
Michael Granvogl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7794617/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The malting parameters: steeping, germination, withering, and kilning temperature and aeration rate as possibilities for styrene mitigation in wheat beer. European Food Research and Technology, 2022, 248, 69-84.	3.3	1
2	Effect of Wort Boiling on Volatiles Formation and Sensory Properties of Mead. Molecules, 2022, 27, 710.	3.8	7
3	Methods to detect MCPD and glycidyl esters in complex food matrices. , 2022, , 195-219.		2
4	Characterization of Thermally Induced Flavor Compounds from the Glucosinolate Progoitrin in Different Matrices via GC-TOF-MS. Journal of Agricultural and Food Chemistry, 2022, 70, 1232-1240.	5.2	7
5	Analysis of acrylamide in vegetable chips after derivatization with 2-mercaptobenzoic acid by liquid chromatography–mass spectrometry. European Food Research and Technology, 2022, 248, 937-946.	3.3	10
6	The sensomics approach: A useful tool to unravel the genuine aroma blueprint of foods and aroma changes during food processing. Comprehensive Analytical Chemistry, 2022, , 41-68.	1.3	7
7	Characterization of Key Aroma-Active Compounds in Rough and Moderate Fire <i>Rougui</i> Wuyi Rock Tea (<i>Camellia sinensis</i>) by Sensory-Directed Flavor Analysis and Elucidation of the Influences of Roasting on Aroma. Journal of Agricultural and Food Chemistry, 2022, 70, 267-278.	5.2	47
8	Exploration of surfactin production by newly isolated Bacillus and Lysinibacillus strains from food-related sources. Letters in Applied Microbiology, 2022, 75, 378-387.	2.2	9
9	Flavor of tea (<i>Camellia sinensis</i>): A review on odorants and analytical techniques. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 3867-3909.	11.7	70
10	Analysis of mono-, di-, triacylglycerols, and fatty acids in food emulsifiers by high-performance liquid chromatography–mass spectrometry. European Food Research and Technology, 2021, 247, 1023-1034.	3.3	2
11	Proteomic Analyses of 3-Monochloropropanediol 1-Monooleate and 1-Monostearate Induced Testicular Toxicity in a 90 Day Sprague-Dawley Rats' Study. Journal of Agricultural and Food Chemistry, 2021, 69, 4542-4549.	5.2	4
12	Flavor of rapeseed oil: An overview of odorants, analytical techniques, and impact of treatment. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 3983-4018.	11.7	33
13	Occurrence of 3-monochloropropane-1,2-diol (3-MCPD) esters and glycidyl esters in infant formulas from Germany. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2021, 38, 1656-1671.	2.3	11
14	The effect of emulsifier by-products and storage conditions on the techno-functional properties of model aerosol whipping cream. International Dairy Journal, 2021, 119, 104989.	3.0	2
15	Investigations into the Ability to Reduce Cinnamic Acid as Undesired Precursor of Toxicologically Relevant Styrene in Wort by Different Barley to Wheat Ratios (Grain Bill) during Mashing. Journal of Agricultural and Food Chemistry, 2021, 69, 9443-9450.	5.2	2
16	Differences of characteristic aroma compounds in <i>Rougui</i> tea leaves with different roasting temperatures analyzed by switchable GC-O-MS and GC × GC-O-MS and sensory evaluation. Food and Function, 2021, 12, 4797-4807.	4.6	45
17	Characterization of the Key Odorants Causing the Musty and Fusty/Muddy Sediment Off-Flavors in Olive Oils. Journal of Agricultural and Food Chemistry, 2021, 69, 14878-14892.	5.2	11
18	Studies on the odorant concentrations and their time dependencies during dryâ€hopping of alcoholâ€free beer. Flavour and Fragrance Journal, 2020, 35, 703-712.	2.6	1

MICHAEL GRANVOGL

#	Article	IF	CITATIONS
19	Trends in food science & technology an overview of mead production and the physicochemical, toxicological, and sensory characteristics of mead with a special emphasis on flavor. Trends in Food Science and Technology, 2020, 106, 402-416.	15.1	17
20	Dry-Hopping to Modify the Aroma of Alcohol-Free Beer on a Molecular Level—Loss and Transfer of Odor-Active Compounds. Journal of Agricultural and Food Chemistry, 2020, 68, 8602-8612.	5.2	17
21	Nodular panniculitis in a cat with high alpha tocopherol concentration in serum. Veterinary Medicine and Science, 2020, 6, 980-984.	1.6	1
22	The Role of Endogenous Enzymes during Malting of Barley and Wheat Varieties in the Mitigation of Styrene in Wheat Beer. Journal of Agricultural and Food Chemistry, 2020, 68, 13888-13896.	5.2	6
23	Studies on the Impact of Malting and Mashing on the Free, Soluble Ester-Bound, and Insoluble Ester-Bound Forms of Desired and Undesired Phenolic Acids Aiming at Styrene Mitigation during Wheat Beer Brewing. Journal of Agricultural and Food Chemistry, 2020, 68, 12421-12432.	5.2	12
24	Hop-induced formation of ethyl esters in dry-hopped beer. Food Production Processing and Nutrition, 2020, 2, .	3.5	9
25	Determination of mono- and diacylglycerols from E 471 food emulsifiers in aerosol whipping cream by high-performance thin-layer chromatography–fluorescence detection. Analytical and Bioanalytical Chemistry, 2020, 412, 7441-7451.	3.7	5
26	Key Odor-Active Compounds in Raw Green and Red <i>Toona sinensis</i> (A. Juss.) Roem. and Their Changes during Blanching. Journal of Agricultural and Food Chemistry, 2020, 68, 7169-7183.	5.2	18
27	Elucidation of the Impact of Different Drying Methods on the Key Odorants of <i>Toona sinensis</i> (A. Juss.) Roem. Using the Sensomics Approach. Journal of Agricultural and Food Chemistry, 2020, 68, 7697-7709.	5.2	14
28	Ninety-Day Nephrotoxicity Evaluation of 3-MCPD 1-Monooleate and 1-Monostearate Exposures in Male Sprague Dawley Rats Using Proteomic Analysis. Journal of Agricultural and Food Chemistry, 2020, 68, 2765-2772.	5.2	10
29	Characterization of the Key Odorants in High-Quality Extra Virgin Olive Oils and Certified Off-Flavor Oils to Elucidate Aroma Compounds Causing a Rancid Off-Flavor. Journal of Agricultural and Food Chemistry, 2020, 68, 5927-5937.	5.2	48
30	Changing the Landscape: An Introduction to the Agricultural and Food Chemistry Technical Program at the 258th American Chemical Society National Meeting in San Diego. Journal of Agricultural and Food Chemistry, 2020, 68, 12769-12772.	5.2	0
31	Formation of Desired Smoky Key Odorants in Wheat Beer: A Comparison with the Undesired Toxicologically Relevant Styrene. ACS Symposium Series, 2019, , 93-105.	0.5	2
32	Characterization of the Key Aroma Compounds in Rum Made from Sugar Cane Juice by Means of the Sensomics Approach. ACS Symposium Series, 2019, , 291-309.	0.5	1
33	Characterization of Key Aroma Compounds in Pellets of Different Hop Varieties (<i>Humulus) Tj ETQq1 1 (67, 12044-12053.</i>	0.784314 rgBT 5.2	/Overlock 10 T 23
34	Characterization of the Key Aroma Compounds in Two Commercial Dark Chocolates with High Cocoa Contents by Means of the Sensomics Approach. Journal of Agricultural and Food Chemistry, 2019, 67, 5827-5837.	5.2	35
35	Characterization of the Key Aroma Compounds in Two Differently Dried <i>Toona sinensis</i> (A. Juss.) Roem. by Means of the Molecular Sensory Science Concept. Journal of Agricultural and Food Chemistry, 2019, 67, 9885-9894.	5.2	32
36	Analysis and Occurrence of MCPD and Glycidyl Esters in Infant Formulas and Other Complex Food Matrices. ACS Symposium Series, 2019, , 67-90.	0.5	6

MICHAEL GRANVOGL

#	Article	IF	CITATIONS
37	Unraveling of the Fishy Off-Flavor in Steam-Treated Rapeseed Oil Using the Sensomics Concept. Journal of Agricultural and Food Chemistry, 2019, 67, 1484-1494.	5.2	14
38	Thermally Induced Generation of Desirable Aroma-Active Compounds from the Glucosinolate Sinigrin. Journal of Agricultural and Food Chemistry, 2018, 66, 2485-2490.	5.2	18
39	An investigation of presence of 2- and 3-monochloropropanediol fatty acid esters in Canadian human milk samples. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2018, 35, 1881-1889.	2.3	12
40	Reduction of toxicologically relevant styrene in wheat beer using specially produced wheat and barley malts. European Food Research and Technology, 2017, 243, 1711-1718.	3.3	3
41	Characterization of the Key Aroma Compounds in Heat-Processed Licorice (Succus Liquiritiae) by Means of Molecular Sensory Science. Journal of Agricultural and Food Chemistry, 2017, 65, 132-138.	5.2	16
42	Aroma-Active Compounds in Bartlett Pears and Their Changes during the Manufacturing Process of Bartlett Pear Brandy. Journal of Agricultural and Food Chemistry, 2016, 64, 9515-9522.	5.2	19
43	Characterization of Key Aroma-Active Compounds in Raw and Roasted White Mustard Seeds (<i>Sinapis) Tj ETC</i>	0q110.78	4314 rgBT /O
44	Quantitation of Amines in Cereal Products: Thermal Processes Are Able to Generate "Biogenic―Amines. Cereal Chemistry, 2016, 93, 333-338.	2.2	0
45	Characterisation of the key aroma compounds in commercial native cold-pressed rapeseed oil by means of the Sensomics approach. European Food Research and Technology, 2016, 242, 1565-1575.	3.3	33
46	Elucidation of Thermally Induced Changes in Key Odorants of White Mustard Seeds (<i>Sinapis) Tj ETQq0 0 0 rg Agricultural and Food Chemistry, 2016, 64, 8179-8190.</i>	gBT /Overlo 5.2	ock 10 Tf 50 3 41
47	Generation of Desired Aroma-Active as Well as Undesired Toxicologically Relevant Compounds during Deep-Frying of Potatoes with Different Edible Vegetable Fats and Oils. Journal of Agricultural and Food Chemistry, 2016, 64, 9107-9115.	5.2	55
48	Characterization of the Key Aroma Compounds in Raw Licorice (<i>Glycyrrhiza glabra</i> L.) by Means of Molecular Sensory Science. Journal of Agricultural and Food Chemistry, 2016, 64, 8388-8396.	5.2	44
49	Characterization of Key Odorants Causing a Fusty/Musty Off-Flavor in Native Cold-Pressed Rapeseed Oil by Means of the Sensomics Approach. Journal of Agricultural and Food Chemistry, 2016, 64, 8168-8178.	5.2	48
50	Influence of the Production Process on the Key Aroma Compounds of Rum: From Molasses to the Spirit. Journal of Agricultural and Food Chemistry, 2016, 64, 9041-9053.	5.2	49
51	Quantitation and Enantiomeric Ratios of Aroma Compounds Formed by an Ehrlich Degradation ofl-Isoleucine in Fermented Foods. Journal of Agricultural and Food Chemistry, 2016, 64, 646-652.	5.2	30
52	Studies on the Simultaneous Formation of Aroma-Active and Toxicologically Relevant Vinyl Aromatics from Free Phenolic Acids during Wheat Beer Brewing. Journal of Agricultural and Food Chemistry, 2016, 64, 2325-2332.	5.2	35
53	Characterization of the Key Aroma Compounds in Two Commercial Rums by Means of the Sensomics Approach. Journal of Agricultural and Food Chemistry, 2016, 64, 637-645.	5.2	60
54	Development of stable isotope dilution assays for the quantitation of free phenolic acids in wheat and barley and malts produced thereof. European Food Research and Technology, 2015, 241, 637-645.	3.3	7

MICHAEL GRANVOGL

#	Article	IF	CITATIONS
55	Characterization of the Key Aroma Compounds in Two Bavarian Wheat Beers by Means of the Sensomics Approach. Journal of Agricultural and Food Chemistry, 2013, 61, 11303-11311.	5.2	91
56	Characterization of the Key Aroma Compounds in Bartlett Pear Brandies by Means of the Sensomics Concept. Journal of Agricultural and Food Chemistry, 2013, 61, 9583-9593.	5.2	65
57	New Insights into the Formation of Aroma-Active Strecker Aldehydes from 3-Oxazolines as Transient Intermediates. Journal of Agricultural and Food Chemistry, 2012, 60, 6312-6322.	5.2	56
58	Comparative Studies on the Generation of Acrolein as Well as of Aroma-Active Compounds during Deep-Frying with Different Edible Vegetable Fats and Oils. ACS Symposium Series, 2012, , 129-136.	0.5	2
59	Quantitation of Key Peanut Aroma Compounds in Raw Peanuts and Pan-Roasted Peanut Meal. Aroma Reconstitution and Comparison with Commercial Peanut Products. Journal of Agricultural and Food Chemistry, 2010, 58, 11018-11026.	5.2	85
60	Re-investigation on odour thresholds of key food aroma compounds and development of an aroma language based on odour qualities of defined aqueous odorant solutions. European Food Research and Technology, 2008, 228, 265-273.	3.3	519
61	Comparison of the Key Aroma Compounds in Organically Grown, Raw West-African Peanuts (Arachis) Tj ETQq1 1 Chemistry, 2008, 56, 10237-10243.	0.784314 5.2	rgBT /Overl 45
62	Development of a Stable Isotope Dilution Assay for the Quantitation of Glycidamide and Its Application to Foods and Model Systems. Journal of Agricultural and Food Chemistry, 2008, 56, 6087-6092.	5.2	23
63	Influence of Sulfur Fertilization on the Amounts of Free Amino Acids in Wheat. Correlation with Baking Properties as well as with 3-Aminopropionamide and Acrylamide Generation during Baking. Journal of Agricultural and Food Chemistry, 2007, 55, 4271-4277.	5.2	89
64	Quantification of 3-aminopropionamide in cocoa, coffee and cereal products. European Food Research and Technology, 2007, 225, 857-863.	3.3	48
65	Formation of Amines and Aldehydes from Parent Amino Acids during Thermal Processing of Cocoa and Model Systems:Â New Insights into Pathways of the Strecker Reaction. Journal of Agricultural and Food Chemistry, 2006, 54, 1730-1739.	5.2	102
66	Thermally Generated 3-Aminopropionamide as a Transient Intermediate in the Formation of Acrylamide. Journal of Agricultural and Food Chemistry, 2006, 54, 5933-5938.	5.2	160
67	New Aspects on the Formation and Analysis of Acrylamide. , 2005, 561, 205-222.		32
68	Quantitation of 3-Aminopropionamide in PotatoesA Minor but Potent Precursor in Acrylamide Formation. Journal of Agricultural and Food Chemistry, 2004, 52, 4751-4757.	5.2	166
69	Differentiation between Aroma-Related Bioactives in Native Cold-Pressed Rapeseed Oils with Desired Sensory Attributes and with a Fusty/Musty Off-Flavor Using Multivariate Methods. Journal of Food Bioactives: an Official Scientific Publication of the International Society of Nutraceuticals and Functional Foods (ISNFF), 0, 8, .	2.4	7

5