Alexander Y Rudensky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7793768/publications.pdf

Version: 2024-02-01

221 papers

69,037 citations

113 h-index 220 g-index

231 all docs

231 docs citations

times ranked

231

56836 citing authors

#	Article	IF	CITATIONS
1	Cytotoxic granzyme C–expressing ILC1s contribute to antitumor immunity and neonatal autoimmunity. Science Immunology, 2022, 7, eabi8642.	11.9	47
2	Hierarchical regulation of the resting and activated T cell epigenome by major transcription factor families. Nature Immunology, 2022, 23, 122-134.	14.5	18
3	CXCR4+ Treg cells control serum IgM levels and natural IgM autoantibody production by B-1 cells in the bone marrow. Journal of Experimental Medicine, 2022, 219, .	8.5	8
4	Genetic tracing reveals transcription factor Foxp3-dependent and Foxp3-independent functionality of peripherally induced Treg cells. Immunity, 2022, 55, 1173-1184.e7.	14.3	33
5	Gasdermin D–mediated release of IL-33 from senescent hepatic stellate cells promotes obesity-associated hepatocellular carcinoma. Science Immunology, 2022, 7, .	11.9	43
6	Conceiving the Inconceivable: The Function of Aire in Immune Tolerance to Peripheral Tissue-Restricted Antigens in the Thymus. Journal of Immunology, 2021, 206, 245-247.	0.8	3
7	Glycolysis fuels phosphoinositide 3-kinase signaling to bolster T cell immunity. Science, 2021, 371, 405-410.	12.6	188
8	A distal Foxp3 enhancer enables interleukin-2 dependent thymic Treg cell lineage commitment for robust immune tolerance. Immunity, 2021, 54, 931-946.e11.	14.3	46
9	Immunotherapy breaches low-sugar dieting of tumor Treg cells. Cell Metabolism, 2021, 33, 851-852.	16.2	2
10	Inflammatory adaptation in barrier tissues. Cell, 2021, 184, 3361-3375.	28.9	42
11	Assembly of a spatial circuit of T-bet–expressing T and B lymphocytes is required for antiviral humoral immunity. Science Immunology, 2021, 6, .	11.9	21
12	A local regulatory TÂcell feedback circuit maintains immune homeostasis by pruning self-activated TÂcells. Cell, 2021, 184, 3981-3997.e22.	28.9	66
13	A unified atlas of CD8 TÂcell dysfunctional states in cancer and infection. Molecular Cell, 2021, 81, 2477-2493.e10.	9.7	57
14	Expression of Foxp3 by T follicular helper cells in end-stage germinal centers. Science, 2021, 373, .	12.6	63
15	Regulatory T cells function in established systemic inflammation and reverse fatal autoimmunity. Nature Immunology, 2021, 22, 1163-1174.	14.5	33
16	T reg cell–intrinsic requirements for ST2 signaling in health and neuroinflammation. Journal of Experimental Medicine, 2021, 218, .	8.5	33
17	Nuclear receptor LXR \hat{l}^2 controls fitness and functionality of activated T cells. Journal of Experimental Medicine, 2021, 218, .	8.5	18
18	Roles of Regulatory T Cells in Tissue Pathophysiology and Metabolism. Cell Metabolism, 2020, 31, 18-25.	16.2	90

#	Article	IF	CITATIONS
19	The Transcription Factor Foxp3 Shapes Regulatory T Cell Identity by Tuning the Activity of trans-Acting Intermediaries. Immunity, 2020, 53, 971-984.e5.	14.3	60
20	FXR mediates T cell-intrinsic responses to reduced feeding during infection. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33446-33454.	7.1	19
21	Foxp3: a genetic foundation for regulatory T cell differentiation and function. Nature Immunology, 2020, 21, 708-709.	14.5	19
22	Regulatory T Cells in Cancer. Annual Review of Cancer Biology, 2020, 4, 459-477.	4.5	84
23	Enforcing T cell innocence. Science, 2020, 367, 247-248.	12.6	0
24	Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature, 2020, 581, 475-479.	27.8	440
25	In Situ Maturation and Tissue Adaptation of Type 2 Innate Lymphoid Cell Progenitors. Immunity, 2020, 53, 775-792.e9.	14.3	88
26	Immigration in science. Journal of Experimental Medicine, 2020, 217, .	8.5	0
27	Immigration in science. Journal of Experimental Medicine, 2020, 217, .	8.5	2
28	Therapeutic use of regulatory T cells for graftâ€versusâ€host disease. British Journal of Haematology, 2019, 187, 25-38.	2.5	41
29	Mouse Watch: A Cautionary Tale. Immunity, 2019, 51, 10-12.	14.3	8
30	Editorial overview: The value of commitment in the lymphocyte world. Current Opinion in Immunology, 2019, 58, v-vii.	5.5	0
31	Transcriptional Basis of Mouse and Human Dendritic Cell Heterogeneity. Cell, 2019, 179, 846-863.e24.	28.9	359
32	IL-2 production by self-reactive CD4 thymocytes scales regulatory T cell generation in the thymus. Journal of Experimental Medicine, 2019, 216, 2466-2478.	8.5	62
33	A Mutation in the Transcription Factor Foxp3 Drives T Helper 2 Effector Function in Regulatory T Cells. Immunity, 2019, 50, 362-377.e6.	14.3	72
34	FoxP3 and Ezh2 regulate Tfr cell suppressive function and transcriptional program. Journal of Experimental Medicine, 2019, 216, 605-620.	8.5	56
35	Natural Genetic Variation Reveals Key Features of Epigenetic and Transcriptional Memory in Virus-Specific CD8ÂT Cells. Immunity, 2019, 50, 1202-1217.e7.	14.3	51
36	Distinct Requirements of CHD4 during B Cell Development and Antibody Response. Cell Reports, 2019, 27, 1472-1486.e5.	6.4	11

#	Article	IF	CITATIONS
37	Nemo-like Kinase Drives Foxp3 Stability and Is Critical for Maintenance of Immune Tolerance by Regulatory T Cells. Cell Reports, 2019, 26, 3600-3612.e6.	6.4	35
38	Transcription factor Foxp1 regulates Foxp3 chromatin binding and coordinates regulatory T cell function. Nature Immunology, 2019, 20, 232-242.	14.5	69
39	Robust Antitumor Responses Result from Local Chemotherapy and CTLA-4 Blockade. Cancer Immunology Research, 2018, 6, 189-200.	3.4	102
40	Comparative analysis of murine Tâ€cell receptor repertoires. Immunology, 2018, 153, 133-144.	4.4	72
41	CD49b defines functionally mature Treg cells that survey skin and vascular tissues. Journal of Experimental Medicine, 2018, 215, 2796-2814.	8.5	37
42	The effect of cellular context on miR-155-mediated gene regulation in four major immune cell types. Nature Immunology, 2018, 19, 1137-1145.	14.5	102
43	Extrathymically Generated Regulatory T Cells Establish a Niche for Intestinal Border-Dwelling Bacteria and Affect Physiologic Metabolite Balance. Immunity, 2018, 48, 1245-1257.e9.	14.3	100
44	ZFP36 RNA-binding proteins restrain T cell activation and anti-viral immunity. ELife, 2018, 7, .	6.0	103
45	Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment. Cell, 2018, 174, 1293-1308.e36.	28.9	1,361
46	Differential cell-intrinsic regulations of germinal center B and T cells by miR-146a and miR-146b. Nature Communications, 2018, 9, 2757.	12.8	57
47	Synthesis, stabilization, and characterization of the MR1 ligand precursor 5-amino-6-D-ribitylaminouracil (5-A-RU). PLoS ONE, 2018, 13, e0191837.	2.5	31
48	Suppression of lethal autoimmunity by regulatory T cells with a single TCR specificity. Journal of Experimental Medicine, 2017, 214, 609-622.	8.5	34
49	Stability and function of regulatory T cells expressing the transcription factor T-bet. Nature, 2017, 546, 421-425.	27.8	287
50	The aryl hydrocarbon receptor controls cell-fate decisions in B cells. Journal of Experimental Medicine, 2017, 214, 197-208.	8.5	83
51	Antigen receptor repertoire profiling from RNA-seq data. Nature Biotechnology, 2017, 35, 908-911.	17. 5	243
52	An NF-κB-microRNA regulatory network tunes macrophage inflammatory responses. Nature Communications, 2017, 8, 851.	12.8	191
53	A nonimmune function of T cells in promoting lung tumor progression. Journal of Experimental Medicine, 2017, 214, 3565-3575.	8.5	33
54	BRCT-domain protein BRIT1 influences class switch recombination. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8354-8359.	7.1	5

#	Article	IF	CITATIONS
55	Basophils Promote Tumor Rejection via Chemotaxis and Infiltration of CD8+ T Cells. Cancer Research, 2017, 77, 291-302.	0.9	68
56	T cell receptor signalling in the control of regulatory T cell differentiation and function. Nature Reviews Immunology, 2016, 16, 220-233.	22.7	388
57	An essential role for the IL-2 receptor in Treg cell function. Nature Immunology, 2016, 17, 1322-1333.	14.5	618
58	Memory of Inflammation in Regulatory T Cells. Cell, 2016, 166, 977-990.	28.9	148
59	Regulatory T Cells: Differentiation and Function. Cancer Immunology Research, 2016, 4, 721-725.	3.4	198
60	Regulatory T Cells Exhibit Distinct Features in Human Breast Cancer. Immunity, 2016, 45, 1122-1134.	14.3	507
61	miR-23â^1/427â^1/424 clusters control effector T cell differentiation and function. Journal of Experimental Medicine, 2016, 213, 235-249.	8.5	124
62	Hallmarks of Tissue-Resident Lymphocytes. Cell, 2016, 164, 1198-1211.	28.9	312
63	The Cell-Intrinsic Circadian Clock Is Dispensable for Lymphocyte Differentiation and Function. Cell Reports, 2015, 11, 1339-1349.	6.4	77
64	A Single miRNA-mRNA Interaction Affects the Immune Response in a Context- and Cell-Type-Specific Manner. Immunity, 2015, 43, 52-64.	14.3	159
65	Reigning in regulatory T-cell function. Nature Biotechnology, 2015, 33, 718-719.	17.5	1
66	DNA methylation secures CD4+ and CD8+ T cell lineage borders. Nature Immunology, 2015, 16, 681-683.	14.5	7
67	Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science, 2015, 350, 981-985.	12.6	661
68	A Distinct Function of Regulatory T Cells in Tissue Protection. Cell, 2015, 162, 1078-1089.	28.9	734
69	Deletion of CTLA-4 on regulatory T cells during adulthood leads to resistance to autoimmunity. Journal of Experimental Medicine, 2015, 212, 1603-1621.	8.5	183
70	A mechanism for expansion of regulatory T-cell repertoire and its role in self-tolerance. Nature, 2015, 528, 132-136.	27.8	123
71	Immune homeostasis enforced by co-localized effector and regulatory T cells. Nature, 2015, 528, 225-230.	27.8	290
72	Genetic and epigenetic variation in the lineage specification of regulatory T cells. ELife, 2015, 4, e07571.	6.0	49

#	Article	IF	CITATIONS
73	Regulatory T Cell Ablation Causes Acute T Cell Lymphopenia. PLoS ONE, 2014, 9, e86762.	2.5	16
74	Inflammation-induced repression of chromatin bound by the transcription factor Foxp3 in regulatory T cells. Nature Immunology, 2014, 15, 580-587.	14.5	193
75	Microbial metabolites control gut inflammatory responses. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2058-2059.	7.1	81
76	A comparative encyclopedia of DNA elements in the mouse genome. Nature, 2014, 515, 355-364.	27.8	1,444
77	Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution. Science, 2014, 346, 1007-1012.	12.6	244
78	Continuous requirement for the TCR in regulatory T cell function. Nature Immunology, 2014, 15, 1070-1078.	14.5	458
79	Control of the Inheritance of Regulatory T Cell Identity by a cis Element in the Foxp3 Locus. Cell, 2014, 158, 749-763.	28.9	336
80	Interactions between innate and adaptive lymphocytes. Nature Reviews Immunology, 2014, 14, 631-639.	22.7	175
81	Interplay between regulatory T cells and PD-1 in modulating T cell exhaustion and viral control during chronic LCMV infection. Journal of Experimental Medicine, 2014, 211, 1905-1918.	8.5	182
82	Inhibition of miR-146a prevents enterovirus-induced death by restoring the production of type I interferon. Nature Communications, 2014, 5, 3344.	12.8	128
83	Regulatory T cells: recommendations to simplify the nomenclature. Nature Immunology, 2013, 14, 307-308.	14.5	537
84	Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 2013, 504, 451-455.	27.8	3,412
85	Stage-specific regulation of natural killer cell homeostasis and response against viral infection by microRNA-155. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6967-6972.	7.1	101
86	The plasticity and stability of regulatory T cells. Nature Reviews Immunology, 2013, 13, 461-467.	22.7	456
87	IL-2–dependent tuning of NK cell sensitivity for target cells is controlled by regulatory T cells. Journal of Experimental Medicine, 2013, 210, 1167-1178.	8.5	177
88	Transient regulatory T cell ablation deters oncogene-driven breast cancer and enhances radiotherapy. Journal of Experimental Medicine, 2013, 210, 2435-2466.	8.5	251
89	Transcriptional Control of Regulatory T-Cell Differentiation. Cold Spring Harbor Symposia on Quantitative Biology, 2013, 78, 215-222.	1.1	21
90	IL-2–dependent adaptive control of NK cell homeostasis. Journal of Experimental Medicine, 2013, 210, 1179-1187.	8.5	113

#	Article	IF	CITATIONS
91	Control of inflammation by integration of environmental cues by regulatory T cells. Journal of Clinical Investigation, 2013, 123, 939-944.	8.2	159
92	Transcriptome-wide miR-155 Binding Map Reveals Widespread Noncanonical MicroRNA Targeting. Molecular Cell, 2012, 48, 760-770.	9.7	290
93	Novel Foxo1-dependent transcriptional programs control Treg cell function. Nature, 2012, 491, 554-559.	27.8	348
94	T _{reg} Cells in Cancer: A Case of Multiple Personality Disorder. Science Translational Medicine, 2012, 4, 164fs44.	12.4	26
95	Foxp3 Exploits a Pre-Existent Enhancer Landscape for Regulatory T Cell Lineage Specification. Cell, 2012, 151, 153-166.	28.9	411
96	Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. Journal of Experimental Medicine, 2012, 209, 1723-1742.	8.5	530
97	An N-Terminal Mutation of the Foxp3 Transcription Factor Alleviates Arthritis but Exacerbates Diabetes. Immunity, 2012, 36, 731-741.	14.3	97
98	Extrathymic Generation of Regulatory T Cells in Placental Mammals Mitigates Maternal-Fetal Conflict. Cell, 2012, 150, 29-38.	28.9	534
99	Transcription factor Foxp3 and its protein partners form a complex regulatory network. Nature Immunology, 2012, 13, 1010-1019.	14.5	377
100	Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature, 2012, 482, 395-399.	27.8	733
101	Regulatory T Cells: Mechanisms of Differentiation and Function. Annual Review of Immunology, 2012, 30, 531-564.	21.8	2,329
102	The effects of commensal microbiota on immune cell subsets and inflammatory responses. Immunological Reviews, 2012, 245, 45-55.	6.0	86
103	Regulatory T cells and Foxp3. Immunological Reviews, 2011, 241, 260-268.	6.0	660
104	Th17 Cells Express Interleukin-10 Receptor and Are Controlled by Foxp3â^' and Foxp3+ Regulatory CD4+ T Cells in an Interleukin-10-Dependent Manner. Immunity, 2011, 34, 554-565.	14.3	529
105	Autocrine Transforming Growth Factor- \hat{l}^21 Promotes InÂVivo Th 17 Cell Differentiation. Immunity, 2011, 34, 396-408.	14.3	230
106	Interleukin-10 Signaling in Regulatory T Cells Is Required for Suppression of Th17 Cell-Mediated Inflammation. Immunity, 2011, 34, 566-578.	14.3	799
107	A Narrow Circle of Mutual Friends. Immunity, 2011, 34, 697-699.	14.3	10
108	Stability of the Regulatory T Cell Lineage in Vivo. Science, 2010, 329, 1667-1671.	12.6	611

#	Article	IF	Citations
109	Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature, 2010, 463, 808-812.	27.8	1,009
110	IPS-1 Is Essential for the Control of West Nile Virus Infection and Immunity. PLoS Pathogens, 2010, 6, e1000757.	4.7	199
111	A critical role for regulatory T cell–mediated control of inflammation in the absence of commensal microbiota. Journal of Experimental Medicine, 2010, 207, 2323-2330.	8.5	114
112	Roles for cathepsins S, L, and B in insulitis and diabetes in the NOD mouse. Journal of Autoimmunity, 2010, 34, 96-104.	6.5	53
113	Th17 and Regulatory T Cells in Mediating and Restraining Inflammation. Cell, 2010, 140, 845-858.	28.9	887
114	Function of miR-146a in Controlling Treg Cell-Mediated Regulation of Th1 Responses. Cell, 2010, 142, 914-929.	28.9	974
115	Helminth secretions induce de novo T cell Foxp3 expression and regulatory function through the TGF- \hat{l}^2 pathway. Journal of Experimental Medicine, 2010, 207, 2331-2341.	8.5	437
116	Molecular orchestration of differentiation and function of regulatory T cells. Genes and Development, 2009, 23, 1270-1282.	5.9	73
117	Cutting Edge: Depletion of Foxp3+ Cells Leads to Induction of Autoimmunity by Specific Ablation of Regulatory T Cells in Genetically Targeted Mice. Journal of Immunology, 2009, 183, 7631-7634.	0.8	159
118	Feedback control of regulatory T cell homeostasis by dendritic cells in vivo. Journal of Experimental Medicine, 2009, 206, 1853-1862.	8.5	347
119	Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control TH2 responses. Nature, 2009, 458, 351-356.	27.8	827
120	Intraclonal competition limits the fate determination of regulatory T cells in the thymus. Nature Immunology, 2009, 10, 610-617.	14.5	216
121	Runx-CBF \hat{l}^2 complexes control expression of the transcription factor Foxp3 in regulatory T cells. Nature Immunology, 2009, 10, 1170-1177.	14.5	181
122	Editorial overview. Current Opinion in Immunology, 2009, 21, 119-120.	5.5	2
123	Foxp3-Dependent MicroRNA155 Confers Competitive Fitness to Regulatory T Cells by Targeting SOCS1 Protein. Immunity, 2009, 30, 80-91.	14.3	716
124	Control of Regulatory T Cell Lineage Commitment and Maintenance. Immunity, 2009, 30, 616-625.	14.3	500
125	Cutting Edge: TCR Stimulation Is Sufficient for Induction of Foxp3 Expression in the Absence of DNA Methyltransferase 1. Journal of Immunology, 2009, 182, 6648-6652.	0.8	141
126	In Vivo Analysis of Dendritic Cell Development and Homeostasis. Science, 2009, 324, 392-397.	12.6	764

#	Article	IF	Citations
127	CD4 ⁺ Regulatory T Cells Control T _H 17 Responses in a Stat3-Dependent Manner. Science, 2009, 326, 986-991.	12.6	895
128	Tregs control the development of symptomatic West Nile virus infection in humans and mice. Journal of Clinical Investigation, 2009, 119, 3266-77.	8.2	181
129	TGF-Î ² -induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORÎ ³ t function. Nature, 2008, 453, 236-240.	27.8	1,649
130	Regulatory T Cell-Derived Interleukin-10 Limits Inflammation at Environmental Interfaces. Immunity, 2008, 28, 546-558.	14.3	1,309
131	Differentiation of regulatory Foxp3 ⁺ T cells in the thymic cortex. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11903-11908.	7.1	213
132	Dicer-dependent microRNA pathway safeguards regulatory T cell function. Journal of Experimental Medicine, 2008, 205, 1993-2004.	8.5	361
133	The RNAselll enzyme Drosha is critical in T cells for preventing lethal inflammatory disease. Journal of Experimental Medicine, 2008, 205, 2005-2017.	8.5	343
134	Coordination of Early Protective Immunity to Viral Infection by Regulatory T Cells. Science, 2008, 320, 1220-1224.	12.6	397
135	Mouse $TCR\hat{1}\hat{2}^2+CD8\hat{1}\hat{1}^2+Intraepithelial Lymphocytes Express Genes That Down-Regulate Their Antigen Reactivity and Suppress Immune Responses. Journal of Immunology, 2007, 178, 4230-4239.$	0.8	132
136	Lack of Foxp3 function and expression in the thymic epithelium. Journal of Experimental Medicine, 2007, 204, 475-480.	8.5	60
137	Effects of the Administration of High-Dose Interleukin-2 on Immunoregulatory Cell Subsets in Patients with Advanced Melanoma and Renal Cell Cancer. Clinical Cancer Research, 2007, 13, 2100-2108.	7.0	71
138	Altering the distribution of Foxp3+ regulatory T cells results in tissue-specific inflammatory disease. Journal of Experimental Medicine, 2007, 204, 1335-1347.	8.5	367
139	Importance of group X–secreted phospholipase A2 in allergen-induced airway inflammation and remodeling in a mouse asthma model. Journal of Experimental Medicine, 2007, 204, 865-877.	8.5	184
140	Expansion and function of Foxp3-expressing T regulatory cells during tuberculosis. Journal of Experimental Medicine, 2007, 204, 2159-2169.	8.5	350
141	Proteolytic processing of dynamin by cytoplasmic cathepsin L is a mechanism for proteinuric kidney disease. Journal of Clinical Investigation, 2007, 117, 2095-2104.	8.2	188
142	G Protein-Coupled Receptor 83 Is Dispensable for the Development and Function of Regulatory T Cells. Molecular and Cellular Biology, 2007, 27, 8065-8072.	2.3	31
143	Thymic development and peripheral homeostasis of regulatory T cells. Current Opinion in Immunology, 2007, 19, 176-185.	5.5	145
144	Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nature Immunology, 2007, 8, 191-197.	14.5	1,523

#	Article	IF	Citations
145	Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nature Immunology, 2007, 8, 277-284.	14.5	741
146	Foxp3 in control of the regulatory T cell lineage. Nature Immunology, 2007, 8, 457-462.	14.5	619
147	Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3â^ precursor cells in the absence of interleukin 10. Nature Immunology, 2007, 8, 931-941.	14.5	534
148	$TGF\hat{I}^2$ signalling in control of T-cell-mediated self-reactivity. Nature Reviews Immunology, 2007, 7, 443-453.	22.7	290
149	Foxp3-dependent programme of regulatory T-cell differentiation. Nature, 2007, 445, 771-775.	27.8	1,008
150	Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature, 2007, 445, 936-940.	27.8	765
151	FOXP3 and NFAT: Partners in Tolerance. Cell, 2006, 126, 253-256.	28.9	96
152	Cellular Mechanisms of Fatal Early-Onset Autoimmunity in Mice with the T Cell-Specific Targeting of Transforming Growth Factor- \hat{l}^2 Receptor. Immunity, 2006, 25, 441-454.	14.3	423
153	The role of the transcription factor Foxp3 in the development of regulatory T cells. Immunological Reviews, 2006, 212, 86-98.	6.0	166
154	An intersection between the self-reactive regulatory and nonregulatory T cell receptor repertoires. Nature Immunology, 2006, 7, 401-410.	14.5	468
155	In vivo sites and cellular mechanisms of T reg cell–mediated suppression. Journal of Experimental Medicine, 2006, 203, 489-492.	8.5	102
156	Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6659-6664.	7.1	698
157	Targeting of inducible costimulator (ICOS) expressed on alloreactive T cells down-regulates graft-versus-host disease (GVHD) and facilitates engraftment of allogeneic bone marrow (BM). Blood, 2005, 105, 3372-3380.	1.4	113
158	A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nature Immunology, 2005, 6, 331-337.	14.5	839
159	A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nature Immunology, 2005, 6, 1142-1151.	14.5	1,577
160	Regulation of immunity by self-reactive T cells. Nature, 2005, 435, 598-604.	27.8	271
161	The lysosomal cysteine proteases in MHC class II antigen presentation. Immunological Reviews, 2005, 207, 229-241.	6.0	288
162	Developmental regulation of Foxp3 expression during ontogeny. Journal of Experimental Medicine, 2005, 202, 901-906.	8.5	358

#	Article	IF	Citations
163	Cathepsin S Controls MHC Class II-Mediated Antigen Presentation by Epithelial Cells In Vivo. Journal of Immunology, 2005, 174, 1205-1212.	0.8	101
164	TGF- \hat{l}^21 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. Journal of Experimental Medicine, 2005, 201, 1061-1067.	8.5	918
165	Analysis of the Underlying Cellular Mechanisms of Anti-CD154-Induced Graft Tolerance: The Interplay of Clonal Anergy and Immune Regulation. Journal of Immunology, 2005, 175, 771-779.	0.8	80
166	Regulatory T Cell Lineage Specification by the Forkhead Transcription Factor Foxp3. Immunity, 2005, 22, 329-341.	14.3	2,070
167	Effect of Decreasing the Affinity of the Class II-Associated Invariant Chain Peptide on the MHC Class II Peptide Repertoire in the Presence or Absence of H-2M1. Journal of Immunology, 2004, 172, 4142-4150.	0.8	16
168	Molecular aspects of regulatory T cell development. Seminars in Immunology, 2004, 16, 73-80.	5.6	55
169	Recognition of the Peripheral Self by Naturally Arising CD25+ CD4+ T Cell Receptors. Immunity, 2004, 21, 267-277.	14.3	634
170	The ICOS:ICOSL Costimulatory Pathway Plays an Important Role in GVHD and Bone Marrow (BM) Graft Rejection Blood, 2004, 104, 591-591.	1.4	1
171	Control of immune homeostasis by naturally arising regulatory CD4+ T cells. Current Opinion in Immunology, 2003, 15, 690-696.	5.5	173
172	Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nature Immunology, 2003, 4, 330-336.	14.5	6,653
173	Lysosomal cysteine proteases regulate antigen presentation. Nature Reviews Immunology, 2003, 3, 472-482.	22.7	376
174	Crystal Structure Of MHC Class II I-Ab in Complex with a Human CLIP Peptide: Prediction of an I-Ab Peptide-binding Motif. Journal of Molecular Biology, 2003, 326, 1157-1174.	4.2	81
175	Distinct Dendritic Cell Populations Sequentially Present Antigen to CD4 T Cells and Stimulate Different Aspects of Cell-Mediated Immunity. Immunity, 2003, 19, 47-57.	14.3	646
176	Differential Regulation of Cathepsin S and Cathepsin L in Interferon γ–treated Macrophages. Journal of Experimental Medicine, 2003, 197, 169-179.	8.5	96
177	Mechanisms of donor-specific transfusion tolerance: preemptive induction of clonal T-cell exhaustion via indirect presentation. Blood, 2003, 102, 1920-1926.	1.4	89
178	Positive selection of self-MHC-reactive T cells by individual peptide-MHC class II complexes. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6937-6942.	7.1	20
179	Cathepsin L Regulates CD4+ T Cell Selection Independently of Its Effect on Invariant Chain. Journal of Experimental Medicine, 2002, 195, 1349-1358.	8.5	172
180	Characterization of Mouse and Human B7-H3 Genes. Journal of Immunology, 2002, 168, 6294-6297.	0.8	235

#	Article	IF	Citations
181	The Balance Between Donor T Cell Anergy and Suppression Versus Lethal Graft-Versus-Host Disease Is Determined by Host Conditioning. Journal of Immunology, 2002, 169, 5581-5589.	0.8	41
182	A Role for Cathepsin L and Cathepsin S in Peptide Generation for MHC Class II Presentation. Journal of Immunology, 2002, 168, 2618-2625.	0.8	165
183	Regulation of thymic epithelium by keratinocyte growth factor. Blood, 2002, 100, 3269-3278.	1.4	154
184	Antigen-specific dose-dependent system for the study of an inheritable and reversible phenotype in mouse CD4+ T cells. Immunology, 2002, 107, 480-488.	4.4	15
185	Dual TCR T cells: gaining entry into the periphery. Nature Immunology, 2002, 3, 109-110.	14.5	12
186	Homeostasis and anergy of CD4+CD25+ suppressor T cells in vivo. Nature Immunology, 2002, 3, 33-41.	14.5	589
187	Thymocyte expression of cathepsin L is essential for NKT cell development. Nature Immunology, 2002, 3, 1069-1074.	14.5	98
188	The CD4 T cell-deficient mouse mutation nackt (nkt) involves a deletion in the cathepsin L (Ctsl) gene. Immunogenetics, 2001, 53, 233-242.	2.4	30
189	Dynamic Tuning of T Cell Reactivity by Self-Peptide–Major Histocompatibility Complex Ligands. Journal of Experimental Medicine, 2001, 193, 1179-1188.	8.5	100
190	Efficient Presentation of Both Cytosolic and Endogenous Transmembrane Protein Antigens on MHC Class II Is Dependent on Cytoplasmic Proteolysis. Journal of Immunology, 2001, 167, 2632-2641.	0.8	61
191	Cathepsin S Regulates the Expression of Cathepsin L and the Turnover of \hat{I}^3 -Interferon-inducible Lysosomal Thiol Reductase in B Lymphocytes. Journal of Biological Chemistry, 2001, 276, 22573-22578.	3.4	49
192	Reorganization of multivesicular bodies regulates MHC class II antigen presentation by dendritic cells. Journal of Cell Biology, 2001, 155, 53-64.	5.2	256
193	The Piv-Otal Class II Transactivator Promoter Regulates Major Histocompatibility Complex Class II Expression in the Thymus. Journal of Experimental Medicine, 2001, 194, F15-F18.	8.5	6
194	Competition for Specific Intrathymic Ligands Limits Positive Selection in a TCR Transgenic Model of CD4+ T Cell Development. Journal of Immunology, 2000, 164, 6252-6259.	0.8	34
195	Survival and Homeostatic Proliferation of Naive Peripheral CD4+ T Cells in the Absence of Self Peptide:MHC Complexes. Journal of Immunology, 2000, 165, 2458-2464.	0.8	146
196	Dynamic Interactions of Macrophages with T Cells during Antigen Presentation. Journal of Experimental Medicine, 1999, 190, 1909-1914.	8.5	128
197	The role of lysosomal proteinases in MHC class Il-mediated antigen processing and presentation. Immunological Reviews, 1999, 172, 121-129.	6.0	168
198	Peptide loading in the endoplasmic reticulum accelerates trafficking of peptide: MHC class II complexes in B cells. Journal of Biomedical Science, 1999, 6, 53-63.	7.0	4

#	Article	IF	Citations
199	Requirement for Diverse, Low-Abundance Peptides in Positive Selection of T Cells. Science, 1999, 283, 67-70.	12.6	109
200	Impaired Invariant Chain Degradation and Antigen Presentation and Diminished Collagen-Induced Arthritis in Cathepsin S Null Mice. Immunity, 1999, 10, 207-217.	14.3	391
201	Evaluating peptide repertoires within the context of thymocyte development. Seminars in Immunology, 1999, 11, 417-422.	5.6	13
202	Cathepsin L: Critical Role in li Degradation and CD4 T Cell Selection in the Thymus. Science, 1998, 280, 450-453.	12.6	624
203	Altered Antigen Presentation in Mice Lacking H2-O. Immunity, 1998, 8, 233-243.	14.3	166
204	Invariant Chain–independent Function of H-2M in the Formation of Endogenous Peptide–Major Histocompatibility Complex Class II Complexes In Vivo. Journal of Experimental Medicine, 1998, 187, 245-251.	8.5	54
205	Medullary Thymic Epithelium: A Mosaic of Epithelial "Self�. Journal of Experimental Medicine, 1998, 188, 1-4.	8.5	97
206	<i>Mtv-1</i> Superantigen Trafficks Independently of Major Histocompatibility Complex Class II Directly to the B-Cell Surface by the Exocytic Pathway. Journal of Virology, 1998, 72, 2577-2588.	3.4	10
207	Major Histocompatibility Complex Class II Compartments in Human and Mouse B Lymphoblasts Represent Conventional Endocytic Compartments. Journal of Cell Biology, 1997, 139, 639-649.	5.2	213
208	Deficient Positive Selection of CD4 T Cells in Mice Displaying Altered Repertoires of MHC Class II–Bound Self-Peptides. Immunity, 1997, 7, 197-208.	14.3	199
209	Assembly of an abundant endogenous major histocompatibility complex class II/peptide complex in class II compartments. European Journal of Immunology, 1997, 27, 609-617.	2.9	22
210	Presentation of abundant endogenous class II DR-restricted antigens by DM-negative B cell lines. European Journal of Immunology, 1997, 27, 1014-1021.	2.9	17
211	Trypanosoma cruzi-infected macrophages are defective in major histocompatibility complex class II antigen presentation. European Journal of Immunology, 1997, 27, 3085-3094.	2.9	36
212	A study of complexes of class II invariant chain peptide: Major histocompatibility complex class II molecules using a new complex-specific monoclonal antibody. European Journal of Immunology, 1996, 26, 385-393.	2.9	57
213	Differential expression of CLIP: MHC class II and conventional endogenous peptide: MHC class II complexes by thymic epithelial cells and peripheral antigen-presenting cells. European Journal of Immunology, 1996, 26, 3185-3193.	2.9	28
214	Endogenous peptides associated with MHC class II and selection of CD4 T cells. Seminars in Immunology, 1995, 7, 399-409.	5.6	9
215	Intracellular assembly and transport of endogenous peptide-MHC class II complexes. Immunity, 1994, 1, 585-594.	14.3	117
216	T and B cell receptors discriminate major histocompatibility complex class II conformations influenced by the invariant chain. European Journal of Immunology, 1992, 22, 2121-2127.	2.9	20

#	Article	IF	CITATIONS
217	Immunoglobulin-specific T-B cell interaction III. B cell activation by immunoglobulinrecognizing T cell clones. European Journal of Immunology, 1990, 20, 833-839.	2.9	15
218	Immunoglobulin-specific T-B cell interaction. IV. B cell presentation of idiotypic determinant(s) of monoclonal anti-surface immunoglobulin antibody to idiotope-recognizing helper T clones. European Journal of Immunology, 1990, 20, 1691-1696.	2.9	18
219	Presentation of endogenous immunoglobulin determinant to immunoglobulin-recognizing T cell clones by the thymic cells. European Journal of Immunology, 1990, 20, 2235-2239.	2.9	27
220	Immunoglobulin-specific T-B cell interaction. European Journal of Immunology, 1989, 19, 1677-1683.	2.9	35
221	Immunoglobulin-specific T-B cell interaction. European Journal of Immunology, 1989, 19, 1685-1691.	2.9	45