physical Chemistry B, 2020, 124, 2975-2983.	2.6	30
17	Structures of the intrinsically disordered $\hat{Al^2}$, tau and \hat{l}_{\pm} -synuclein proteins in aqueous solution from computer simulations. Biophysical Chemistry, 2020, 264, 106421.	2.8	85
18	Impact of A2T and D23N Mutations on Tetrameric A \hat{I}^2 42 Barrel within a Dipalmitoylphosphatidylcholine Lipid Bilayer Membrane by Replica Exchange Molecular Dynamics. Journal of Physical Chemistry B, 2020, 124, 1175-1182.	2.6	18

#	Article	IF	CITATIONS
19	Stability of AÎ 2 11â \in "40 Trimers with Parallel and Antiparallel Î 2 -Sheet Organizations in a Membrane-Mimicking Environment by Replica Exchange Molecular Dynamics Simulation. Journal of Physical Chemistry B, 2020, 124, 617-626.	2.6	21
20	Tetrameric AÎ ² 40 and AÎ ² 42 Î ² -Barrel Structures by Extensive Atomistic Simulations. II. In Aqueous Solution. Journal of Physical Chemistry B, 2019, 123, 6750-6756.	2.6	31
21	Nonequilibrium atomistic molecular dynamics simulation of tubular nanomotor propelled by bubble propulsion. Journal of Chemical Physics, 2019, 151, 024103.	3.0	4
22	Interaction mechanism between the focused ultrasound and lipid membrane at the molecular level. Journal of Chemical Physics, 2019, 150, 215101.	3.0	11
23	Tetrameric AÎ 2 40 and AÎ 2 42 Î 2 -Barrel Structures by Extensive Atomistic Simulations. I. In a Bilayer Mimicking a Neuronal Membrane. Journal of Physical Chemistry B, 2019, 123, 3643-3648.	2.6	42
24	Amyloid-β(29–42) Dimeric Conformations in Membranes Rich in Omega-3 and Omega-6 Polyunsaturated Fatty Acids. Journal of Physical Chemistry B, 2019, 123, 2687-2696.	2.6	14
25	Effects of All-Atom Molecular Mechanics Force Fields on Amyloid Peptide Assembly: The Case of Al² _{16–22} Dimer. Journal of Chemical Theory and Computation, 2019, 15, 1440-1452.	5.3	102
26	Molecular Mechanism of the Cell Membrane Pore Formation Induced by Bubble Stable Cavitation. Journal of Physical Chemistry B, 2019, 123, 71-78.	2.6	25
27	Rayleigh-Plesset equation of the bubble stable cavitation in water: A nonequilibrium all-atom molecular dynamics simulation study. Journal of Chemical Physics, 2018, 148, .	3.0	22
28	Multi-scale simulations of biological systems using the OPEP coarse-grained model. Biochemical and Biophysical Research Communications, 2018, 498, 296-304.	2.1	26
29	Breaking down cellulose fibrils with a mid-infrared laser. Cellulose, 2018, 25, 5553-5568.	4.9	8
30	Conformational Ensembles of the Wild-Type and S8C Aβ1–42 Dimers. Journal of Physical Chemistry B, 2017, 121, 2434-2442.	2.6	31
31	Why Is Research on Amyloid-β Failing to Give New Drugs for Alzheimer's Disease?. ACS Chemical Neuroscience, 2017, 8, 1435-1437.	3.5	201
32	High-Resolution Structures of the Amyloid-β 1–42 Dimers from the Comparison of Four Atomistic Force Fields. Journal of Physical Chemistry B, 2017, 121, 5977-5987.	2.6	120
33	AÎ ² 41 Aggregates More Like AÎ ² 40 than Like AÎ ² 42: In Silico and in Vitro Study. Journal of Physical Chemistry B, 2016, 120, 7371-7379.	2.6	13
34	Lattice model for amyloid peptides: OPEP force field parametrization and applications to the nucleus size of Alzheimer's peptides. Journal of Chemical Physics, 2016, 144, 205103.	3.0	21
35	Nonequilibrium all-atom molecular dynamics simulation of the bubble cavitation and application to dissociate amyloid fibrils. Journal of Chemical Physics, 2016, 145, 174113.	3.0	30
36	Impact of the A2V Mutation on the Heterozygous and Homozygous Aβ1–40 Dimer Structures from Atomistic Simulations. ACS Chemical Neuroscience, 2016, 7, 823-832.	3.5	51

#	Article	IF	Citations
37	Dimerization Mechanism of Alzheimer A \hat{I}^2 (sub>40 Peptides: The High Content of Intrapeptide-Stabilized Conformations in A2V and A2T Heterozygous Dimers Retards Amyloid Fibril Formation. Journal of Physical Chemistry B, 2016, 120, 12111-12126.	2.6	38
38	Picosecond infrared laser-induced all-atom nonequilibrium molecular dynamics simulation of dissociation of viruses. Physical Chemistry Chemical Physics, 2016, 18, 11951-11958.	2.8	9
39	Picosecond dissociation of amyloid fibrils with infrared laser: A nonequilibrium simulation study. Journal of Chemical Physics, 2015, 143, 155101.	3.0	41
40	Folding Atomistic Proteins in Explicit Solvent Using Simulated Tempering. Journal of Physical Chemistry B, 2015, 119, 6941-6951.	2.6	38
41	Combined Experimental and Simulation Studies Suggest a Revised Mode of Action of the Antiâ€Alzheimer Disease Drug NQâ€√rp. Chemistry - A European Journal, 2015, 21, 12657-12666.	3.3	20
42	Structures of the Alzheimer's Wild-Type Aβ1-40 Dimer from Atomistic Simulations. Journal of Physical Chemistry B, 2015, 119, 10478-10487.	2.6	81
43	Amyloid β Protein and Alzheimer's Disease: When Computer Simulations Complement Experimental Studies. Chemical Reviews, 2015, 115, 3518-3563.	47.7	530
44	Picosecond melting of peptide nanotubes using an infrared laser: a nonequilibrium simulation study. Physical Chemistry Chemical Physics, 2015, 17, 27275-27280.	2.8	14
45	Communication: Multiple atomistic force fields in a single enhanced sampling simulation. Journal of Chemical Physics, 2015, 143, 021101.	3.0	9
46	Understanding Amyloid Fibril Nucleation and A \hat{l}^2 Oligomer/Drug Interactions from Computer Simulations. Accounts of Chemical Research, 2014, 47, 603-611.	15.6	118
47	Familial Alzheimer A2 V Mutation Reduces the Intrinsic Disorder and Completely Changes the Free Energy Landscape of the Aβ1–28 Monomer. Journal of Physical Chemistry B, 2014, 118, 501-510.	2.6	65
48	Effect of the English Familial Disease Mutation (H6R) on the Monomers and Dimers of AÎ ² 40 and AÎ ² 42. ACS Chemical Neuroscience, 2014, 5, 646-657.	3.5	49
49	Importance of the Ion-Pair Interactions in the OPEP Coarse-Grained Force Field: Parametrization and Validation. Journal of Chemical Theory and Computation, 2013, 9, 4574-4584.	5.3	38
50	Effect of the Tottori Familial Disease Mutation (D7N) on the Monomers and Dimers of A 2 ₄₀ and A 2 ₄₂ . ACS Chemical Neuroscience, 2013, 4, 1446-1457.	3.5	83
51	Conformational Ensemble and Polymorphism of the All-Atom Alzheimer's Aβ _{37–42} Amyloid Peptide Oligomers. Journal of Physical Chemistry B, 2013, 117, 5831-5840.	2.6	30
52	Communication: Simulated tempering with fast on-the-fly weight determination. Journal of Chemical Physics, 2013, 138, 061102.	3.0	43
53	Structures of Aβ17–42 Trimers in Isolation and with Five Small-Molecule Drugs Using a Hierarchical Computational Procedure. Journal of Physical Chemistry B, 2012, 116, 8412-8422.	2.6	95
54	Effects of all-atom force fields on amyloid oligomerization: replica exchange molecular dynamics simulations of the Aβ16–22 dimer and trimer. Physical Chemistry Chemical Physics, 2011, 13, 9778.	2.8	162

#	Article	IF	CITATION
55	Nonequilibrium molecular dynamics simulation of the energy transport through a peptide helix. Journal of Chemical Physics, 2010, 132, 025102.	3.0	66
56	Molecular dynamics simulation of cooling: Heat transfer from a photoexcited peptide to the solvent. Journal of Chemical Physics, 2009, 131, 184503.	3.0	41
57	Energy Transport in Peptide Helices: A Comparison between High- and Low-Energy Excitations. Journal of Physical Chemistry B, 2008, 112, 9091-9099.	2.6	92
58	Monomer adds to preformed structured oligomers of Abeta-peptides by a two-stage dock-lock mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 111-116.	7.1	344
59	Energy transport in peptide helices. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12749-12754.	7.1	179
60	Photoinduced Conformational Dynamics of a Photoswitchable Peptide: A Nonequilibrium Molecular Dynamics Simulation Study. Biophysical Journal, 2006, 91, 1224-1234.	0.5	49
61	Nonequilibrium molecular dynamics simulation of a photoswitchable peptide. Chemical Physics, 2006, 323, 36-44.	1.9	60