Bastian Opitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7792091/publications.pdf Version: 2024-02-01

RASTIAN ODITZ

#	Article	IF	CITATIONS
1	Pseudomonas aeruginosa Triggered Exosomal Release of ADAM10 Mediates Proteolytic Cleavage in Trans. International Journal of Molecular Sciences, 2022, 23, 1259.	1.8	4
2	TBK1´s Role in Bacterial Pneumonia: Perhaps More than Macrophages and IFNs. American Journal of Respiratory Cell and Molecular Biology, 2022, , .	1.4	0
3	Characterization of antimicrobial use and co-infections among hospitalized patients with COVID-19: a prospective observational cohort study. Infection, 2022, 50, 1441-1452.	2.3	10
4	The microbiota in pneumonia: From protection to predisposition. Science Translational Medicine, 2021, 13, .	5.8	43
5	Clinical and virological characteristics of hospitalised COVID-19 patients in a German tertiary care centre during the first wave of the SARS-CoV-2 pandemic: a prospective observational study. Infection, 2021, 49, 703-714.	2.3	27
6	Impact of dexamethasone on SARS-CoV-2 concentration kinetics and antibody response in hospitalized COVID-19 patients: results from a prospective observational study. Clinical Microbiology and Infection, 2021, 27, 1520.e7-1520.e10.	2.8	13
7	A time-resolved proteomic and prognostic map of COVID-19. Cell Systems, 2021, 12, 780-794.e7.	2.9	125
8	Population analysis of Legionella pneumophila reveals a basis for resistance to complement-mediated killing. Nature Communications, 2021, 12, 7165.	5.8	11
9	Platelets Restrict the Oxidative Burst in Phagocytes and Facilitate Primary Progressive Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 730-744.	2.5	7
10	Studying the pathophysiology of coronavirus disease 2019: a protocol for the Berlin prospective COVID-19 patient cohort (Pa-COVID-19). Infection, 2020, 48, 619-626.	2.3	79
11	Microbiota-Dependent Regulation of Antimicrobial Immunity in the Lung. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 284-289.	1.4	14
12	STING SNP R293Q Is Associated with a Decreased Risk of Aging-Related Diseases. Gerontology, 2019, 65, 145-154.	1.4	32
13	Downregulation of Membrane Trafficking Proteins and Lactate Conditioning Determine Loss of Dendritic Cell Function in Lung Cancer. Cancer Research, 2018, 78, 1685-1699.	0.4	72
14	The cGAS/STING Pathway Detects Streptococcus pneumoniae but Appears Dispensable for Antipneumococcal Defense in Mice and Humans. Infection and Immunity, 2018, 86, .	1.0	18
15	Recognition of microbial viability via TLR8 drives TFH cell differentiation and vaccine responses. Nature Immunology, 2018, 19, 386-396.	7.0	139
16	Innate sensing and cell-autonomous resistance pathways in Legionella pneumophila infection. International Journal of Medical Microbiology, 2018, 308, 161-167.	1.5	11
17	Ventilator-induced lung injury is aggravated by antibiotic mediated microbiota depletion in mice. Critical Care, 2018, 22, 282.	2.5	17
18	Antibiotic treatment–induced secondary IgA deficiency enhances susceptibility to Pseudomonas aeruginosa pneumonia. Journal of Clinical Investigation, 2018, 128, 3535-3545.	3.9	75

#	Article	IF	CITATIONS
19	The common HAQ STING variant impairs cGAS-dependent antibacterial responses and is associated with susceptibility to Legionnaires' disease in humans. PLoS Pathogens, 2018, 14, e1006829.	2.1	43
20	Response to Comment on "The Common R71H-G230A-R293Q Human <i>TMEM173</i> Is a Null Allele― Journal of Immunology, 2017, 198, 4185-4188.	0.4	10
21	The Common R71H-G230A-R293Q Human <i>TMEM173</i> Is a Null Allele. Journal of Immunology, 2017, 198, 776-787.	0.4	62
22	Inflammasome Deficiency Makes Pro-resolving Lipid Mediators Great Again. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 668-669.	2.5	1
23	A Semi‣ynthetic Glycoconjugate Vaccine Candidate for Carbapenemâ€Resistant <i>Klebsiella pneumoniae</i> . Angewandte Chemie - International Edition, 2017, 56, 13973-13978.	7.2	68
24	Spectrum of pathogen- and model-specific histopathologies in mouse models of acute pneumonia. PLoS ONE, 2017, 12, e0188251.	1.1	64
25	IFNs Modify the Proteome of Legionella-Containing Vacuoles and Restrict Infection Via IRG1-Derived Itaconic Acid. PLoS Pathogens, 2016, 12, e1005408.	2.1	195
26	Inflammasomes in Pneumococcal Infection: Innate Immune Sensing and Bacterial Evasion Strategies. Current Topics in Microbiology and Immunology, 2016, 397, 215-227.	0.7	31
27	NLRP3 protects alveolar barrier integrity by an inflammasome-independent increase of epithelial cell adherence. Scientific Reports, 2016, 6, 30943.	1.6	20
28	PKCα Deficiency in Mice Is Associated with Pulmonary Vascular Hyperresponsiveness to Thromboxane A2 and Increased Thromboxane Receptor Expression. Journal of Vascular Research, 2015, 52, 279-288.	0.6	3
29	The C-Type Lectin Receptor Mincle Binds to Streptococcus pneumoniae but Plays a Limited Role in the Anti-Pneumococcal Innate Immune Response. PLoS ONE, 2015, 10, e0117022.	1.1	44
30	Increasing the inspiratory time and I:E ratio during mechanical ventilation aggravates ventilator-induced lung injury in mice. Critical Care, 2015, 19, 23.	2.5	36
31	Serotype 1 and 8 Pneumococci Evade Sensing by Inflammasomes in Human Lung Tissue. PLoS ONE, 2015, 10, e0137108.	1.1	31
32	Bacterial Infections and the DNA Sensing Pathway. , 2014, , 153-169.		0
33	Nucleotide Oligomerization Domain 1 Ligation Suppressed Murine Allergen–Specific T-Cell Proliferation and Airway Hyperresponsiveness. American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 903-911.	1.4	12
34	Juvenile megaesophagus in PKCα-deficient mice is associated with an increase in the segment of the distal esophagus lined by smooth muscle cells. Annals of Anatomy, 2014, 196, 365-371.	1.0	1
35	Innate Immune and Type I IFN Responses During Legionella pneumophila Infection. , 2014, , 33-42.		0
36	Adjuvant immunotherapies as a novel approach to bacterial infections. Immunotherapy, 2013, 5, 365-381.	1.0	13

#	Article	IF	CITATIONS
37	NOD-Like Receptors in Lung Diseases. Frontiers in Immunology, 2013, 4, 393.	2.2	57
38	<i>Streptococcus pneumoniae</i> Stimulates a STING- and IFN Regulatory Factor 3-Dependent Type I IFN Production in Macrophages, which Regulates RANTES Production in Macrophages, Cocultured Alveolar Epithelial Cells, and Mouse Lungs. Journal of Immunology, 2012, 188, 811-817.	0.4	106
39	Rac1 Regulates the NLRP3 Inflammasome Which Mediates IL-1beta Production in Chlamydophila pneumoniae Infected Human Mononuclear Cells. PLoS ONE, 2012, 7, e30379.	1.1	36
40	Recognition of Streptococcus pneumoniae by the innate immune system. Cellular Microbiology, 2012, 14, 460-466.	1.1	167
41	Innate Immune Recognition and Inflammasome Activation in Listeria Monocytogenes Infection. Frontiers in Microbiology, 2011, 1, 149.	1.5	29
42	Dissection of a type I interferon pathway in controlling bacterial intracellular infection in mice. Cellular Microbiology, 2011, 13, 1668-1682.	1.1	75
43	The NLRP3 Inflammasome Is Differentially Activated by Pneumolysin Variants and Contributes to Host Defense in Pneumococcal Pneumonia. Journal of Immunology, 2011, 187, 434-440.	0.4	222
44	Legionella pneumophila induces human beta Defensin-3 in pulmonary cells. Respiratory Research, 2010, 11, 93.	1.4	16
45	Essential Role of Mitochondrial Antiviral Signaling, IFN Regulatory Factor (IRF)3, and IRF7 in <i>Chlamydophila pneumoniae</i> -Mediated IFN-l² Response and Control of Bacterial Replication in Human Endothelial Cells. Journal of Immunology, 2010, 184, 3072-3078.	0.4	38
46	<i>Listeria monocytogenes</i> -Infected Human Peripheral Blood Mononuclear Cells Produce IL-1β, Depending on Listeriolysin O and NLRP3. Journal of Immunology, 2010, 184, 922-930.	0.4	177
47	TLR2- and Nucleotide-Binding Oligomerization Domain 2-Dependent Krüppel-Like Factor 2 Expression Downregulates NF-κB–Related Gene Expression. Journal of Immunology, 2010, 185, 597-604.	0.4	24
48	Innate Immune Recognition in Infectious and Noninfectious Diseases of the Lung. American Journal of Respiratory and Critical Care Medicine, 2010, 181, 1294-1309.	2.5	238
49	Vitamin D receptor binds to the ε germline gene promoter and exhibits transrepressive activity. Journal of Allergy and Clinical Immunology, 2010, 126, 1016-1023.e4.	1.5	40
50	Role of Toll-like receptors, NOD-like receptors and RIG-I-like receptors in endothelial cells and systemic infections. Thrombosis and Haemostasis, 2009, 102, 1103-1109.	1.8	99
51	Statins Control Oxidized LDL-Mediated Histone Modifications and Gene Expression in Cultured Human Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 380-386.	1.1	115
52	Differential requirement for the activation of the inflammasome for processing and release of IL-1Î ² in monocytes and macrophages. Blood, 2009, 113, 2324-2335.	0.6	714
53	CEACAM1 inhibits Toll-like receptor 2–triggered antibacterial responses of human pulmonary epithelial cells. Nature Immunology, 2008, 9, 1270-1278.	7.0	115
54	IFNβ responses induced by intracellular bacteria or cytosolic DNA in different human cells do not require ZBP1 (DLM-1/DAI). Cellular Microbiology, 2008, 10, 2579-2588.	1.1	76

#	Article	IF	CITATIONS
55	NAIP and Ipaf Control <i>Legionella pneumophila</i> Replication in Human Cells. Journal of Immunology, 2008, 180, 6808-6815.	0.4	120
56	Histone Acetylation and Flagellin Are Essential for <i>Legionella pneumophila</i> -Induced Cytokine Expression. Journal of Immunology, 2008, 181, 940-947.	0.4	84
57	Simvastatin Reduces <i>Chlamydophila pneumoniae</i> –Mediated Histone Modifications and Gene Expression in Cultured Human Endothelial Cells. Circulation Research, 2008, 102, 888-895.	2.0	41
58	β-PIX and Rac1 GTPase Mediate Trafficking and Negative Regulation of NOD2. Journal of Immunology, 2008, 181, 2664-2671.	0.4	54
59	Legionella pneumophila-induced PKCα-, MAPK-, and NF-κB-dependent COX-2 expression in human lung epithelium. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 292, L267-L277.	1.3	36
60	The UspA1 Protein ofMoraxella catarrhalisInduces CEACAMâ€1–Dependent Apoptosis in Alveolar Epithelial Cells. Journal of Infectious Diseases, 2007, 195, 1651-1660.	1.9	28
61	Extra- and intracellular innate immune recognition in endothelial cells. Thrombosis and Haemostasis, 2007, 98, 319-326.	1.8	43
62	Moraxella catarrhalis is internalized in respiratory epithelial cells by a trigger-like mechanism and initiates a TLR2- and partly NOD1-dependent inflammatory immune response. Cellular Microbiology, 2007, 9, 694-707.	1.1	106
63	IFN? induction by influenza A virus is mediated by RIG-I which is regulated by the viral NS1 protein. Cellular Microbiology, 2007, 9, 930-938.	1.1	253
64	Extra- and intracellular innate immune recognition in endothelial cells. Thrombosis and Haemostasis, 2007, 98, 319-26.	1.8	19
65	Listeria monocytogenes induced Rac1-dependent signal transduction in endothelial cells. Biochemical Pharmacology, 2006, 72, 1367-1374.	2.0	15
66	Lung epithelium as a sentinel and effector system in pneumonia – molecular mechanisms of pathogen recognition and signal transduction. Respiratory Research, 2006, 7, 97.	1.4	128
67	Streptococcus pneumoniae induced c-Jun-N-terminal kinase- and AP-1 -dependent IL-8 release by lung epithelial BEAS-2B cells. Respiratory Research, 2006, 7, 98.	1.4	59
68	Streptococcus pneumoniae induced p38 MAPK- and NF-κB-dependent COX-2 expression in human lung epithelium. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 290, L1131-L1138.	1.3	62
69	Adhesion of Moraxella catarrhalis to human bronchial epithelium characterized by a novel fluorescence-based assay. Medical Microbiology and Immunology, 2006, 195, 73-83.	2.6	10
70	<i>Listeria monocytogenes</i> Activated p38 MAPK and Induced IL-8 Secretion in a Nucleotide-Binding Oligomerization Domain 1-Dependent Manner in Endothelial Cells. Journal of Immunology, 2006, 176, 484-490.	0.4	182
71	Pneumococci induced TLR- and Rac1-dependent NF-κB-recruitment to the IL-8 promoter in lung epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 290, L730-L737.	1.3	76
72	Legionella pneumophila Induces IFNβ in Lung Epithelial Cells via IPS-1 and IRF3, Which Also Control Bacterial Replication. Journal of Biological Chemistry, 2006, 281, 36173-36179.	1.6	118

#	Article	IF	CITATIONS
73	Legionella pneumophila glucosyltransferase inhibits host elongation factor 1A. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16953-16958.	3.3	139
74	Moraxella catarrhalis induces inflammatory response of bronchial epithelial cells via MAPK and NF-κB activation and histone deacetylase activity reduction. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 290, L818-L826.	1.3	70
75	Intracellular Bacteria Differentially Regulated Endothelial Cytokine Release by MAPK-Dependent Histone Modification. Journal of Immunology, 2005, 175, 2843-2850.	0.4	88
76	Nod1-Mediated Endothelial Cell Activation byChlamydophila pneumoniae. Circulation Research, 2005, 96, 319-326.	2.0	173
77	Streptococcus pneumoniae-induced p38 MAPK-dependent Phosphorylation of RelA at the Interleukin-8 Promotor. Journal of Biological Chemistry, 2004, 279, 53241-53247.	1.6	109
78	Nucleotide-binding Oligomerization Domain Proteins Are Innate Immune Receptors for Internalized Streptococcus pneumoniae. Journal of Biological Chemistry, 2004, 279, 36426-36432.	1.6	286
79	Toll-like Receptor-2 Mediates Treponema Glycolipid and Lipoteichoic Acid-induced NF-κB Translocation. Journal of Biological Chemistry, 2001, 276, 22041-22047.	1.6	197
80	Activation of Mitogen-activated Protein Kinases p42/44, p38, and Stress-activated Protein Kinases in Myelo-monocytic Cells byTreponema Lipoteichoic Acid. Journal of Biological Chemistry, 2001, 276, 9713-9719.	1.6	31
81	Involvement of Lipopolysaccharide Binding Protein, CD14, and Toll-Like Receptors in the Initiation of Innate Immune Responses by <i>Treponema</i> Glycolipids. Journal of Immunology, 2000, 165, 2683-2693.	0.4	131
82	Endothelin B Receptor Immunodynamics in Pulmonary Arterial Hypertension. Frontiers in Immunology, 0, 13, .	2.2	10