Murad Ghanim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/779485/publications.pdf

Version: 2024-02-01

86 papers 6,844 citations

45 h-index 80 g-index

91 all docs 91 docs citations

91 times ranked 3955 citing authors

#	Article	IF	CITATIONS
1	Immunity and other defenses in pea aphids, Acyrthosiphon pisum. Genome Biology, 2010, 11, R21.	9.6	389
2	Fitness costs associated with insecticide resistance. Pest Management Science, 2012, 68, 1431-1437.	3.4	389
3	The Transmission Efficiency of <i>Tomato Yellow Leaf Curl Virus</i> by the Whitefly <i>Bemisia tabaci</i> Is Correlated with the Presence of a Specific Symbiotic Bacterium Species. Journal of Virology, 2010, 84, 9310-9317.	3.4	277
4	Identification and Localization of a <i>Rickettsia</i> sp. in <i>Bemisia tabaci</i> (Homoptera:) Tj ETQq0 0 0 rgB	Γ /Qverlocl	k 10 Tf 50 622 273
5	The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance. BMC Biology, 2016, 14, 110.	3.8	265
6	Rickettsia influences thermotolerance in the whitefly Bemisia tabaci B biotype. Insect Science, 2011, 18, 57-66.	3.0	230
7	Inherited intracellular ecosystem: symbiotic bacteria share bacteriocytes in whiteflies. FASEB Journal, 2008, 22, 2591-2599.	0.5	229
8	Endosymbiont metacommunities, mtDNA diversity and the evolution of the Bemisia tabaci (Hemiptera:) Tj ETQq	0 0 ₃ 0 ₉ rgBT	/Overlock 10
9	A GroEL Homologue from Endosymbiotic Bacteria of the WhiteflyBemisia tabacils Implicated in the Circulative Transmission of Tomato Yellow Leaf Curl Virus. Virology, 1999, 256, 75-84.	2.4	191
10	The circulative pathway of begomoviruses in the whitefly vector Bemisia tabaci - insights from studies with Tomato yellow leaf curl virus. Annals of Applied Biology, 2002, 140, 215-231.	2.5	178
11	The presence of <i>Rickettsia</i> is associated with increased susceptibility of <i>Bemisia tabaci</i> (Homoptera: Aleyrodidae) to insecticides. Pest Management Science, 2008, 64, 789-792.	3.4	175
12	Insecticide resistance and its management in Bemisia tabaci species. Journal of Pest Science, 2020, 93, 893-910.	3.7	166
13	Evidence for Transovarial Transmission of Tomato Yellow Leaf Curl Virus by Its Vector, the WhiteflyBemisia tabaci. Virology, 1998, 240, 295-303.	2.4	164
14	Co-infection and localization of secondary symbionts in two whitefly species. BMC Microbiology, 2010, 10, 142.	3.3	149
15	Rate of Tomato yellow leaf curl virus Translocation in the Circulative Transmission Pathway of its Vector, the Whitefly Bemisia tabaci. Phytopathology, 2001, 91, 188-196.	2.2	139
16	The GroEL Protein of the Whitefly Bemisia tabaci Interacts with the Coat Protein of Transmissible and Nontransmissible Begomoviruses in the Yeast Two-Hybrid System. Virology, 2000, 276, 404-416.	2.4	133
17	Persistent, circulative transmission of begomoviruses by whitefly vectors. Current Opinion in Virology, 2015, 15, 1-8.	5.4	133
18	The Incredible Journey of Begomoviruses in Their Whitefly Vector. Viruses, 2017, 9, 273.	3.3	133

#	Article	IF	Citations
19	Circulative, "Nonpropagative―Virus Transmission. Advances in Virus Research, 2014, 89, 141-199.	2.1	132
20	Global genetic diversity and geographical distribution of Bemisia tabaci and its bacterial endosymbionts. PLoS ONE, 2019, 14, e0213946.	2.5	131
21	Implication of Bemisia tabaci Heat Shock Protein 70 in Begomovirus-Whitefly Interactions. Journal of Virology, 2012, 86, 13241-13252.	3.4	120
22	Tissue-specific gene silencing by RNA interference in the whitefly Bemisia tabaci (Gennadius). Insect Biochemistry and Molecular Biology, 2007, 37, 732-738.	2.7	118
23	Thermotolerance and gene expression following heat stress in the whitefly Bemisia tabaci B and Q biotypes. Insect Biochemistry and Molecular Biology, 2009, 39, 668-676.	2.7	110
24	Implication of the Bacterial Endosymbiont Rickettsia spp. in Interactions of the Whitefly Bemisia tabaci with Tomato yellow leaf curl virus. Journal of Virology, 2014, 88, 5652-5660.	3.4	109
25	Susceptibility to insecticides in the Q biotype of <i>Bemisia tabaci</i> is correlated with bacterial symbiont densities. Pest Management Science, 2009, 65, 939-942.	3.4	108
26	Whiteflies: Vectors, and victims (?), of geminiviruses. Advances in Virus Research, 2001, 57, 291-322.	2.1	98
27	A review of the mechanisms and components that determine the transmission efficiency of Tomato yellow leaf curl virus (Geminiviridae; Begomovirus) by its whitefly vector. Virus Research, 2014, 186, 47-54.	2.2	96
28	Silencing the ecdysone synthesis and signaling pathway genes disrupts nymphal development in the whitefly. Insect Biochemistry and Molecular Biology, 2013, 43, 740-746.	2.7	93
29	Parasitization by the wasp Eretmocerus mundus induces transcription of genes related to immune response and symbiotic bacteria proliferation in the whitefly Bemisia tabaci. BMC Genomics, 2008, 9, 342.	2.8	90
30	Genome sequencing of the sweetpotato whitefly Bemisia tabaci MED/Q. GigaScience, 2017, 6, 1-7.	6.4	90
31	Replication of Tomato Yellow Leaf Curl Virus in Its Whitefly Vector, Bemisia tabaci. Journal of Virology, 2015, 89, 9791-9803.	3.4	89
32	Specific Cells in the Primary Salivary Glands of the Whitefly Bemisia tabaci Control Retention and Transmission of Begomoviruses. Journal of Virology, 2014, 88, 13460-13468.	3.4	85
33	Digestive, salivary, and reproductive organs of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) B type. Journal of Morphology, 2001, 248, 22-40.	1.2	80
34	Whitefly (Bemisia tabaci) genome project: analysis of sequenced clones from egg, instar, and adult (viruliferous and non-viruliferous) cDNA libraries. BMC Genomics, 2006, 7, 79.	2.8	79
35	Morphological abnormalities and cell death in the Asian citrus psyllid (Diaphorina citri) midgut associated with Candidatus Liberibacter asiaticus. Scientific Reports, 2016, 6, 33418.	3.3	76
36	First report of <i>Bemisia tabaci</i> Mediterranean (Q biotype) species in Brazil. Pest Management Science, 2015, 71, 501-504.	3.4	72

#	Article	IF	Citations
37	Diversity and Localization of Bacterial Endosymbionts from Whitefly Species Collected in Brazil. PLoS ONE, 2014, 9, e108363.	2.5	71
38	Transovarial Transmission of Rickettsia spp. and Organ-Specific Infection of the Whitefly Bemisia tabaci. Applied and Environmental Microbiology, 2012, 78, 5565-5574.	3.1	64
39	Distribution and phylogenetics of whiteflies and their endosymbiont relationships after the Mediterranean species invasion in Brazil. Scientific Reports, 2018, 8, 14589.	3.3	64
40	A simple, rapid and inexpensive method for localization of Tomato yellow leaf curl virus and Potato leafroll virus in plant and insect vectors. Journal of Virological Methods, 2009, 159, 311-314.	2.1	63
41	Transmission of a New Polerovirus Infecting Pepper by the Whitefly <i>Bemisia tabaci</i> Virology, 2019, 93, .	3.4	54
42	Plant-Mediated Silencing of the Whitefly Bemisia tabaci Cyclophilin B and Heat Shock Protein 70 Impairs Insect Development and Virus Transmission. Frontiers in Physiology, 2019, 10, 557.	2.8	54
43	Implication of the Whitefly Bemisia tabaci Cyclophilin B Protein in the Transmission of Tomato yellow leaf curl virus. Frontiers in Plant Science, 2016, 7, 1702.	3.6	53
44	â€~Candidatus Liberibacter asiaticus' Accumulates inside Endoplasmic Reticulum Associated Vacuoles in the Gut Cells of Diaphorina citri. Scientific Reports, 2017, 7, 16945.	3.3	52
45	Back to Basics: Are Begomoviruses Whitefly Pathogens?. Journal of Integrative Agriculture, 2012, 11, 225-234.	3.5	48
46	Highâ€level of resistance to spinosad, emamectin benzoate and carbosulfan in populations of <i>Thrips tabaci</i> collected in Israel. Pest Management Science, 2013, 69, 274-277.	3.4	40
47	RNA Interference in Insect Vectors for Plant Viruses. Viruses, 2016, 8, 329.	3.3	40
48	The Whitefly Bemisia tabaci Knottin-1 Gene Is Implicated in Regulating the Quantity of Tomato Yellow Leaf Curl Virus Ingested and Transmitted by the Insect. Viruses, 2016, 8, 205.	3.3	35
49	The Role of Bacterial Chaperones in the Circulative Transmission of Plant Viruses by Insect Vectors. Viruses, 2013, 5, 1516-1535.	3.3	34
50	Fitness costs associated with infections of secondary endosymbionts in the cassava whitefly species Bemisia tabaci. Journal of Pest Science, 2018, 91, 17-28.	3.7	34
51	Is there a role for symbiotic bacteria in plant virus transmission by insects?. Current Opinion in Insect Science, 2015, 8, 69-78.	4.4	33
52	Tomato yellow leaf curl virus confronts host degradation by sheltering in small/midsized protein aggregates. Virus Research, 2016, 213, 304-313.	2.2	31
53	Genome Sequences of the Primary Endosymbiont "Candidatus Portiera aleyrodidarum―in the Whitefly Bemisia tabaci B and Q Biotypes. Journal of Bacteriology, 2012, 194, 6678-6679.	2.2	29
54	Location of Symbionts in the Whitefly Bemisia tabaci Affects Their Densities during Host Development and Environmental Stress. PLoS ONE, 2014, 9, e91802.	2.5	26

#	Article	IF	CITATIONS
55	New invasion of Bemisia tabaci Mediterranean species in Brazil associated to ornamental plants. Phytoparasitica, 2017, 45, 517-525.	1.2	25
56	Degradation mechanisms of the <i>Tomato yellow leaf curl virus</i> coat protein following inoculation of tomato plants by the whitefly <i>Bemisia tabaci</i> Pest Management Science, 2014, 70, 1632-1639.	3.4	24
57	Factors Determining Transmission of Persistent Viruses by Bemisia tabaci and Emergence of New Virus–Vector Relationships. Viruses, 2021, 13, 1808.	3.3	24
58	Biological activity of natural phytoecdysteroids from <i>Ajuga iva</i> against the sweetpotato whitefly <i>Bemisia tabaci</i> and the persea mite <i>Oligonychus perseae</i> Pest Management Science, 2011, 67, 1493-1498.	3.4	22
59	Sequencing and comparison of the <i>Rickettsia</i> genomes from the whitefly <i>Bemisia tabaci</i> Middle East Asia Minor I. Insect Science, 2016, 23, 531-542.	3.0	22
60	Fluorescence in situ Hybridizations (FISH) for the Localization of Viruses and Endosymbiotic Bacteria in Plant and Insect Tissues. Journal of Visualized Experiments, 2014, , e51030.	0.3	21
61	Population Dynamics of Whiteflies and Associated Viruses in South America: Research Progress and Perspectives. Insects, 2020, 11, 847.	2.2	20
62	Apoptosis in a Whitefly Vector Activated by a Begomovirus Enhances Viral Transmission. MSystems, 2020, 5, .	3.8	19
63	An Intranuclear Sodalis-Like Symbiont and Spiroplasma Coinfect the Carrot Psyllid, Bactericera trigonica (Hemiptera, Psylloidea). Microorganisms, 2020, 8, 692.	3.6	19
64	A Transcriptomics Approach Reveals Putative Interaction of Candidatus Liberibacter Solanacearum with the Endoplasmic Reticulum of Its Psyllid Vector. Insects, 2019, 10, 279.	2.2	18
65	Evidence for Gene Flow between Two Sympatric Mealybug Species (Insecta; Coccoidea;) Tj ETQq1 1 0.784314	rgBT_/Over	lock 10 Tf 50
66	Combined infection with Tomato yellow leaf curl virus and Rickettsia influences fecundity, attraction to infected plants and expression of immunity-related genes in the whitefly Bemisia tabaci. Journal of General Virology, 2019, 100, 721-731.	2.9	17
67	Diversity and Phylogenetic Analyses of Bacterial Symbionts in Three Whitefly Species from Southeast Europe. Insects, 2017, 8, 113.	2.2	16
68	Bemisia tabaci – Tomato Yellow Leaf Curl Virus Interaction Causing Worldwide Epidemics. , 2011, , 51-67.		16
69	Wolbachia Has Two Different Localization Patterns in Whitefly Bemisia tabaci Asiall7 Species. PLoS ONE, 2016, 11, e0162558.	2.5	14
70	Intraspecies variation of <i>Metarhizium brunneum</i> against the green peach aphid, <scp><i>Myzus persicae</i></scp> , provides insight into the complexity of disease progression. Pest Management Science, 2021, 77, 2557-2567.	3.4	12
71	Whitefly endosymbionts: IPM opportunity or tilting at windmills?. Journal of Pest Science, 2022, 95, 543-566.	3.7	11
72	A proteomic approach reveals possible molecular mechanisms and roles for endosymbiotic bacteria in begomovirus transmission by whiteflies. GigaScience, 2020, 9, .	6.4	10

#	Article	IF	Citations
73	The Actin Cytoskeleton Mediates Transmission of " <i>Candidatus</i> Liberibacter solanacearum―by the Carrot Psyllid. Applied and Environmental Microbiology, 2021, 87, .	3.1	10
74	Phytoecdysteroid and Clerodane Content in Three Wild <i>Ajuga</i> Species in Israel. ACS Omega, 2019, 4, 2369-2376.	3.5	9
75	Unravelling the Pathogenesis and Molecular Interactions of Liberibacter Phytopathogens with Their Psyllid Vectors. Agronomy, 2020, 10, 1132.	3.0	9
76	Detection of <i>Bemisia tabaci</i> Mediterranean cryptic species on soybean in São Paulo and ParanÃ; States (Brazil) and interaction of cowpea mild mottle virus with whiteflies. Plant Pathology, 2021, 70, 1508-1520.	2.4	9
77	Transmission parameters of pepper whitefly-borne vein yellows virus (PeWBVYV) by Bemisia tabaci and identification of an insect protein with a putative role in polerovirus transmission. Virology, 2021, 560, 54-65.	2.4	7
78	A De Novo Transcriptomics Approach Reveals Genes Involved in Thrips Tabaci Resistance to Spinosad. Insects, 2021, 12, 67.	2.2	7
79	Interactions of Liberibacter Species with Their Psyllid Vectors: Molecular, Biological and Behavioural Mechanisms. International Journal of Molecular Sciences, 2022, 23, 4029.	4.1	7
80	Interaction of Liberibacter Solanacearum with Host Psyllid Vitellogenin and Its Association with Autophagy. Microbiology Spectrum, 2022, 10 , .	3.0	7
81	Activity of Ajuga iva Extracts Against the African Cotton Leafworm Spodoptera littoralis. Insects, 2020, 11, 726.	2.2	6
82	Competitive Interactions Between Whitefly and Aphid Transmitted Poleroviruses within the Plant Host and the Insect Vectors. Phytopathology, 2020, 111, 1042-1050.	2.2	6
83	Interactions Between the Whitefly Bemisia tabaci and Begomoviruses: Biological and Genomic Perspectives., 2016,, 181-200.		5
84	Complete Genome Sequence of a Putative Densovirus Infecting the Carrot Psyllid Bactericera trigonica. Microbiology Resource Announcements, 2019, 8, .	0.6	2
85	Factors controlling the fate of tomato yellow leaf curl virus (TYLCV) in its vector, the whitefly vector Bemisia tabaci., 2021,, 231-266.		0
86	Replication and transovarial transmission of tomato yellow leaf curl virus in its whitefly vector: myth or reality?., 2022,, 239-251.		0