Carlos P Garay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7794760/publications.pdf

Version: 2024-02-01

92 papers 4,995 citations

94433 37 h-index 70 g-index

96 all docs 96 docs citations

96 times ranked 3645 citing authors

#	Article	IF	CITATIONS
1	Precision Measurement of the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mmultiscripts><mml:mi>Be</mml:mi><mml:mprescripts></mml:mprescripts><mml:none></mml:none><mml:mn>7</mml:mn></mml:mmultiscripts></mml:math> Solar Neutrino Interaction Rate in Borexino. Physical Review Letters, 2011, 107, 141302.	7.8	441
2	First year performance of the IceCube neutrino telescope. Astroparticle Physics, 2006, 26, 155-173.	4.3	379
3	Present and future bounds on non-standard neutrino interactions. Journal of High Energy Physics, 2003, 2003, 011-011.	4.7	266
4	A New Generation of Standard Solar Models. Astrophysical Journal, 2017, 835, 202.	4.5	239
5	Final results of Borexino Phase-I on low-energy solar neutrino spectroscopy. Physical Review D, 2014, 89, .	4.7	204
6	SOLAR MODELS WITH ACCRETION. I. APPLICATION TO THE SOLAR ABUNDANCE PROBLEM. Astrophysical Journal, 2011, 743, 24.	4. 5	199
7	Solar neutrinos as probes of neutrino–matter interactions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2004, 594, 347-354.	4.1	173
8	Global analysis of solar neutrino oscillations including SNO CC measurement. Journal of High Energy Physics, 2001, 2001, 014-014.	4.7	162
9	Global three-neutrino oscillation analysis of neutrino data. Physical Review D, 2001, 63, .	4.7	157
10	Solar models and solar neutrino oscillations. New Journal of Physics, 2004, 6, 63-63.	2.9	155
11	Solar Neutrinos Before and After Neutrino 2004. Journal of High Energy Physics, 2004, 2004, 016-016.	4.7	131
12	Status of the MSW solutions of the solar neutrino problem. Nuclear Physics B, 2000, 573, 3-26.	2.5	121
13	Before and After: How has the SNO NC measurement changed things?. Journal of High Energy Physics, 2002, 2002, 054-054.	4.7	112
14	Solar Neutrinos Before and After KamLAND. Journal of High Energy Physics, 2003, 2003, 009-009.	4.7	109
15	A road map to solar neutrino fluxes, neutrino oscillation parameters, and tests for new physics. Journal of High Energy Physics, 2003, 2003, 004-004.	4.7	92
16	Can we measure the neutrino mass hierarchy in the sky?. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 035-035.	5.4	84
17	Absence of a day–night asymmetry in the 7Be solar neutrino rate in Borexino. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2012, 707, 22-26.	4.1	83
18	Three-neutrino mixing after the first results from K2K and KamLAND. Physical Review D, 2003, 68, .	4.7	71

#	Article	IF	CITATIONS
19	Axion searches with microwave filters: the RADES project. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 040-040.	5.4	71
20	Updated determination of the solar neutrino fluxes from solar neutrino data. Journal of High Energy Physics, 2016, 2016, 1.	4.7	69
21	Non-linear evolution of the cosmic neutrino background. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 019-019.	5.4	66
22	Mass varying neutrinos in the Sun. Nuclear Physics B, 2005, 719, 219-233.	2.5	65
23	Four-neutrino oscillation solutions of the solar neutrino problem. Physical Review D, 2000, 62, .	4.7	64
24	The simplest resonant spin-flavour solution to the solar neutrino problem. Nuclear Physics B, 2001, 595, 360-380.	2.5	64
25	Detection of atmospheric muon neutrinos with the IceCube 9-string detector. Physical Review D, 2007, 76, .	4.7	57
26	Looking for axion dark matter in dwarf spheroidal galaxies. Physical Review D, 2018, 98, .	4.7	57
27	What can we learn from neutrinoless double beta decay experiments?. Physical Review D, 2004, 70, .	4.7	55
28	Strong Bayesian evidence for the normal neutrino hierarchy. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 029-029.	5.4	53
29	Five years of searches for point sources of astrophysical neutrinos with the AMANDA-II neutrino telescope. Physical Review D, 2007, 75, .	4.7	52
30	Solar and atmospheric four-neutrino oscillations. Physical Review D, 2001, 64, .	4.7	49
31	Time Series Analysis of the Microbiota of Children Suffering From Acute Infectious Diarrhea and Their Recovery After Treatment. Frontiers in Microbiology, 2018, 9, 1230.	3.5	49
32	Robust signatures of solar neutrino oscillation solutions. Journal of High Energy Physics, 2002, 2002, 007-007.	4.7	43
33	The Search for Muon Neutrinos from Northern Hemisphere Gammaâ€Ray Bursts with AMANDA. Astrophysical Journal, 2008, 674, 357-370.	4.5	43
34	Using the standard solar model to constrain solar composition and nuclear reaction <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>S</mml:mi></mml:math> factors. Physical Review D, 2013, 87, .	4.7	43
35	Health and Disease Imprinted in the Time Variability of the Human Microbiome. MSystems, 2017, 2, .	3.8	43
36	Beam and experiments: summary. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2000, 451, 102-122.	1.6	41

#	Article	IF	Citations
37	Solving the solar neutrino puzzle with KamLAND and solar data. Physical Review D, 2001, 64, .	4.7	37
38	On the effect of \hat{l}_1 3 on the determination of solar oscillation parameters at KamLAND. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2002, 527, 199-205.	4.1	37
39	Global and unified analysis of solar neutrino data. Nuclear Physics, Section B, Proceedings Supplements, 2001, 91, 80-88.	0.4	34
40	Does the Sun Shine byppor CNO Fusion Reactions?. Physical Review Letters, 2003, 90, 131301.	7.8	34
41	Solar Neutrinos. Advances in High Energy Physics, 2013, 2013, 1-34.	1.1	34
42	Hiding neutrino mass in modified gravity cosmologies. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 043-043.	5.4	34
43	A non-resonant dark-side solution to the solar neutrino problem. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2001, 521, 299-307.	4.1	33
44	Neutrinoless double beta decay in light of SNO salt data. Physical Review D, 2004, 69, .	4.7	33
45	Energy-independent new physics in the flavour ratios of high-energy astrophysical neutrinos. Journal of High Energy Physics, 2010, 2010, 1.	4.7	33
46	Search for Neutrinoâ€induced Cascades from Gammaâ€Ray Bursts with AMANDA. Astrophysical Journal, 2007, 664, 397-410.	4.5	32
47	Phenomenology of maximal and near-maximal lepton mixing. Physical Review D, 2000, 63, .	4.7	31
48	Neutrino halos in clusters of galaxies and their weak lensing signature. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 027-027.	5.4	27
49	Scalable haloscopes for axion dark matter detection in the 30 \hat{l} /4eV range with RADES. Journal of High Energy Physics, 2020, 2020, 1.	4.7	27
50	Zenith angle distributions at Super-Kamiokande and SNO and the solution of the solar neutrino problem. Physical Review D, 2001, 63, .	4.7	26
51	If sterile neutrinos exist, how can one determine the total solar neutrino fluxes?. Physical Review C, 2002, 66, .	2.9	26
52	On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes. Astroparticle Physics, 2006, 26, 282-300.	4.3	25
53	Limits on the muon flux from neutralino annihilations at the center of the Earth with AMANDA. Astroparticle Physics, 2006, 26, 129-139.	4.3	22
54	Implications of solar wind measurements for solar models and composition. Monthly Notices of the Royal Astronomical Society, 2016, 463, 2-9.	4.4	22

#	Article	IF	CITATIONS
55	Probing new physics by comparing solar and KamLAND data. Physical Review D, 2005, 71, .	4.7	19
56	Standards not that standard. Journal of Biological Engineering, 2015, 9, 17.	4.7	19
57	Size of the dark side of the solar neutrino parameter space. Physical Review D, 2000, 62, .	4.7	18
58	Limits on the High-Energy Gamma and Neutrino Fluxes from the SGR 1806-20 Giant Flare of 27 December 2004 with the AMANDA-II Detector. Physical Review Letters, 2006, 97, 221101.	7.8	18
59	Unveiling Bacterial Interactions through Multidimensional Scaling and Dynamics Modeling. Scientific Reports, 2015, 5, 18396.	3.3	17
60	Four-neutrino oscillations at SNO. Physical Review D, 2001, 63, .	4.7	16
61	Seasonal dependence in the solar neutrino flux. Physical Review D, 1999, 60, .	4.7	15
62	Cosmological data analysis off(R) gravity models. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 004-004.	5.4	15
63	Cosmic-ray muon flux at Canfranc Underground Laboratory. European Physical Journal C, 2019, 79, 1.	3.9	15
64	Neutrino footprint in large scale structure. Physics of the Dark Universe, 2017, 15, 31-34.	4.9	11
65	Radon Mitigation Applications at the Laboratorio Subterráneo de Canfranc (LSC). Universe, 2022, 8, 112.	2.5	10
66	Is it possible to explore Peccei–Quinn axions from frequency-dependence radiation dimming?. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2011, 703, 232-236.	4.1	9
67	Design of New Resonant Haloscopes in the Search for the Dark Matter Axion: A Review of the First Steps in the RADES Collaboration. Universe, 2022, 8, 5.	2.5	9
68	Solar Neutrino Observables Sensitive to Matter Effects. Advances in High Energy Physics, 2012, 2012, 1-15.	1.1	7
69	Status of the Gribov–Pontecorvo solution to the solar neutrinoÂproblem. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2001, 517, 149-157.	4.1	6
70	From AMANDA to IceCube. Physics of Atomic Nuclei, 2006, 69, 1899-1907.	0.4	6
71	Extreme scenarios of new physics in the UHE astrophysical neutrino flavour ratios. Journal of Physics: Conference Series, 2009, 171, 012048.	0.4	6
72	Cancelling out systematic uncertainties. Monthly Notices of the Royal Astronomical Society, 2012, 419, 1040-1050.	4.4	6

#	Article	IF	CITATIONS
73	Discovery potential of xenon-based neutrinoless double beta decay experiments in light of small angular scale CMB observations. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 043-043.	5.4	6
74	Neutrino masses and mixing one decade from now. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2000, 451, 157-166.	1.6	5
75	Solar and atmospheric neutrino oscillations. Nuclear Physics, Section B, Proceedings Supplements, 2001, 95, 100-107.	0.4	5
76	Metatranscriptomic dynamics after Verticillium dahliae infection and root damage in Olea europaea. BMC Plant Biology, 2020, 20, 79.	3.6	5
77	Dark energy from the motions of neutrinos. Physics of the Dark Universe, 2018, 20, 72-77.	4.9	4
78	Solar neutrino problem accounting for self-consistent magnetohydrodynamics solution for solar magnetic fields. Nuclear Physics, Section B, Proceedings Supplements, 2001, 95, 123-129.	0.4	3
79	A New Approach to Nuclear Form Factors for Direct Dark Matter Searches. Nuclear and Particle Physics Proceedings, 2016, 273-275, 414-418.	0.5	3
80	Status of the MSW solutions to the solar neutrino problem. Nuclear Physics, Section B, Proceedings Supplements, 2000, 87, 204-207.	0.4	2
81	Four-neutrino oscillations at SNO. Nuclear Physics, Section B, Proceedings Supplements, 2001, 95, 150-154.	0.4	2
82	Photo-z optimization for measurements of the BAO radial scale. Journal of Cosmology and Astroparticle Physics, 2009, 2009, 008-008.	5.4	2
83	Four-neutrino oscillations and the solar neutrino problem. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 472, 364-370.	1.6	1
84	NEUTRINO ASTRONOMY AND COSMIC RAYS AT THE SOUTH POLE: LATEST RESULTS FROM AMANDA AND PERSPECTIVES FOR ICECUBE. International Journal of Modern Physics A, 2005, 20, 6919-6923.	1.5	1
85	The Galactic 511 keV Line and the Intergalactic Positron Density. Physics Procedia, 2015, 61, 796-801.	1.2	1
86	Seasonal dependence in the solar neutrino flux. Nuclear Physics, Section B, Proceedings Supplements, 2000, 81, 89-94.	0.4	0
87	Analysis of the solar neutrino data. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 503, 182-186.	1.6	0
88	Terra Cognita I: The lowest (known) mass squared splitting. Nuclear Physics, Section B, Proceedings Supplements, 2005, 145, 355-360.	0.4	0
89	High precision 7Be solar neutrinos measurement and day night effect obtained with Borexino. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 692, 258-261.	1.6	0
90	Editorial: The Biogeochemistry, Biophysics, Radiobiology, and Technical Challenges of Deep Subsurface Research. Frontiers in Earth Science, 2021, 9, .	1.8	0

#	Article	IF	CITATIONS
91	NEUTRINO OSCILLATIONS AS PROBES OF NEW PHYSICS. , 2005, , .		O
92	Present and future of solar neutrino physics. , 2014, , .		0