Heather B Patisaul

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7792804/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The pros and cons of phytoestrogens. Frontiers in Neuroendocrinology, 2010, 31, 400-419.	5.2	575
2	Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nature Reviews Endocrinology, 2020, 16, 45-57.	9.6	484
3	Endocrine Disrupters: A Review of Some Sources, Effects, and Mechanisms of Actions on Behaviour and Neuroendocrine Systems. Journal of Neuroendocrinology, 2012, 24, 144-159.	2.6	327
4	Accumulation and Endocrine Disrupting Effects of the Flame Retardant Mixture Firemaster [®] 550 in Rats: An Exploratory Assessment. Journal of Biochemical and Molecular Toxicology, 2013, 27, 124-136.	3.0	222
5	Long-term effects of environmental endocrine disruptors on reproductive physiology and behavior. Frontiers in Behavioral Neuroscience, 2009, 3, 10.	2.0	185
6	Neonatal Bisphenol-A Exposure Alters Rat Reproductive Development and Ovarian Morphology Without Impairing Activation of Gonadotropin-Releasing Hormone Neurons1. Biology of Reproduction, 2009, 81, 690-699.	2.7	182
7	Neonatal genistein or bisphenol-A exposure alters sexual differentiation of the AVPVâ ⁺ . Neurotoxicology and Teratology, 2006, 28, 111-118.	2.4	179
8	Reproductive consequences of developmental phytoestrogen exposure. Reproduction, 2012, 143, 247-260.	2.6	148
9	Impact of neonatal exposure to the ERα agonist PPT, bisphenol-A or phytoestrogens on hypothalamic kisspeptin fiber density in male and female rats. NeuroToxicology, 2009, 30, 350-357.	3.0	141
10	Disrupted female reproductive physiology following neonatal exposure to phytoestrogens or estrogen specific ligands is associated with decreased GnRH activation and kisspeptin fiber density in the hypothalamus. NeuroToxicology, 2008, 29, 988-997.	3.0	140
11	Regulation of estrogen receptor beta mRNA in the brain: opposite effects of 17β-estradiol and the phytoestrogen, coumestrol. Molecular Brain Research, 1999, 67, 165-171.	2.3	139
12	Neonatal exposure to endocrine active compounds or an ERβ agonist increases adult anxiety and aggression in gonadally intact male rats. Hormones and Behavior, 2008, 53, 580-588.	2.1	135
13	Prenatal Bisphenol A Exposure Alters Sex-Specific Estrogen Receptor Expression in the Neonatal Rat Hypothalamus and Amygdala. Toxicological Sciences, 2013, 133, 157-173.	3.1	133
14	Designing endocrine disruption out of the next generation of chemicals. Green Chemistry, 2013, 15, 181-198.	9.0	123
15	Project TENDR: Targeting Environmental Neuro-Developmental Risks The TENDR Consensus Statement. Environmental Health Perspectives, 2016, 124, A118-22.	6.0	123
16	Endocrine Disruption of Brain Sexual Differentiation by Developmental PCB Exposure. Endocrinology, 2011, 152, 581-594.	2.8	114
17	Sexually dimorphic expression of hypothalamic estrogen receptors \hat{I}_{\pm} and \hat{I}^2 and kiss1 in neonatal male and female rats. Journal of Comparative Neurology, 2011, 519, 2954-2977.	1.6	111
18	Genistein Affects ERβ- But Not ERα-Dependent Gene Expression in the Hypothalamus. Endocrinology, 2002, 143. 2189-2197.	2.8	99

#	Article	IF	CITATIONS
19	In vitro assessment of human nuclear hormone receptor activity and cytotoxicity of the flame retardant mixture FM 550 and its triarylphosphate and brominated components. Toxicology Letters, 2014, 228, 93-102.	0.8	98
20	Soy Isoflavone Supplements Antagonize Reproductive Behavior and Estrogen Receptor α- and β-Dependent Gene Expression in the Brain*. Endocrinology, 2001, 142, 2946-2952.	2.8	96
21	Anxiogenic Effects of Developmental Bisphenol A Exposure Are Associated with Gene Expression Changes in the Juvenile Rat Amygdala and Mitigated by Soy. PLoS ONE, 2012, 7, e43890.	2.5	92
22	Neonatal Bisphenol A exposure alters sexually dimorphic gene expression in the postnatal rat hypothalamus. NeuroToxicology, 2012, 33, 23-36.	3.0	86
23	Neonatal exposure to genistein adversely impacts the ontogeny of hypothalamic kisspeptin signaling pathways and ovarian development in the peripubertal female rat. Reproductive Toxicology, 2011, 31, 280-289.	2.9	82
24	Differential disruption of nuclear volume and neuronal phenotype in the preoptic area by neonatal exposure to genistein and bisphenol-A. NeuroToxicology, 2007, 28, 1-12.	3.0	81
25	The NIEHS TaRGET II Consortium and environmental epigenomics. Nature Biotechnology, 2018, 36, 225-227.	17.5	79
26	The impact of neonatal bisphenol-A exposure on sexually dimorphic hypothalamic nuclei in the female rat. NeuroToxicology, 2011, 32, 38-49.	3.0	78
27	Endocrine disruption by dietary phyto-oestrogens: impact on dimorphic sexual systems and behaviours. Proceedings of the Nutrition Society, 2017, 76, 130-144.	1.0	77
28	Influence of endocrine active compounds on the developing rodent brain. Brain Research Reviews, 2008, 57, 352-362.	9.0	76
29	Assessment of sex specific endocrine disrupting effects in the prenatal and pre-pubertal rodent brain. Journal of Steroid Biochemistry and Molecular Biology, 2016, 160, 148-159.	2.5	76
30	A Novel Model for Neuroendocrine Toxicology: Neurobehavioral Effects of BPA Exposure in a Prosocial Species, the Prairie Vole (Microtus ochrogaster). Endocrinology, 2014, 155, 3867-3881.	2.8	75
31	CLARITYâ€BPA academic laboratory studies identify consistent lowâ€dose Bisphenol A effects on multiple organ systems. Basic and Clinical Pharmacology and Toxicology, 2019, 125, 14-31.	2.5	75
32	Urinary Tetrabromobenzoic Acid (TBBA) as a Biomarker of Exposure to the Flame Retardant Mixture Firemaster ^[®] 550. Environmental Health Perspectives, 2014, 122, 963-969.	6.0	73
33	Cross-Species and Interassay Comparisons of Phytoestrogen Action. Environmental Health Perspectives, 2001, 109, 5.	6.0	71
34	Impact of Low Dose Oral Exposure to Bisphenol A (BPA) on the Neonatal Rat Hypothalamic and Hippocampal Transcriptome: A CLARITY-BPA Consortium Study. Endocrinology, 2016, 157, 3856-3872.	2.8	71
35	Coumestrol Antagonizes Neuroendocrine Actions of Estrogen via the Estrogen Receptor α. Experimental Biology and Medicine, 2001, 226, 301-306.	2.4	69
36	Disrupted Organization of RFamide Pathways in the Hypothalamus Is Associated with Advanced Puberty in Female Rats Neonatally Exposed to Bisphenol A1. Biology of Reproduction, 2012, 87, 28.	2.7	66

#	Article	IF	CITATIONS
37	Investigation of the Effects of Subchronic Low Dose Oral Exposure to Bisphenol A (BPA) and Ethinyl Estradiol (EE) on Estrogen Receptor Expression in the Juvenile and Adult Female Rat Hypothalamus. Toxicological Sciences, 2014, 140, 190-203.	3.1	65
38	Environmental Mechanisms of Neurodevelopmental Toxicity. Current Environmental Health Reports, 2018, 5, 145-157.	6.7	64
39	Sex specific impact of perinatal bisphenol A (BPA) exposure over a range of orally administered doses on rat hypothalamic sexual differentiation. NeuroToxicology, 2013, 36, 55-62.	3.0	60
40	Sex Specific Placental Accumulation and Behavioral Effects of Developmental Firemaster 550 Exposure in Wistar Rats. Scientific Reports, 2017, 7, 7118.	3.3	60
41	Test driving ToxCast: endocrine profiling for 1858 chemicals included in phase II. Current Opinion in Pharmacology, 2014, 19, 145-152.	3.5	59
42	Impact of Low-Dose Oral Exposure to Bisphenol A (BPA) on Juvenile and Adult Rat Exploratory and Anxiety Behavior: A CLARITY-BPA Consortium Study. Toxicological Sciences, 2015, 148, 341-354.	3.1	59
43	Impact of Gestational Bisphenol A on Oxidative Stress and Free Fatty Acids: Human Association and Interspecies Animal Testing Studies. Endocrinology, 2015, 156, 911-922.	2.8	58
44	Phytoestrogen Action in the Adult and Developing Brain. Journal of Neuroendocrinology, 2005, 17, 57-64.	2.6	57
45	Prenatal bisphenol A (BPA) exposure alters the transcriptome of the neonate rat amygdala in a sex-specific manner: a CLARITY-BPA consortium study. NeuroToxicology, 2018, 65, 207-220.	3.0	56
46	Beyond Cholinesterase Inhibition: Developmental Neurotoxicity of Organophosphate Ester Flame Retardants and Plasticizers. Environmental Health Perspectives, 2021, 129, 105001.	6.0	54
47	Sex-specific Esr2 mRNA expression in the rat hypothalamus and amygdala is altered by neonatal bisphenol A exposure. Reproduction, 2014, 147, 537-554.	2.6	53
48	Neurobehavioral actions of coumestrol and related isoflavonoids in rodents. Neurotoxicology and Teratology, 2002, 24, 47-54.	2.4	52
49	Achieving <scp>CLARITY</scp> on bisphenol A, brain and behaviour. Journal of Neuroendocrinology, 2020, 32, e12730.	2.6	52
50	A soy supplement and tamoxifen inhibit sexual behavior in female rats. Hormones and Behavior, 2004, 45, 270-277.	2.1	50
51	Sexâ€specific expression of estrogen receptors α and β and Kiss1 in the postnatal rat amygdala. Journal of Comparative Neurology, 2013, 521, 465-478.	1.6	48
52	Sex differences in microglial colonization and vulnerabilities to endocrine disruption in the social brain. General and Comparative Endocrinology, 2016, 238, 39-46.	1.8	47
53	Editor's Highlight: Transplacental and Lactational Transfer of Firemaster® 550 Components in Dosed Wistar Rats. Toxicological Sciences, 2016, 153, 246-257.	3.1	44
54	Effects of Environmental Endocrine Disruptors and Phytoestrogens on the Kisspeptin System. Advances in Experimental Medicine and Biology, 2013, 784, 455-479.	1.6	43

#	Article	IF	CITATIONS
55	Data integration, analysis, and interpretation of eight academic CLARITY-BPA studies. Reproductive Toxicology, 2020, 98, 29-60.	2.9	42
56	Soy Isoflavone Supplements Antagonize Reproductive Behavior and Estrogen Receptor Â- and Â-Dependent Gene Expression in the Brain. Endocrinology, 2001, 142, 2946-2952.	2.8	42
57	EDC IMPACT: Molecular effects of developmental FM 550 exposure in Wistar rat placenta and fetal forebrain. Endocrine Connections, 2018, 7, 305-324.	1.9	41
58	Animal models of endocrine disruption. Best Practice and Research in Clinical Endocrinology and Metabolism, 2018, 32, 283-297.	4.7	40
59	Simultaneous Voltammetric Measurements of Glucose and Dopamine Demonstrate the Coupling of Glucose Availability with Increased Metabolic Demand in the Rat Striatum. ACS Chemical Neuroscience, 2017, 8, 272-280.	3.5	38
60	Neuroendocrine disruption: Historical roots, current progress, questions for the future. Frontiers in Neuroendocrinology, 2010, 31, 395-399.	5.2	37
61	Effects of Prenatal Exposure to a Mixture of Organophosphate Flame Retardants on Placental Gene Expression and Serotonergic Innervation in the Fetal Rat Brain. Toxicological Sciences, 2020, 176, 203-223.	3.1	37
62	Soy but not bisphenol A (BPA) induces hallmarks of polycystic ovary syndrome (PCOS) and related metabolic co-morbidities in rats. Reproductive Toxicology, 2014, 49, 209-218.	2.9	34
63	Effects of perinatal bisphenol A exposure on the volume of sexually-dimorphic nuclei of juvenile rats: A CLARITY-BPA consortium study. NeuroToxicology, 2017, 63, 33-42.	3.0	33
64	Neurodevelopmental and neurological effects of chemicals associated with unconventional oil and natural gas operations and their potential effects on infants and children. Reviews on Environmental Health, 2018, 33, 3-29.	2.4	33
65	Endocrine Disruption of Vasopressin Systems and Related Behaviors. Frontiers in Endocrinology, 2017, 8, 134.	3.5	32
66	Systemic administration of diarylpropionitrile (DPN) or phytoestrogens does not affect anxiety-related behaviors in gonadally intact male rats. Hormones and Behavior, 2009, 55, 319-328.	2.1	31
67	Aryl hydrocarbon receptor activation in lactotropes and gonadotropes interferes with estradiol-dependent and -independent preprolactin, glycoprotein alpha and luteinizing hormone beta gene expression. Molecular and Cellular Endocrinology, 2011, 333, 151-159.	3.2	31
68	PBDEs Concentrate in the Fetal Portion of the Placenta: Implications for Thyroid Hormone Dysregulation. Endocrinology, 2019, 160, 2748-2758.	2.8	31
69	Sex-specific effects of perinatal FireMaster® 550 (FM 550) exposure on socioemotional behavior in prairie voles. Neurotoxicology and Teratology, 2020, 79, 106840.	2.4	31
70	Interactions of the estrous cycle, novelty, and light on female and male rat open field locomotor and anxiety-related behaviors. Physiology and Behavior, 2021, 228, 113203.	2.1	30
71	Dietary Soy Supplements Produce Opposite Effects on Anxiety in Intact Male and Female Rats in the Elevated Plus-Maze Behavioral Neuroscience, 2005, 119, 587-594.	1.2	29
72	Sex Differences in Serotonergic But Not γ-Aminobutyric Acidergic (GABA) Projections to the Rat Ventromedial Nucleus of the Hypothalamus. Endocrinology, 2008, 149, 397-408.	2.8	28

#	Article	IF	CITATIONS
73	Progesterone and medroxyprogesterone acetate differentially regulate α4 subunit expression of GABAA receptors in the CA1 hippocampus of female rats. Physiology and Behavior, 2009, 97, 58-61.	2.1	28
74	On the Need for a National (U.S.) Research Program to Elucidate the Potential Risks to Human Health and the Environment Posed by Contaminants of Emerging Concern. Environmental Science & Technology, 2011, 45, 3829-3830.	10.0	28
75	Perinatal bisphenol A (BPA) exposure alters brain oxytocin receptor (OTR) expression in a sex- and region- specific manner: A CLARITY-BPA consortium follow-up study. NeuroToxicology, 2019, 74, 139-148.	3.0	28
76	Soy but not bisphenol A (BPA) or the phytoestrogen genistin alters developmental weight gain and food intake in pregnant rats and their offspring. Reproductive Toxicology, 2015, 58, 282-294.	2.9	27
77	Interaction of bisphenol A (BPA) and soy phytoestrogens on sexually dimorphic sociosexual behaviors in male and female rats. Hormones and Behavior, 2016, 84, 121-126.	2.1	26
78	Endocrine disruptors and the developing immune system. Current Opinion in Toxicology, 2018, 10, 31-36.	5.0	23
79	Immediate and residual effects of tamoxifen and ethynylestradiol in the female rat hypothalamus. Brain Research, 2003, 978, 185-193.	2.2	22
80	The Use and Misuse of Historical Controls in Regulatory Toxicology: Lessons from the CLARITY-BPA Study. Endocrinology, 2020, 161, .	2.8	22
81	Neonatal agonism of $\mathrm{ER}^{\hat{l}2}$ impairs male reproductive behavior and attractiveness. Hormones and Behavior, 2011, 60, 185-194.	2.1	20
82	Decoding the language of epigenetics during neural development is key for understanding development as well as developmental neurotoxicity. Epigenetics, 2013, 8, 1128-1132.	2.7	20
83	Perinatal exposure to FireMaster® 550 (FM550), brominated or organophosphate flame retardants produces sex and compound specific effects on adult Wistar rat socioemotional behavior. Hormones and Behavior, 2020, 126, 104853.	2.1	20
84	Temporal and bidirectional influences of estradiol on voluntary wheel running in adult female and male rats. Hormones and Behavior, 2020, 120, 104694.	2.1	20
85	IR-MALDESI mass spectrometry imaging of underivatized neurotransmitters in brain tissue of rats exposed to tetrabromobisphenol A. Analytical and Bioanalytical Chemistry, 2018, 410, 7979-7986.	3.7	19
86	Sex-specific behavioral effects following developmental exposure to tetrabromobisphenol A (TBBPA) in Wistar rats. NeuroToxicology, 2019, 75, 136-147.	3.0	19
87	Individual Variation in Social Behaviours of Male Lab-reared Prairie voles (Microtus ochrogaster) is Non-heritable and Weakly Associated with V1aR Density. Scientific Reports, 2018, 8, 1396.	3.3	15
88	Novel unconditioned prosocial behavior in prairie voles (Microtus ochrogaster) as a model for empathy. BMC Research Notes, 2018, 11, 852.	1.4	15
89	Metabotropic glutamate receptor subtype 5 (mGlu5) is necessary for estradiol mitigation of light-induced anxiety behavior in female rats. Physiology and Behavior, 2020, 214, 112770.	2.1	15
90	Nucleus accumbens core medium spiny neuron electrophysiological properties and partner preference behavior in the adult male prairie vole, <i>Microtus ochrogaster</i> . Journal of Neurophysiology, 2018, 119, 1576-1588.	1.8	14

#	Article	IF	CITATIONS
91	Transcriptomic, proteomic, and metabolomic analyses identify candidate pathways linking maternal cadmium exposure to altered neurodevelopment and behavior. Scientific Reports, 2021, 11, 16302.	3.3	14
92	Developmental Exposure to the Flame Retardant Mixture Firemaster 550 Compromises Adult Bone Integrity in Male but not Female Rats. International Journal of Molecular Sciences, 2020, 21, 2553.	4.1	12
93	Analysis of neurotransmitters in rat placenta exposed to flame retardants using IR-MALDESI mass spectrometry imaging. Analytical and Bioanalytical Chemistry, 2020, 412, 3745-3752.	3.7	12
94	REPRODUCTIVE TOXICOLOGY: Endocrine disruption and reproductive disorders: impacts on sexually dimorphic neuroendocrine pathways. Reproduction, 2021, 162, F111-F130.	2.6	12
95	Influence of ERÎ ² selective agonism during the neonatal period on the sexual differentiation of the rat hypothalamic-pituitary-gonadal (HPG) axis. Biology of Sex Differences, 2012, 3, 2.	4.1	11
96	Endocrine disrupting chemicals (EDCs) and the neuroendocrine system: Beyond estrogen, androgen, and thyroid. Advances in Pharmacology, 2021, 92, 101-150.	2.0	10
97	Combining Micropunch Histology and Multidimensional Lipidomic Measurements for In-Depth Tissue Mapping. ACS Measurement Science Au, 2022, 2, 67-75.	4.4	10
98	Individual and Combined Effects of Paternal Deprivation and Developmental Exposure to Firemaster 550 on Socio-Emotional Behavior in Prairie Voles. Toxics, 2022, 10, 268.	3.7	10
99	Sex-specific Disruption of the Prairie Vole Hypothalamus by Developmental Exposure to a Flame Retardant Mixture. Endocrinology, 2021, 162, .	2.8	9
100	Endocrine disrupting chemicals and behavior: Re-evaluating the science at a critical turning point. Hormones and Behavior, 2017, 96, A1-A6.	2.1	8
101	FireMaster® 550 (FM 550) exposure during the perinatal period impacts partner preference behavior and nucleus accumbens core medium spiny neuron electrophysiology in adult male and female prairie voles, Microtus ochrogaster. Hormones and Behavior, 2021, 134, 105019.	2.1	8
102	Neonatal agonism of ERα masculinizes serotonergic (5-HT) projections to the female rat ventromedial nucleus of the hypothalamus (VMN) but does not impair lordosis. Behavioural Brain Research, 2009, 196, 317-322.	2.2	7
103	Infertility in the Southern White Rhino: Is Diet the Source of the Problem?. Endocrinology, 2012, 153, 1568-1571.	2.8	7
104	Introduction to sex differences in neurotoxic effects. Neurotoxicology and Teratology, 2021, 83, 106931.	2.4	6
105	Endocrine disrupting chemicals (EDCs) and placental function: Impact on fetal brain development. Advances in Pharmacology, 2021, 92, 347-400.	2.0	4
106	Chemical Contributions to Neurodevelopmental Disorders. Policy Insights From the Behavioral and Brain Sciences, 2017, 4, 123-130.	2.4	3
107	Endocrine Disrupting Chemicals and Behavior. , 2019, , 812-820.		3

#	Article	IF	CITATIONS
109	Assessing Risks from Bisphenol-A. American Scientist, 2010, 98, 30.	0.1	3
110	Introduction to the special issue on endocrine disrupting chemicals and behavior. Hormones and Behavior, 2018, 101, 1-2.	2.1	2
111	Developmental nicotine exposure and masculinization of the rat preoptic area. NeuroToxicology, 2022, 89, 41-54.	3.0	2
112	Effects of developmental exposure to FireMaster® 550 (FM 550) on microglia density, reactivity and morphology in a prosocial animal model. NeuroToxicology, 2022, 91, 140-154.	3.0	1
113	Experimental Endocrinology and Reproductive Biology. C. Haldar, M. Singaravel, S. R. Pandi-Perumal, and Daniel P. Cardinali, editors Integrative and Comparative Biology, 2008, 48, 545-545.	2.0	0
114	Landmark Endocrine-Disrupting Compounds of the Past and Present. , 2017, , .		0
115	The Neuroendocrine System and General Mechanisms of Endocrine Disruption. , 2017, , .		0
116	Endocrine Disruptors and Neurobehavioral Disorders. , 2017, , .		0