K George Thomas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7793298/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Manipulating the Self-Assembly of Phenyleneethynylenes under Vibrational Strong Coupling. Journal of Physical Chemistry Letters, 2022, 13, 1209-1214.	4.6	11
2	Ligand-Induced Ground- and Excited-State Chirality in Silicon Nanoparticles: Surface Interactions Matter. Journal of the American Chemical Society, 2022, 144, 5074-5086.	13.7	13
3	InP-Bovine Serum Albumin Conjugates as Energy Transfer Probes. Journal of Physical Chemistry B, 2022, 126, 2635-2646.	2.6	4
4	Combined effects of emitter–emitter and emitter–plasmonic surface separations dictate photoluminescence enhancement in a plasmonic field. Physical Chemistry Chemical Physics, 2022, 24, 17250-17262.	2.8	5
5	Core–Shell Plasmonic Nanostructures on Au Films as SERS Substrates: Thickness of Film and Quality Factor of Nanoparticle Matter. Journal of Physical Chemistry C, 2021, 125, 16024-16032.	3.1	6
6	Emergent chiroptical properties in supramolecular and plasmonic assemblies. Chemical Society Reviews, 2021, 50, 11208-11226.	38.1	41
7	Core-Size-Dependent Trapping and Detrapping Dynamics in CdSe/CdS/ZnS Quantum Dots. Journal of Physical Chemistry C, 2021, 125, 25706-25716.	3.1	19
8	Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020, 14, 28-117.	14.6	2,153
9	Energy Spotlight. ACS Energy Letters, 2020, 5, 3876-3878.	17.4	2
10	Mesoporous Silica-Capped Silver Nanoparticles for Sieving and Surface-Enhanced Raman Scattering-Based Sensing. ACS Applied Nano Materials, 2020, 3, 6376-6384.	5.0	23
11	Supramolecular chirality: a caveat in assigning the handedness of chiral aggregates. Chemical Communications, 2020, 56, 8281-8284.	4.1	37
12	Finding the Needle in a Haystack: Capturing Veiled Plexcitonic Coupling through Differential Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 26387-26395.	3.1	7
13	Gold nanoparticle on semiconductor quantum dot: Do surface ligands influence Fermi level equilibration. Journal of Chemical Physics, 2020, 152, 044710.	3.0	19
14	Chiral Plasmons: Au Nanoparticle Assemblies on Thermoresponsive Organic Templates. ACS Nano, 2019, 13, 4392-4401.	14.6	32
15	Coupled Plasmon Resonances and Gap Modes in Laterally Assembled Gold Nanorod Arrays. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1607-1617.	2.8	4
16	Coupling of Elementary Electronic Excitations: Drawing Parallels Between Excitons and Plasmons. Journal of Physical Chemistry Letters, 2018, 9, 919-932.	4.6	28
17	Plexcitons: The Role of Oscillator Strengths and Spectral Widths in Determining Strong Coupling. ACS Nano, 2018, 12, 402-415.	14.6	71
18	InP Quantum Dots: Probing the Active Domain of Tau Peptide Using Energy Transfer. Journal of Physical Chemistry C. 2018, 122, 14168-14176.	3.1	12

#	Article	IF	CITATIONS
19	Probing the bilayer-monolayer switching of capping agents on Au nanorods and its interaction with guest molecules \$\$^{S }\$\$ §. Journal of Chemical Sciences, 2018, 130, 1.	1.5	2
20	How Trap States Affect Charge Carrier Dynamics of CdSe and InP Quantum Dots: Visualization through Complexation with Viologen. ACS Energy Letters, 2018, 3, 2368-2375.	17.4	41
21	Tribute to Prashant V. Kamat. Journal of Physical Chemistry C, 2018, 122, 13205-13206.	3.1	0
22	Emergence of Chiroptical Properties in Molecular Assemblies of Phenyleneethynylenes: The Role of Quasi-degenerate Excitations. Journal of Physical Chemistry Letters, 2018, 9, 4584-4590.	4.6	10
23	Blinking Suppression in Highly Excited CdSe/ZnS Quantum Dots by Electron Transfer under Large Positive Gibbs (Free) Energy Change. ACS Nano, 2018, 12, 9060-9069.	14.6	37
24	Cost-Effective Plasmonic Platforms: Glass Capillaries Decorated with Ag@SiO ₂ Nanoparticles on Inner Walls as SERS Substrates. ACS Applied Materials & Interfaces, 2017, 9, 19470-19477.	8.0	34
25	Enantioselective Light Harvesting with Perylenediimide Guests on Selfâ€Assembled Chiral Naphthalenediimide Nanofibers. Angewandte Chemie - International Edition, 2017, 56, 15053-15057.	13.8	110
26	Enantioselective Light Harvesting with Perylenediimide Guests on Selfâ€Assembled Chiral Naphthalenediimide Nanofibers. Angewandte Chemie, 2017, 129, 15249-15253.	2.0	32
27	CdSe–CdTe Heterojunction Nanorods: Role of CdTe Segment in Modulating the Charge Transfer Processes. ACS Omega, 2017, 2, 5150-5158.	3.5	16
28	Descriptor-Based Rational Design of Two-Dimensional Self-Assembled Nanoarchitectures Stabilized by Hydrogen Bonds. Chemistry of Materials, 2017, 29, 7170-7182.	6.7	18
29	Rücktitelbild: Enantioselective Light Harvesting with Perylenediimide Guests on Selfâ€Assembled Chiral Naphthalenediimide Nanofibers (Angew. Chem. 47/2017). Angewandte Chemie, 2017, 129, 15364-15364.	2.0	0
30	Nanoscale chirality in metal and semiconductor nanoparticles. Chemical Communications, 2016, 52, 12555-12569.	4.1	128
31	Two-Dimensional Growth Rate Control of <scp>l</scp> -Phenylalanine Crystal by Laser Trapping in Unsaturated Aqueous Solution. Crystal Growth and Design, 2016, 16, 953-960.	3.0	34
32	Au nanorod quartets and Raman signal enhancement: towards the design of plasmonic platforms. Nanoscale, 2014, 6, 10454.	5.6	24
33	InP Quantum Dots: An Environmentally Friendly Material with Resonance Energy Transfer Requisites. Journal of Physical Chemistry C, 2014, 118, 3838-3845.	3.1	72
34	Luminescence Properties of CdSe Quantum Dots: Role of Crystal Structure and Surface Composition. Journal of Physical Chemistry Letters, 2013, 4, 2774-2779.	4.6	97
35	Surface plasmon coupling in end-to-end linked gold nanorod dimers and trimers. Physical Chemistry Chemical Physics, 2013, 15, 4258.	2.8	70
36	CulnS ₂ -Sensitized Quantum Dot Solar Cell. Electrophoretic Deposition, Excited-State Dynamics, and Photovoltaic Performance. Journal of Physical Chemistry Letters, 2013, 4, 722-729.	4.6	219

#	Article	IF	CITATIONS
37	Role of Hydrogen Bonding on the Self-Organization of Phenyleneethynylenes on Surfaces. Langmuir, 2013, 29, 2242-2249.	3.5	16
38	Ag@SiO ₂ Core–Shell Nanostructures: Distance-Dependent Plasmon Coupling and SERS Investigation. Journal of Physical Chemistry Letters, 2012, 3, 1459-1464.	4.6	176
39	Synthesis of CdS nanorods and nanospheres: shape tuning by the controlled addition of a sulfide precursor at room temperature. CrystEngComm, 2011, 13, 2340.	2.6	44
40	Surface-Enhanced Raman Spectroscopy: Investigations at the Nanorod Edges and Dimer Junctions. Journal of Physical Chemistry Letters, 2011, 2, 610-615.	4.6	87
41	Gold Nanoparticle-Functionalized Carbon Nanotubes for Light-Induced Electron Transfer Process. Journal of Physical Chemistry Letters, 2011, 2, 775-781.	4.6	21
42	Surface Plasmon Coupled Circular Dichroism of Au Nanoparticles on Peptide Nanotubes. Journal of the American Chemical Society, 2010, 132, 2502-2503.	13.7	173
43	Hydrazine-Induced Room-Temperature Transformation of CdTe Nanoparticles to Nanowires. Journal of Physical Chemistry Letters, 2010, 1, 2094-2098.	4.6	35
44	Directional hydrogen bonding controlled 2D self-organization of phenyleneethynylenes: from linear assembly to rectangular network. Chemical Communications, 2010, 46, 3457.	4.1	23
45	Tunable photophysical properties of phenyleneethynylene based bipyridine ligands. Photochemical and Photobiological Sciences, 2009, 8, 1432.	2.9	17
46	Functional Control on the 2D Self-Organization of Phenyleneethynylenes. Journal of Physical Chemistry C, 2009, 113, 11836-11843.	3.1	14
47	Plasmon Coupling in Dimers of Au Nanorods. Advanced Materials, 2008, 20, 4300-4305.	21.0	172
48	Excited-State and Photoelectrochemical Behavior of Pyrene-Linked Phenyleneethynylene Oligomer. Journal of Physical Chemistry B, 2008, 112, 14539-14547.	2.6	21
49	In Situ Synthesis of Metal Nanoparticles and Selective Naked-Eye Detection of Lead Ions from Aqueous Media. Journal of Physical Chemistry C, 2007, 111, 12839-12847.	3.1	369
50	Preferential End Functionalization of Au Nanorods through Electrostatic Interactions. Journal of the American Chemical Society, 2007, 129, 6712-6713.	13.7	47
51	Ruthenium(II) Trisbipyridine Functionalized Gold Nanorods. Morphological Changes and Excited-State Interactionsâ€. Journal of Physical Chemistry B, 2007, 111, 6839-6844.	2.6	56
52	Self-Organization of Phenyleneethynylene into Wire-Like Molecular Materials on Surfaces. Journal of Physical Chemistry C, 2007, 111, 14933-14936.	3.1	23
53	An Approach for Optimizing the Shell Thickness of Coreâ~'Shell Quantum Dots Using Photoinduced Charge Transfer. Journal of Physical Chemistry C, 2007, 111, 10146-10149.	3.1	51
54	Design and synthesis of squaraine based near infrared fluorescent probes. Tetrahedron, 2007, 63, 1617-1623.	1.9	36

4

#	Article	IF	CITATIONS
55	Photophysical and Theoretical Investigations of Oligo(p-phenyleneethynylene)s:Â Effect of Alkoxy Substitution and Alkyneâ^'Aryl Bond Rotations. Journal of Physical Chemistry A, 2006, 110, 4329-4337.	2.5	144
56	Gold Nanorods to Nanochains:Â Mechanistic Investigations on Their Longitudinal Assembly Using α,ω-Alkanedithiols and Interplasmon Coupling. Journal of Physical Chemistry B, 2006, 110, 150-157.	2.6	191
57	Photochemistry of Ruthenium Trisbipyridine Functionalized on Gold Nanoparticles. Journal of Physical Chemistry B, 2006, 110, 20737-20741.	2.6	48
58	Singlet and Triplet Excited-State Interactions and Photochemical Reactivity of Phenyleneethynylene Oligomers. Journal of Physical Chemistry A, 2006, 110, 5642-5649.	2.5	55
59	A squaraine-based chemosensor for Hg2+ and Pb2+. Tetrahedron, 2006, 62, 605-610.	1.9	78
60	Selective Detection of Cysteine and Glutathione Using Gold Nanorods. Journal of the American Chemical Society, 2005, 127, 6516-6517.	13.7	574
61	Self-Assembled Linear Bundles of Single Wall Carbon Nanotubes and Their Alignment and Deposition as a Film in a dc Field. Journal of the American Chemical Society, 2004, 126, 10757-10762.	13.7	233
62	Investigations on Nanoparticleâ ''Chromophore and Interchromophore Interactions in Pyrene-Capped Gold Nanoparticles. Journal of Physical Chemistry B, 2004, 108, 13265-13272.	2.6	66
63	Uniaxial Plasmon Coupling through Longitudinal Self-Assembly of Gold Nanorods. Journal of Physical Chemistry B, 2004, 108, 13066-13068.	2.6	418
64	Effect of viscosity on the singlet-excited state dynamics of some hemicyanine dyes. Research on Chemical Intermediates, 2003, 29, 293-305.	2.7	13
65	Chromophore-Functionalized Gold Nanoparticles. Accounts of Chemical Research, 2003, 36, 888-898.	15.6	649
66	Dynamics of Photoinduced Electron-Transfer Processes in Fullerene-Based Dyads: Effects of Varying the Donor Strength. ChemPhysChem, 2003, 4, 1299-1307.	2.1	41
67	Light-Induced Modulation of Self-Assembly on Spiropyran-Capped Gold Nanoparticles:Â A Potential System for the Controlled Release of Amino Acid Derivatives. Journal of the American Chemical Society, 2003, 125, 7174-7175.	13.7	172
68	Photochemistry of chromophore-functionalized gold nanoparticles. Pure and Applied Chemistry, 2002, 74, 1731-1738.	1.9	41
69	Fullerene-Functionalized Gold Nanoparticles. A Self-Assembled Photoactive Antenna-Metal Nanocore Assembly. Nano Letters, 2002, 2, 29-35.	9.1	187
70	Photoinduced Charge Separation in a Fluorophoreâ^'Gold Nanoassembly. Journal of Physical Chemistry B, 2002, 106, 18-21.	2.6	190
71	Surface Binding Properties of Tetraoctylammonium Bromide-Capped Gold Nanoparticles. Langmuir, 2002, 18, 3722-3727.	3.5	166
72	Clusters of Bis- and Tris-Fullerenes. Langmuir, 2002, 18, 1831-1839.	3.5	34

5

#	Article	IF	CITATIONS
73	Conformational Switching and Exciton Interactions in Hemicyanine-Based Bichromophores. Journal of the American Chemical Society, 2001, 123, 7859-7865.	13.7	69
74	Photoinduced Electron Transfer between 1,2,5-Triphenylpyrrolidinofullerene Cluster Aggregates and Electron Donors. Langmuir, 2001, 17, 2930-2936.	3.5	37
75	Making Gold Nanoparticles Glow:  Enhanced Emission from a Surface-Bound Fluoroprobe. Journal of the American Chemical Society, 2000, 122, 2655-2656.	13.7	233
76	Electrodeposition of C60Cluster Aggregates on Nanostructured SnO2Films for Enhanced Photocurrent Generation. Journal of Physical Chemistry B, 2000, 104, 4014-4017.	2.6	144
77	Orientation-Dependent Electron Transfer Processes in Fullereneâ^'Aniline Dyads. Journal of Physical Chemistry A, 1999, 103, 10755-10763.	2.5	43
78	Photoinduced Charge Separation and Stabilization in Clusters of a Fullereneâ^'Aniline Dyad. Journal of Physical Chemistry B, 1999, 103, 8864-8869.	2.6	99
79	Functionalized Fullerenes as Photosynthetic Mimics. Electrochemical Society Interface, 1999, 8, 30-32.	0.4	4
80	Excited-State Interactions in Pyrrolidinofullerenes. Journal of Physical Chemistry A, 1998, 102, 5341-5348.	2.5	84
81	Picosecond dynamics of an IR sensitive squaraine dye. Role of singlet and triplet excited states in the photosensitization of TiO2 nanoclusters. Journal of Chemical Physics, 1997, 106, 6404-6411.	3.0	30
82	Photochemistry of squaraine dyes. Part 10.—Excited-state properties and photosensitization behaviour of an IR sensitive cationic squaraine dye. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 4913-4916.	1.7	15
83	Electrochemical and Photoelectrochemical Properties of Monoaza-15-crown Ether Linked Cyanine Dyes: Photosensitization of Nanocrystalline SnO2 Films. Langmuir, 1995, 11, 1777-1783.	3.5	31
84	Photophysical and Photoelectrochemical Behavior of Poly[styrene-co-3-(acrylamido)-6-aminoacridine]. Macromolecules, 1995, 28, 4249-4254.	4.8	12
85	Crown ether derivatives of squaraine: new near-infrared-absorbing, redox-active fluoroionophores for alkali metal recognition. Analytical Proceedings, 1995, 32, 213.	0.4	11
86	Photocatalyzed multiple additions of amines to .alpha.,.betaunsaturated esters and nitriles. Journal of Organic Chemistry, 1994, 59, 628-634.	3.2	39
87	Excited-state properties and photosensitization behaviour of bis(2,4-dihydroxyphenyl)squaraine. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 2397.	1.7	32
88	Photochemistry of squaraine dyes. 5. Aggregation of bis(2,4-dihydroxyphenyl)squaraine and bis(2,4,6-trihydroxyphenyl)squaraine and their photodissociation in acetonitrile solutions. The Journal of Physical Chemistry, 1993, 97, 13620-13624.	2.9	58
89	Fluorescence enhancement of bis(2,4,6-trihydroxyphenyl)squaraine anion by 2 : 1 host–guest complexation with β-cyclodextrin. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 3419-3422.	1.7	52
90	Ultrafast photochemical events associated with the photosensitization properties of a squaraine dye. Chemical Physics Letters, 1991, 178, 75-79.	2.6	93