
Satoshi Wada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7792007/publications.pdf Version: 2024-02-01

SATOSHI \λ/ADA

#	Article	IF	CITATIONS
1	Enhanced Piezoelectric Property of Barium Titanate Single Crystals with Engineered Domain Configurations. Japanese Journal of Applied Physics, 1999, 38, 5505-5511.	1.5	346
2	Enhanced piezoelectric properties of barium titanate single crystals with different engineered-domain sizes. Journal of Applied Physics, 2005, 98, 014109.	2.5	319
3	Crystallographically engineered BaTiO3 single crystals for high-performance piezoelectrics. Journal of Applied Physics, 1999, 86, 2746-2750.	2.5	272
4	Preparation of nm-Sized Barium Titanate Fine Particles and Their Powder Dielectric Properties. Japanese Journal of Applied Physics, 2003, 42, 6188-6195.	1.5	201
5	Composite structure and size effect of barium titanate nanoparticles. Applied Physics Letters, 2008, 93, .	3.3	189
6	Preparation of [110] Grain Oriented Barium Titanate Ceramics by Templated Grain Growth Method and Their Piezoelectric Properties. Japanese Journal of Applied Physics, 2007, 46, 7039-7043.	1.5	180
7	Size effect on the crystal structure of barium titanate nanoparticles. Journal of Applied Physics, 2005, 98, 014313.	2.5	169
8	Size and temperature induced phase transition behaviors of barium titanate nanoparticles. Journal of Applied Physics, 2006, 99, 054311.	2.5	141
9	Engineered domain configuration in rhombohedral PZN-PT single crystals and their ferroelectric related properties. Ferroelectrics, 1999, 221, 147-155.	0.6	137
10	Influence of CuO on the Structure and Piezoelectric Properties of the Alkaline Niobate-Based Lead-Free Ceramics. Journal of the American Ceramic Society, 2007, 90, 1787-1791.	3.8	128
11	E-field induced phase transition in ã€^001〉-oriented rhombohedral 0.92Pb(Zn1/3Nb2/3)O3–0.08PbTiO3 crystals. Journal of Applied Physics, 1999, 85, 1080-1083.	2.5	127
12	Poling Treatment and Piezoelectric Properties of Potassium Niobate Ferroelectric Single Crystals. Japanese Journal of Applied Physics, 2001, 40, 5690-5697.	1.5	116
13	Analysis of lattice vibration in fine particles of barium titanate single crystal including the lattice hydroxyl group. Journal of Applied Physics, 1996, 80, 5223-5233.	2.5	106
14	In situ growth BaTiO3 nanocubes and their superlattice from an aqueous process. Nanoscale, 2012, 4, 1344.	5.6	105
15	Growth condition dependence of morphology and electric properties of ZnO films on sapphire substrates prepared by molecular beam epitaxy. Journal of Applied Physics, 2003, 93, 1961-1965.	2.5	100
16	Role of Lattice Defects in the Size Effect of Barium Titanate Fine Particles. Journal of the Ceramic Society of Japan, 1996, 104, 383-392.	1.3	98
17	Structural and electrical characteristics of potential candidate lead-free BiFeO3-BaTiO3 piezoelectric ceramics. Journal of Applied Physics, 2017, 122, .	2.5	95
18	Characteristics of CeO ₂ Nanocubes and Related Polyhedra Prepared by Using a Liquidâ^'Liquid Interface. Crystal Growth and Design, 2010, 10, 4537-4541.	3.0	94

#	Article	IF	CITATIONS
19	Enhanced Piezoelectric Properties of Piezoelectric Single Crystals by Domain Engineering. Materials Transactions, 2004, 45, 178-187.	1.2	86
20	Artificial ferroelectricity in perovskite superlattices. Applied Physics Letters, 2004, 85, 5016-5018.	3.3	81
21	Enhanced Piezoelectric Properties of Potassium Niobate Single Crystals by Domain Engineering. Japanese Journal of Applied Physics, 2004, 43, 6692-6700.	1.5	80
22	Piezoelectric properties of high Curie temperature barium titanate–bismuth perovskite-type oxide system ceramics. Journal of Applied Physics, 2010, 108, .	2.5	78
23	Growth of monodispersed SrTiO3 nanocubes by thermohydrolysis method. CrystEngComm, 2011, 13, 3878.	2.6	78
24	Change of Macroscopic and Microscopic Symmetry of Barium Titanate Single Crystal around Curie Temperature. Japanese Journal of Applied Physics, 1998, 37, 5385-5393.	1.5	76
25	Dielectric properties of BaTiO[sub 3]/SrTiO[sub 3] superlattices measured with interdigital electrodes and electromagnetic field analysis. Journal of Applied Physics, 2003, 94, 7923.	2.5	75
26	Molecular regulatory mechanisms of osteoclastogenesis through cytoprotective enzymes. Redox Biology, 2016, 8, 186-191.	9.0	74
27	Dielectric Properties of BaTiO3-Based Ceramics under High Electric Field. Japanese Journal of Applied Physics, 2002, 41, 6929-6933.	1.5	73
28	The Effect of the Particle Sizes and the Correlational Sizes of Dipoles Introduced by the Lattice Defects on the Crystal Structure of Barium Titanate Fine Particles. Japanese Journal of Applied Physics, 1995, 34, 5368-5379.	1.5	68
29	Dielectric and optical properties of BaTiO3/SrTiO3 and BaTiO3/BaZrO3 superlattices. Journal of Applied Physics, 2002, 91, 2284-2289.	2.5	67
30	Domain size engineering in tetragonal Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals. Journal of Applied Physics, 2011, 110, 84110-841106.	2.5	65
31	Enhancement of Q _m by co-doping of Li and Cu to potassium sodium niobate lead-free ceramics. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55, 980-987.	3.0	61
32	Alumina Thick Films as Integral Substrates Using Aerosol Deposition Method. Japanese Journal of Applied Physics, 2004, 43, 5414-5418.	1.5	57
33	Preparation of Barium Titanate Fine Particles by Hydrothermal Method and Their Characterization. Journal of the Ceramic Society of Japan, 1995, 103, 1220-1227.	1.3	56
34	A new effect of ultrasonication on the formation of BaTiO3 nanoparticles. Ultrasonics Sonochemistry, 2010, 17, 310-314.	8.2	52
35	RANKL induces Bach1 nuclear import and attenuates Nrf2â€mediated antioxidant enzymes, thereby augmenting intracellular reactive oxygen species signaling and osteoclastogenesis in mice. FASEB Journal, 2017, 31, 781-792.	0.5	52
36	Evaluation and Statistical Analysis of Dielectric Permittivity of BaTiO3 Powders. Journal of the American Ceramic Society, 2006, 89, 1337-1341.	3.8	50

#	Article	IF	CITATIONS
37	Dimethyl fumarate inhibits osteoclasts <i>via</i> attenuation of reactive oxygen species signalling by augmented antioxidation. Journal of Cellular and Molecular Medicine, 2018, 22, 1138-1147.	3.6	50
38	Preparation of Pb(Zr0.53Ti0.47)O3Thick Films by an Interfacial Polymerization Method on Silicon Substrates and Their Electric and Piezoelectric Properties. Japanese Journal of Applied Physics, 2000, 39, 5604-5608.	1.5	49
39	Broken symmetry in low-temperature BaTiO3 phases: Strain effects probed by Raman scattering. Applied Physics Letters, 1999, 75, 3393-3395.	3.3	47
40	Characteristics of Multilayered Nanostructures of CeO ₂ Nanocrystals Self-Assembled on an Enlarged Liquid–Gas Interface. Crystal Growth and Design, 2011, 11, 4129-4134.	3.0	47
41	Crystal structure, electron density and diffusion path of the fast-ion conductor copper iodide Cul. Journal of Materials Chemistry, 2006, 16, 4393.	6.7	46
42	Gas-sensing properties of ultrathin zinc oxide films. Sensors and Actuators B: Chemical, 1993, 14, 594-595.	7.8	45
43	Revealing the role of heat treatment in enhancement of electrical properties of lead-free piezoelectric ceramics. Journal of Applied Physics, 2017, 122, .	2.5	45
44	Enhanced piezoelectric response of BaTiO3–KNbO3 composites. Applied Physics Letters, 2011, 99, .	3.3	44
45	Structural, Dielectric, and Piezoelectric Properties of Mn-Doped BaTiO ₃ –Bi(Mg _{1/2} 1/2)O ₃ –BiFeO ₃ Ceramics. Japanese Journal of Applied Physics, 2011, 50, 09ND07.	1.5	42
46	Structural, Dielectric, and Piezoelectric Properties of Mn-Doped BaTiO ₃ –Bi(Mg _{1/2} Ti _{1/2})O ₃ –BiFeO ₃ Ceramic Japanese Journal of Applied Physics, 2011, 50, 09ND07.	CS1.5	42
47	Dielectric relaxation in gigahertz region and phase transition of BaTiO3-based ceramics. Journal of Applied Physics, 2006, 100, 024106.	2.5	41
48	A new approach for the preparation of SrTiO3 nanocubes. Ceramics International, 2013, 39, 3231-3234.	4.8	41
49	Effects of Manganese Addition on Piezoelectric Properties of the (K, Na, Li)(Nb, Ta, Sb)O3 Lead-Free Ceramics. Journal of the Ceramic Society of Japan, 2007, 115, 250-253.	1.3	40
50	Electric field induced lattice strain in pseudocubic Bi(Mg1/2Ti1/2)O3-modified BaTiO3-BiFeO3 piezoelectric ceramics. Applied Physics Letters, 2016, 108, .	3.3	40
51	Nano-sized cube-shaped single crystalline oxides and their potentials; composition, assembly and functions. Advanced Powder Technology, 2014, 25, 1401-1414.	4.1	39
52	Fabrication of [100]-oriented bismuth sodium titanate ceramics with small grain size and high density for piezoelectric materials. Journal of the European Ceramic Society, 2014, 34, 1169-1180.	5.7	38
53	Structural, dielectric, and piezoelectric properties of BaTiO3-Bi(Ni1/2Ti1/2)O3 ceramics. Journal of the Ceramic Society of Japan, 2012, 120, 30-34.	1.1	37
54	Alendronate promotes bone formation by inhibiting protein prenylation in osteoblasts in rat tooth replantation model. Journal of Endocrinology, 2013, 219, 145-158.	2.6	37

#	Article	IF	CITATIONS
55	Domain Contribution to Direct and Converse Piezoelectric Effects of PZT Ceramics. Japanese Journal of Applied Physics, 2004, 43, 7618-7622.	1.5	36
56	Mechanism of Capacitance Aging under DC Electric Fields in Multilayer Ceramic Capacitors with X7R Characteristics. Japanese Journal of Applied Physics, 2005, 44, 6989-6994.	1.5	36
57	Domain Wall Engineering in Lead-Free Piezoelectric Crystals. Ferroelectrics, 2007, 355, 37-49.	0.6	36
58	Growth of BaTiO3 nanoparticles in ethanol–water mixture solvent under an ultrasound-assisted synthesis. Chemical Engineering Journal, 2011, 170, 333-337.	12.7	36
59	Structural and dielectric properties of perovskite-type artificial superlattices. Thin Solid Films, 2006, 509, 13-17.	1.8	35
60	Preparation of Barium Titanate–Potassium Niobate Solid Solution System Ceramics and Their Piezoelectric Properties. Japanese Journal of Applied Physics, 2008, 47, 7678-7684.	1.5	35
61	Oriented aggregation of BaTiO3 nanocrystals and large particles in the ultrasonic-assistant synthesis. CrystEngComm, 2010, 12, 3441.	2.6	34
62	Microstructure of BaTiO ₃ –Bi(Mg _{1/2} Ti _{1/2})O ₃ –BiFeO ₃ Piezoele Ceramics. Japanese Journal of Applied Physics, 2012, 51, 09LD04.	ectr\$c	34
63	Preparation and crystal structure of a new tin titanate containing Sn2+; Sn2TiO4. Materials Research Bulletin, 2009, 44, 1298-1300.	5.2	33
64	Piezoelectricity in perovskite-type pseudo-cubic ferroelectrics by partial ordering of off-centered cations. Communications Materials, 2020, 1, .	6.9	33
65	Enhanced Piezoelectric Property of BaTiO ₃ Single Crystals with the Different Domain Sizes. Key Engineering Materials, 2004, 269, 19-22.	0.4	32
66	Dielectric Spectra of BaTiO3-Based Materials Measured by Impedance Analyzers up to 1 GHz. Japanese Journal of Applied Physics, 2003, 42, 6143-6148.	1.5	31
67	BaTiO ₃ nanocube and assembly to ferroelectric supracrystals. Journal of Materials Research, 2013, 28, 2932-2945.	2.6	31
68	Influence of quenching temperature on piezoelectric and ferroelectrics properties in BaTiO3-Bi(Mg1/2Ti1/2)O3-BiFeO3 ceramics. Ceramics International, 2018, 44, S199-S202.	4.8	31
69	Thermal Reliability of Alkaline Niobate-Based Lead-Free Piezoelectric Ceramics. Japanese Journal of Applied Physics, 2009, 48, 09KD08.	1.5	30
70	Preparation of Highly Dispersed Barium Titanate Nanoparticles from Barium Titanyl Oxalate Nanoparticles and Their Dielectric Properties. Japanese Journal of Applied Physics, 2008, 47, 7612.	1.5	28
71	Enhancement in the piezoelectric properties of BaTiO3–Bi(Mg1/2Ti1/2)O3–BiFeO3 system ceramics by nanodomain. Ceramics International, 2013, 39, S695-S699.	4.8	27
72	Intrinsic Elastic, Dielectric, and Piezoelectric Losses in Lead Zirconate Titanate Ceramics Determined by an Immittanceâ€Fitting Method. Journal of the American Ceramic Society, 2002, 85, 1993-1996.	3.8	25

#	Article	IF	CITATIONS
73	Synthesis of Silver-Strontium Titanate Hybrid Nanoparticles by Sol-Gel-Hydrothermal Method. Nanomaterials, 2015, 5, 386-397.	4.1	25
74	Preparation of barium titanate nanocube particles by solvothermal method and their characterization. Journal of Materials Science, 2009, 44, 5161-5166.	3.7	24
75	Effect of thermal annealing on crystal structures and electrical properties in BaTiO3 ceramics. Journal of Applied Physics, 2018, 124, .	2.5	24
76	Ultra Wide Range Dielectric Spectroscopy of Strontium Titanate-Strontium Zirconate Solid Solution. Journal of the Ceramic Society of Japan, 2006, 114, 774-781.	1.3	23
77	Growth of Large-Scale Silver Lithium Niobate Single Crystals and Their Piezoelectric Properties. Japanese Journal of Applied Physics, 2006, 45, 7389-7396.	1.5	23
78	Preparation of barium titanate-bismuth magnesium titanate ceramics with high Curie temperature and their piezoelectric properties. Journal of the Ceramic Society of Japan, 2010, 118, 683-687.	1.1	23
79	Characterization of Bi and Fe co-doped PZT capacitors for FeRAM. Science and Technology of Advanced Materials, 2010, 11, 044402.	6.1	23
80	Nrf2 activation in osteoblasts suppresses osteoclastogenesis via inhibiting IL-6 expression Bone Reports, 2019, 11, 100228.	0.4	23
81	Structural Transformation of Hexagonal (0001)BaTiO ₃ Ceramics to Tetragonal (111)BaTiO ₃ Ceramics. Japanese Journal of Applied Physics, 2011, 50, 09ND01.	1.5	22
82	Enhanced extrinsic domain switching strain in core–shell structured BaTiO 3 –KNbO 3 ceramics. Acta Materialia, 2015, 98, 182-189.	7.9	22
83	Anomalous dielectric and optical properties in perovskite-type artificial superlattices. Science and Technology of Advanced Materials, 2004, 5, 425-429.	6.1	21
84	Preparation of barium titanate nanoparticle sphere arrays and their dielectric properties. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55, 1895-1899.	3.0	21
85	Preparation of Barium Titanate and Strontium Titanate Nanocube Particles and their Accumulation Using Smart Glue. Key Engineering Materials, 2009, 421-422, 514-517.	0.4	21
86	Fabrication of Dielectric Nanocubes in Ordered Structure by Capillary Force Assisted Self-Assembly Method and Their Piezoresponse Properties. Journal of Nanoscience and Nanotechnology, 2012, 12, 3853-3861.	0.9	21
87	Influence of grain size effect and Ba/Ti ratios on dielectric, ferroelectric, and piezoelectric properties of BaTiO ₃ ceramics. Japanese Journal of Applied Physics, 2019, 58, SLLC05.	1.5	21
88	Preparation of Barium Titanate–Potassium Niobate Nanostructured Ceramics with Artificial Morphotropic Phase Boundary Structure By Solvothermal Method. Japanese Journal of Applied Physics, 2011, 50, 09NC08.	1.5	20
89	Microstructure of BaTiO ₃ –Bi(Mg _{1/2} Ti _{1/2})O ₃ –BiFeO ₃ Piezoel Ceramics. Japanese Journal of Applied Physics, 2012, 51, 09LD04.	ectrac	20
90	Preparation of BaZrO3 cubes by composite-hydroxide-mediated approach at low temperature. Journal of the Ceramic Society of Japan, 2011, 119, 532-534.	1.1	19

#	Article	IF	CITATIONS
91	Low-temperature synthesis of SrZrO3 nanocubes by the composite-hydroxide-mediated approach. Journal of Crystal Growth, 2013, 376, 35-40.	1.5	19
92	In-situ electric field induced lattice strain response observation in BiFeO ₃ –BaTiO ₃ lead-free piezoelectric ceramics. Journal of the Ceramic Society of Japan, 2018, 126, 316-320.	1.1	19
93	Characterization of Dielectric Nanocubes Ordered Structures Fabricated by Solution Self-Assembly Process. Japanese Journal of Applied Physics, 2011, 50, 09NC09.	1.5	19
94	Preparation of Spherical Al ₂ O ₃ Particle Dispersed Hydroxyapatite Ceramics. Journal of the Ceramic Society of Japan, 1993, 101, 923-927.	1.3	18
95	Piezoelectric single crystal Pb[(Zn1/3Nb2/3)0.93Ti0.07] O3 (PZNT 93/7) for ultrasonic transducers. Journal of Crystal Growth, 2002, 237-239, 848-852.	1.5	18
96	Relaxor Characteristics of BaTiO ₃ -Bi(Mg _{1/2} Ti _{1/2})O _{3Ceramics. Key Engineering Materials, 0, 485, 31-34.}	su b& gt;	18
97	Single Local Injection of Epigallocatechin Gallate-Modified Gelatin Attenuates Bone Resorption and Orthodontic Tooth Movement in Mice. Polymers, 2018, 10, 1384.	4.5	18
98	Crystal Structure of BaTiO ₃ –KNbO ₃ Nanocomposite Ceramics: Relationship between Dielectric Property and Structure of Heteroepitaxial Interface. Japanese Journal of Applied Physics, 2012, 51, 09LE05.	1.5	17
99	Preparation of nm-Sized BaTiO ₃ Crystallites by The 2-Step Thermal Decomposition of Barium Titanyl Oxalate and their Dielectric Properties. Key Engineering Materials, 2003, 248, 19-22.	0.4	16
100	Characteristics of BaTiO ₃ Particles Sonochemically Synthesized in Aqueous Solution. Japanese Journal of Applied Physics, 2009, 48, 09KC02.	1.5	16
101	Rising Tc in Bi and Cu co-doped BaTiO3. Materials Letters, 2010, 64, 383-385.	2.6	16
102	Compression and tension variably alter Osteoprotegerin expression via miR-3198 in periodontal ligament cells. BMC Molecular and Cell Biology, 2019, 20, 6.	2.0	16
103	Synthesis of Nanometer-Sized Barium Titanate Crystallites Using a Modified Low Temperature Direct Synthesis Method and Their Characterization Journal of the Ceramic Society of Japan, 2000, 108, 728-735.	1.3	15
104	Mechanism of capacitance aging under DC-bias field in X7R-MLCCs. Journal of Electroceramics, 2008, 21, 17-21.	2.0	15
105	Electron Charge Density Study of (Na1-xKx)NbO3in Cubic Structure. Japanese Journal of Applied Physics, 2008, 47, 7745-7748.	1.5	15
106	Nanostructure Control of Barium Titanate–Potassium Niobate Nanocomplex Ceramics and Their Enhanced Ferroelectric Properties. Japanese Journal of Applied Physics, 2012, 51, 09LC05.	1.5	15
107	Growth of (111)-oriented BaTiO3–Bi(Mg0.5Ti0.5)O3 epitaxial films and their crystal structure and electrical property characterizations. Journal of Applied Physics, 2012, 111, .	2.5	15
108	Solvothermal synthesis of KNbO ₃ nanocubes using various organic solvents. Journal of the Ceramic Society of Japan, 2014, 122, 547-551.	1.1	15

#	Article	IF	CITATIONS
109	Grain-size dependence of piezoelectric properties in thermally annealed BaTiO ₃ ceramics. Journal of the Ceramic Society of Japan, 2018, 126, 536-541.	1.1	15
110	H3K9MTase C9a is essential for the differentiation and growth of tenocytes in vitro. Histochemistry and Cell Biology, 2015, 144, 13-20.	1.7	14
111	Fabrication of lead-free piezoelectric (Bi0.5Na0.5)TiO3–BaTiO3 ceramics using electrophoretic deposition. Journal of Materials Science, 2018, 53, 2396-2404.	3.7	14
112	Bach1 Inhibition Suppresses Osteoclastogenesis via Reduction of the Signaling via Reactive Oxygen Species by Reinforced Antioxidation. Frontiers in Cell and Developmental Biology, 2020, 8, 740.	3.7	14
113	Domain Switching Kinetics of Lead Zirconate Titinate Thin Films. Japanese Journal of Applied Physics, 2003, 42, L1519-L1522.	1.5	13
114	Preparation and Dielectric Properties of SrZrO3/SrTiO3Superlattices. Japanese Journal of Applied Physics, 2004, 43, 6530-6534.	1.5	13
115	Preparation and Dielectric Properties of 3D Barium Titanate Colloidal Sphere Array. Key Engineering Materials, 2006, 320, 127-130.	0.4	13
116	Preparation of Barium Titanate/Strontium Titanate Multilayered Nanoparticles. Key Engineering Materials, 0, 485, 305-308.	0.4	13
117	Bonding Preference of Carbon, Nitrogen, and Oxygen in Niobium-Based Rock-Salt Structures. Inorganic Chemistry, 2013, 52, 9699-9701.	4.0	13
118	Preparation of KNbO ₃ nanocubes using a solvothermal method at low temperature. Journal of the Ceramic Society of Japan, 2013, 121, 693-697.	1.1	13
119	A-Disintegrin and Metalloproteinase (ADAM) 17 Enzymatically Degrades Interferon-gamma. Scientific Reports, 2016, 6, 32259.	3.3	13
120	Preparation of Barium Titanate–Potassium Niobate Nanostructured Ceramics with Artificial Morphotropic Phase Boundary Structure By Solvothermal Method. Japanese Journal of Applied Physics, 2011, 50, 09NC08.	1.5	13
121	DC-plasma-assisted synthesis of diamond and alumina using liquid. Journal of the European Ceramic Society, 1998, 18, 141-145.	5.7	12
122	High frequency measurements of P-E hysteresis curves of PZT thin films. Ferroelectrics, 2001, 259, 43-48.	0.6	12
123	Preparation of PZT Thick Films by an Interfacial Polymerization Method. Journal of Sol-Gel Science and Technology, 2003, 26, 1037-1040.	2.4	12
124	Size Effect of Dielectric Properties for Barium Titanate Particles and Its Model. Key Engineering Materials, 2006, 301, 27-30.	0.4	12
125	Analysis of Composite Structures on Barium Titanate Fine Particles Using Synchrotron Radiation. Key Engineering Materials, 2006, 301, 239-242.	0.4	12
126	Domain Wall Engineering in Lead-Free Piezoelectric Materials. Ferroelectrics, 2009, 389, 3-9.	0.6	12

#	Article	IF	CITATIONS
127	Piezoelectric Properties of Porous Potassium Niobate System Ceramics. Key Engineering Materials, 0, 485, 61-64.	0.4	12
128	Effect of sintering condition and V-doping on the piezoelectric properties of BaTiO ₃ –Bi(Mg _{1/2} Ti _{1/2})O _{3& ceramics. Journal of the Ceramic Society of Japan, 2013, 121, 589-592.}	lt; /su b&g	;â€2BiFeO<
129	Chemical composition dependence of ferroelectric properties for BaTiO ₃ –Bi(Mg _{1/2} Ti _{1/2})O _{3& lead-free piezoelectric ceramics. Journal of the Ceramic Society of Japan, 2013, 121, 855-858.}	.lt; įsu b&gi	;â€2BiFeO<
130	Efficient expansion of mouse primary tenocytes using a novel collagen gel culture method. Histochemistry and Cell Biology, 2014, 142, 205-215.	1.7	12
131	A-site cation off-centering contribution on ferroelectricity and piezoelectricity in pseudo-cubic perovskite structure of Bi-based lead-free piezoelectrics. Scripta Materialia, 2021, 205, 114176.	5.2	12
132	Fabrication and Characterization of Dielectric Nanocube Self-Assembled Structures. Japanese Journal of Applied Physics, 2012, 51, 09LC03.	1.5	12
133	Nanostructure Control of Barium Titanate–Potassium Niobate Nanocomplex Ceramics and Their Enhanced Ferroelectric Properties. Japanese Journal of Applied Physics, 2012, 51, 09LC05.	1.5	12
134	Particle Size and Temperature Dependence of THz-Region Dielectric Properties for BaTiO3Nanoparticles. Ferroelectrics, 2007, 353, 55-62.	0.6	11
135	Characterization of Dielectric Nanocubes Ordered Structures Fabricated by Solution Self-Assembly Process. Japanese Journal of Applied Physics, 2011, 50, 09NC09.	1.5	11
136	THz region dielectric properties of barium titanate fine particles using infrared reflection method. Journal of the European Ceramic Society, 2006, 26, 1807-1810.	5.7	10
137	Preparation of barium titanate-potassium niobate ceramics using interface engineering and their piezoelectric properties. Journal of the Ceramic Society of Japan, 2010, 118, 691-695.	1.1	10
138	Preparation of barium titanate porous ceramics and their sensor properties. Journal of the Ceramic Society of Japan, 2013, 121, 698-701.	1.1	10
139	Low-temperature fabrication of titanium metal/barium titanate composite capacitors via hydrothermal method and their dielectric properties. Journal of the Ceramic Society of Japan, 2014, 122, 447-451.	1.1	10
140	Novel device for application of continuous mechanical tensile strain to mammalian cells. Biology Open, 2017, 6, 518-524.	1.2	10
141	Thermal annealing induced recovery of damaged surface layer for enhanced ferroelectricity in Bi-based ceramics. Japanese Journal of Applied Physics, 2019, 58, SLLD04.	1.5	10
142	Sintering of Hydroxyapatite Powders with SiC Platelets Dispersion. Journal of the Ceramic Society of Japan, 1992, 100, 1175-1178.	1.3	9
143	Size dependence of THz region dielectric properties for barium titanate fine particles. Journal of Electroceramics, 2008, 21, 198-201.	2.0	9
144	Dielectric properties of BaTiO3-based ceramics measured up to GHz region. Journal of Electroceramics, 2008, 21, 427-430.	2.0	9

#	Article	IF	CITATIONS
145	Preparation of Barium Titanate Nanocube Particles by Solvothermal Method and their Characterization. Key Engineering Materials, 2008, 388, 111-114.	0.4	9
146	Enhanced Piezoelectric Properties of Barium Titanate-Potassium Niobate Solid Solution System Ceramics by MPB Engineering. Key Engineering Materials, 2010, 445, 11-14.	0.4	9
147	Microstructure Control of Barium Titanate – Potassium Niobate Solid Solution System Ceramics by MPB Engineering and their Piezoelectric Properties. Key Engineering Materials, 2011, 485, 89-92.	0.4	9
148	Electronic Polarization in KNbO ₃ Visualized by Synchrotron Radiation Powder Diffraction. Japanese Journal of Applied Physics, 2013, 52, 09KF04.	1.5	9
149	Effects of AC- and DC-bias field poling on piezoelectric properties of Bi-based ceramics. Journal of the Ceramic Society of Japan, 2019, 127, 353-356.	1.1	9
150	Development of an apparatus for Bragg coherent X-ray diffraction imaging, and its application to the three dimensional imaging of BaTiO ₃ nano-crystals. Japanese Journal of Applied Physics, 2019, 58, SLLA05.	1.5	9
151	Domain Switching Properties in PZN-PT Single Crystals with Engineered Domain Configurations. Key Engineering Materials, 2002, 214-215, 9-14.	0.4	8
152	Fabrication and Characterization of Dielectric Nanocube Self-Assembled Structures. Japanese Journal of Applied Physics, 2012, 51, 09LC03.	1.5	8
153	Fabrication of (111)-oriented Tetragonal BaTiO ₃ Ceramics by an Electrophoretic Deposition in a High Magnetic Field. Transactions of the Materials Research Society of Japan, 2015, 40, 223-226.	0.2	8
154	Effect of A-site off-stoichiometry on ferroelectric and piezoelectric properties of BaTiO ₃ –Bi(Mg _{1/2} Ti _{1/2})O _{3 ceramics. Journal of the Ceramic Society of Japan, 2019, 127, 369-373.}	3< / sub&g	t;–BiFeO&li
155	Structural Transformation of Hexagonal (0001)BaTiO ₃ Ceramics to Tetragonal (111)BaTiO ₃ Ceramics. Japanese Journal of Applied Physics, 2011, 50, 09ND01.	1.5	8
156	Mn–Nb co-doping in barium titanate ceramics by different solid-state reaction routes for temperature stable and DC-bias free dielectrics. Ceramics International, 2022, 48, 2154-2160.	4.8	8
157	Synthesis of Diamond by DC Plasma Chemical Vapor Deposition above the Surface of a Water-Ethylene Glycol Solution. Japanese Journal of Applied Physics, 1997, 36, L504-L506.	1.5	7
158	Computer Simulation of Polarization vs. Electric-Field Curves of Non-Linear Dielectrics and Macromodel for SPICE simulator. Japanese Journal of Applied Physics, 2003, 42, 6983-6987.	1.5	7
159	Temperature dependence of dielectric permittivity of perovskite-type artificial superlattices. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54, 2541-2547.	3.0	7
160	Local structure analysis of KNbO3nanocubes by solvothermal synthesis. Japanese Journal of Applied Physics, 2015, 54, 10NC01.	1.5	7
161	Dielectric Properties of BaTiO ₃ -KNbO ₃ Composites. Ferroelectrics, 2017, 512, 8-13.	0.6	7
162	Annexin A5 Involvement in Bone Overgrowth at the Enthesis. Journal of Bone and Mineral Research, 2018, 33, 1532-1543.	2.8	7

#	Article	IF	CITATIONS
163	Preparation and investigation of hexagonal-tetragonal BaTiO ₃ powders. Journal of the Ceramic Society of Japan, 2021, 129, 91-96.	1.1	7
164	Bragg coherent diffraction imaging allowing simultaneous retrieval of three-dimensional shape and strain distribution for 40–500Ânm particles. Japanese Journal of Applied Physics, 2021, 60, SFFA07.	1.5	7
165	Material softening by cation off-centering in Bi-based lead-free piezoelectric ceramics. Japanese Journal of Applied Physics, 2021, 60, SFFD01.	1.5	7
166	Fabrication of (Bi0.5K0.5)TiO3 modified BaTiO3-Bi(Mg0.5Ti0.5)O3-BiFeO3 piezoelectric ceramics. Journal of the European Ceramic Society, 2021, 41, 4108-4115.	5.7	7
167	Partial oxidation of methane over fine particles of various amorphous oxides including lanthanum. Catalysis Letters, 1991, 8, 131-137.	2.6	6
168	Preparation of Potassium Niobate Single-Domain Crystals and Their Piezoelectric Properties. Ferroelectrics, 2003, 292, 127-136.	0.6	6
169	Microstrip Band Pass Filter of GHz Region Employing Aerosol-Deposited Alumina Thick Films. Integrated Ferroelectrics, 2004, 66, 301-310.	0.7	6
170	Particle Structure Analysis of Highly-Dispersed Barium Titanate Nanoparticles Obtained from Barium Titanyl Oxalate Nanoparticles and their Dielectric Properties. Key Engineering Materials, 0, 421-422, 506-509.	0.4	6
171	Fabrication of 〈110〉 grain-oriented 0.15BaTiO3–0.85(Bi0.5Na0.5)TiO3ceramics by a reactive templated growth method. Japanese Journal of Applied Physics, 2017, 56, 10PD06.	grain 1.5	6
172	Domain switching properties of 92%PZN-8%PT single crystals as a function of crystallographic orientations. Ferroelectrics, 2001, 261, 305-310.	0.6	5
173	Diamond synthesis by plasma jet above a liquid surface. Journal of the European Ceramic Society, 2001, 21, 331-334.	5.7	5
174	Dielectric Spectra of BaTiO ₃ -Based Ceramics Measured by Impedance Analyzer Using Micro Planar Electrodes. Key Engineering Materials, 2006, 301, 129-134.	0.4	5
175	Phase Transition Behavior of Barium Titanate Nanoparticles. Key Engineering Materials, 2006, 320, 131-134.	0.4	5
176	Phase Diagram and Microstructure Analysis of Barium Titanate – Potassium Niobate System Piezoelectric Ceramics. Key Engineering Materials, 2009, 421-422, 34-37.	0.4	5
177	Microstructures of lanthanum nickel oxide particles with crystal facets synthesized in molten chlorides. Journal of the Ceramic Society of Japan, 2015, 123, 351-354.	1.1	5
178	Fabrication and piezoelectric properties of BaTiO 3 /BaTiO 3 -Bi(Mg 1/2 Ti 1/2)O 3 -BiFeO 3 composites. Ceramics International, 2018, 44, 10657-10662.	4.8	5
179	Effect of powder size in BiFeO ₃ -based piezoelectric ceramics fabricated by spark plasma sintering. Journal of the Ceramic Society of Japan, 2018, 126, 311-315.	1.1	5
180	Optimization of preparation conditions of highly textured piezoelectric (Bi _{0.5} K _{0.5})TiO ₃ ceramics. Journal of the Ceramic Society of Japan, 2019, 127, 362-368.	1.1	5

#	Article	IF	CITATIONS
181	Structural investigation of ferroelectric BiFeO3–BaTiO3 solid solutions near the rhombohedral–pseudocubic phase boundary. Applied Physics Letters, 2020, 116, .	3.3	5
182	Variation of leakage current conduction mechanism by heat treatment in Bi-based lead-free piezoelectric ceramics. Journal of Applied Physics, 2021, 129, .	2.5	5
183	The Dielectric and Piezoelectric Properties of KNbO ₃ / BaTiO ₃ Composites With A Wide BaTiO ₃ Size Distribution. Transactions of the Materials Research Society of Japan, 2013, 38, 57-60.	0.2	5
184	Crystal Structure of BaTiO3–KNbO3Nanocomposite Ceramics: Relationship between Dielectric Property and Structure of Heteroepitaxial Interface. Japanese Journal of Applied Physics, 2012, 51, 09LE05.	1.5	5
185	Synthesis of nm-Sized Ferroelectric Crystallites Using a New LTDS Method and Their Characterization. Key Engineering Materials, 2000, 181-182, 19-22.	0.4	4
186	Frequency Dependence of P-E Hysteresis Curves in PZT Thin Films. Key Engineering Materials, 2002, 214-215, 123-128.	0.4	4
187	Theoretical calculation of the resonant frequency temperature dependence for domain-engineered piezoelectric resonators. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 120, 175-180.	3.5	4
188	High-Frequency Dielectric Measurement Using Non-contact Probe for Dielectric Materials. Japanese Journal of Applied Physics, 2006, 45, 3002-3006.	1.5	4
189	Epitaxial growth of winding ZnO nanowires on a single-crystalline substrate. Journal of the Ceramic Society of Japan, 2009, 117, 255-257.	1.1	4
190	Dispersion of barium titanate and strontium titanate nanocubes and their selective accumulations. Journal of the Ceramic Society of Japan, 2010, 118, 688-690.	1.1	4
191	Preparation and Characterization of Grain-Oriented Barium Titanate Ceramics Using Electrophoresis Deposition Method under a High Magnetic Field. Key Engineering Materials, 2011, 485, 313-316.	0.4	4
192	Microstructure Control of Barium Titanate Grain-Oriented Ceramics and their Piezoelectric Properties. Key Engineering Materials, 2011, 485, 77-80.	0.4	4
193	Enhanced piezoelectric properties of barium titanate–potassium niobate nano-structured ceramics by MPB engineering. Ceramics International, 2013, 39, S97-S102.	4.8	4
194	Microstructure and dielectric properties of silver–barium titanate nanocomplex materials by wet chemical approach. Japanese Journal of Applied Physics, 2014, 53, 09PB05.	1.5	4
195	Local structure analysis of BaTiO3–KNbO3solid solution. Japanese Journal of Applied Physics, 2014, 53, 09PD01.	1.5	4
196	Asporin stably expressed in the surface layer of mandibular condylar cartilage and augmented in the deeper layer with age. Bone Reports, 2017, 7, 41-50.	0.4	4
197	Effect of ball-milling time and surfactant content for fabrication of 0.85(Bi _{0.5} Na _{0.5})TiO ₃ :0.15BaTiO <sub& green ceramics by electrophoretic deposition. Journal of the Ceramic Society of Japan, 2018, 126, 542-546.</sub& 	gt;3 <br 1.1	sub>
198	Short- and middle-range order structures of KNbO3 nanocrystals. Japanese Journal of Applied Physics, 2019, 58, SLLA03.	1.5	4

#	Article	IF	CITATIONS
199	Fabrication of Textured BaTiO ₃ Ceramics by Electrophoretic Deposition in A High Magnetic Field using Single-domain Particles. Transactions of the Materials Research Society of Japan, 2013, 38, 41-44.	0.2	4
200	Low-Temperature Fabrication of Titanium Metal/Barium Titanate Composite Capacitors Containing Core-Shell Particles and Their Dielectric Properties. Transactions of the Materials Research Society of Japan, 2014, 39, 181-184.	0.2	4
201	Electrical and Optical Properties of Zinc Oxide Thin Films and Heavily Aluminum-doped Zinc Oxide Thin Films Prepared by Molecular Beam Epitaxy. Materials Research Society Symposia Proceedings, 2002, 744, 1.	0.1	3
202	Evaluation of Dielectric Permittivity of Barium Titanate Fine Powders. Materials Research Society Symposia Proceedings, 2004, 833, 223.	0.1	3
203	Measurement of Micro-Wave Dielectric Properties of SrTiO ₃ Substrate Thin Plates Using Planar Electrodes. Key Engineering Materials, 2004, 269, 215-218.	0.4	3
204	Dielectric Measurement of BaTiO ₃ Powder and Its Statistical Analysis. Key Engineering Materials, 2006, 301, 251-256.	0.4	3
205	Preparation of Barium Titanate Nanoparticles Using Nano-Sized Oxalate and Deposition of their Nanoparticle Dense Films. Key Engineering Materials, 2007, 350, 39-42.	0.4	3
206	Control of Mesoscopic Particle Structure in Barium Titanate Nanoparticles and their Dielectric Properties. Key Engineering Materials, 2007, 350, 59-62.	0.4	3
207	Effect of Small Amount CuO Doping on Microstructure and Properties of the Alkaline Niobate-Based Lead-Free Ceramics. Ferroelectrics, 2007, 358, 153-160.	0.6	3
208	Optical Constants of β-FeSi2Film on Si Substrate Obtained from Transmittance and Reflectance Data and Origin of Urbach Tail. Japanese Journal of Applied Physics, 2007, 46, 2405-2408.	1.5	3
209	Low temperature synthesis of tetragonal BaTiO3 by using molten salt. Journal of the Ceramic Society of Japan, 2010, 118, 738-740.	1.1	3
210	Preparation of Potassium Niobate–Barium Titanate Ceramics Using Well-Dispersed Nanoparticles and their Dielectric Properties. Key Engineering Materials, 0, 485, 39-42.	0.4	3
211	Structural study of heat-treated BaTiO ₃ –KNbO ₃ nanocomposites with heteroepitaxial interface by synchrotron radiation powder diffraction. Journal of the Ceramic Society of Japan, 2013, 121, 602-605.	1.1	3
212	Synthesis of titanium dioxide nanoparticles by solvothermal method with polymer gel. Transactions of the Materials Research Society of Japan, 2014, 39, 451-454.	0.2	3
213	Role of structure gradient region on dielectric properties in Ba(Zr,Ti)O3–KNbO3nanocomposite ceramics. Japanese Journal of Applied Physics, 2015, 54, 10NB04.	1.5	3
214	Synthesis of LaNiO ₃ –(Bi _{1/2} K _{1/2})TiO _{3< core–shell nanoparticles with epitaxial interfaces by the hydrothermal method for use in boundary layer capacitors. Journal of the Ceramic Society of Japan, 2018, 126, 306-310.}	/sub> 1.1	3
215	Mandibular prognathism attenuates brain blood flow induced by chewing. Scientific Reports, 2019, 9, 19104.	3.3	3
216	Phase evolution and <110>â€orientation mechanism in RTGGâ€processed BaTiO 3 ceramics with electrical properties. Journal of the American Ceramic Society, 2021, 104, 4649-4658.	3.8	3

#	Article	IF	CITATIONS
217	Size Dependence of Dielectric Properties for Barium Titanate Nanoparticles Prepared under Various Vacuum Atmospheres. Key Engineering Materials, 2006, 320, 139-142.	0.4	2
218	Development of New Preparation Method for nm-Sized Barium Titanate Particles. Key Engineering Materials, 2006, 301, 215-218.	0.4	2
219	Measurements of Microwave Dielectric Property of Dielectric Thin Layers Using Micro-Sized Planar Electrodes. Key Engineering Materials, 2006, 301, 121-124.	0.4	2
220	Measurement and Analysis of Microwave Dielectric Properties of BaTiO3-Based Ceramics. Ferroelectrics, 2007, 356, 134-139.	0.6	2
221	Dielectric Measurement for Barium Titanate Nanoparticles Using Far Infrared Reflection Method. Key Engineering Materials, 2007, 350, 47-50.	0.4	2
222	Modified thermoelectric figure of merit estimated from enhanced mobility of [100] oriented beta-FeSi2 thin film. Journal of Materials Science: Materials in Electronics, 2008, 19, 311-314.	2.2	2
223	Crystal Structure Analysis of Barium Titanate – Bismuth Perovskite-Type Oxide System Ceramics and their Piezoelectric Property. Key Engineering Materials, 0, 421-422, 38-41.	0.4	2
224	Preparation of Barium Titanate Nanoparticles by Particle Growth Control. Key Engineering Materials, 0, 445, 171-174.	0.4	2
225	Preparation of Barium Titanate Nanoparticles by Particle Growth Control and Their Characterization. Integrated Ferroelectrics, 2010, 114, 35-41.	0.7	2
226	Preparation of Barium Titanate/Strontium Titanate Multilayer Complex Nanoparticles using Nanocube Substrates. IOP Conference Series: Materials Science and Engineering, 2011, 18, 092030.	0.6	2
227	Development of Electric Power Measurement for Energy Harvesting Using Unimorph-Type Piezoceramics. Key Engineering Materials, 2011, 485, 173-176.	0.4	2
228	Preparation and Dielectric Properties of Dense Barium Titanate Nanoparticle Accumulations by Electrophoresis Deposition Method. Key Engineering Materials, 2011, 485, 35-38.	0.4	2
229	Single Phase Formation and Electric Properties of Bismuth Niobium Based Perovskite-Type Oxides. Key Engineering Materials, 0, 485, 81-84.	0.4	2
230	Piezoelectric enhancement of new ceramics with artificial MPB engineering. Sensors and Actuators A: Physical, 2013, 200, 26-30.	4.1	2
231	Preparation of Barium Titanate Grain-Oriented Ceramics by Electrophoresis Deposition Method under High Magnetic Field Using Single-Domain Nanoparticles. Key Engineering Materials, 2013, 582, 27-31.	0.4	2
232	Microstructure and Piezoelectric Properties of BaTiO ₃ -Bi(Mg _{1/2} Ti _{1/2})O ₃ -BiFeO ₃ Ceramics. Key Engineering Materials, 2013, 566, 59-63.	0.4	2
233	Preparation of Potassium Niobate-Coated Barium Titanate Accumulation Ceramics by Solvothermal Synthesis and Enhancement of Piezoelectric Property. Key Engineering Materials, 2013, 566, 76-80.	0.4	2
234	Chemical Composition of Dielectric and Piezoelectric Properties for BaTiO ₃ -Bi (Mg _{1/2} Ti _{1/2})O ₃ -BiFeO _{3System Ceramics. Key Engineering Materials, 0, 582, 84-87.}	&g 4 ;	2

14

#	Article	IF	CITATIONS
235	Hydrothermal Synthesis of BiFeO ₃ Fine Particles. Transactions of the Materials Research Society of Japan, 2013, 38, 53-55.	0.2	2
236	Preparation of Mn-doped (Bi _{0.5} K _{0.5})TiO ₃ -Bi(Mg _{0.5} Ti _{0.5})O _{3Ceramics Using BiFeO₃ Particle Synthesized by Hydrothermal Method and Their Piezoelectric Properties. Transactions of the Materials Research Society of Japan, 2014, 39, 137-140.}	o>-BiFeO< 0.2	sub ₂ 3
237	Influence of Conductivity on Raman Scattering Intensity in Li-modified AgNbO ₃ Crystals. Ferroelectrics, 2014, 470, 212-220.	0.6	2
238	Microwave synthesis of KNbO ₃ nanocubes. Journal of the Ceramic Society of Japan, 2015, 123, 363-366.	1.1	2
239	Preparation of titanium metal/barium titanate composites with boundary layer structure by hydrothermal method and their dielectric properties. Japanese Journal of Applied Physics, 2015, 54, 10NB07.	1.5	2
240	Dielectric properties of BT-BT and BF-BT composites. Ferroelectrics, 2018, 533, 145-150.	0.6	2
241	Domain Wall Engineering in Lead-Free Piezoelectric Materials and Their Enhanced Piezoelectricities. , 2010, , 227-243.		2
242	Effect of Buffer Layers on Electric Property of ZnO Thin Films. Key Engineering Materials, 2001, 216, 73-76.	0.4	1
243	Ferroelectric and Pyroelectric Properties of Ba1-xPbxTi0.91(Hf0.5,Zr0.5)0.09O3Thin Films. Japanese Journal of Applied Physics, 2001, 40, 6901-6906.	1.5	1
244	Electronic structure of β-FeSi2 obtained by maximum entropy method and photoemission spectroscopy. Nuclear Instruments & Methods in Physics Research B, 2003, 199, 411-415.	1.4	1
245	Enhanced Piezoelectric Properties of Piezoelectric Single Crystals by Domain Engineering. Materials Research Society Symposia Proceedings, 2003, 785, 121.	0.1	1
246	Dielectric Measurement of BaTiO ₃ -Based Ceramics in RF Region Using Electric Length Calibration Method. Key Engineering Materials, 2004, 269, 219-222.	0.4	1
247	Wide Range Dielectric Spectroscopy of SrTiO <inf>3</inf> -SrZrO <inf>3</inf> Solid Solution. , 2006, , .		1
248	Spatial Resolution for Dielectric Measurement Using Non-Contact Microwave Probe and In-Plane Dielectric Mappings for Dielectric Device. Japanese Journal of Applied Physics, 2006, 45, 7503-7507.	1.5	1
249	Development of Lead-Free Piezoelectric Materials Using Domain Wall Engineering. Key Engineering Materials, 2006, 320, 151-154.	0.4	1
250	Reflection Intensity Measurement for Dielectric Material Using a Microwave Single Probe and Its Electromagnetic Field Analysis. Key Engineering Materials, 2006, 301, 125-128.	0.4	1
251	Enhanced Piezoelectric Properties of Barium Titanate Single Crystals by Domain Engineering. Key Engineering Materials, 2006, 301, 23-26.	0.4	1
252	Fabrication of Microstrip Band Pass Filters in GHz Region by Aerosol Deposition Process. Key Engineering Materials, 2006, 301, 117-120.	0.4	1

#	Article	lF	CITATIONS
253	Noise Reduction of Microwave Dielectric Map using Fourier Analysis Refinement. Japanese Journal of Applied Physics, 2007, 46, 7097-7100.	1.5	1
254	Fabrication and piezoelectric properties of (K <inf>0.5</inf> Na <inf>0.5</inf>)NbO <inf>3</inf> -based ceramics doped with Bi-perovskites. Applications of Ferroelectrics, IEEE International Symposium on, 2007, , .	0.0	1
255	Effect of Cu and Li substitution on the piezoelectric properties of potassium sodium niobate lead-free ceramics. Applications of Ferroelectrics, IEEE International Symposium on, 2007, , .	0.0	1
256	Preparation of [110] Grain Oriented Barium Titanate Ceramics by Templated Grain Growth Method and Their Piezoelectric Properties. , 2007, , .		1
257	Preparation of Strontium Titanate / Barium Titanate Complex Nanoparticles Using New Titanium Chelate Compounds. Key Engineering Materials, 2010, 445, 175-178.	0.4	1
258	Dispersion of Barium Titanate and Strontium Titanate Nanocubes and their Selective Accumulations. Key Engineering Materials, 0, 445, 183-186.	0.4	1
259	Preparation of Barium Titanate Grain-Oriented Ceramics and their Piezoelectric Properties. Key Engineering Materials, 0, 445, 3-6.	0.4	1
260	Enhanced Piezoelectric Properties of Lead-Free Piezoelectric Materials by Microstructure Control. Ferroelectrics, 2010, 402, 121-129.	0.6	1
261	Preparation of Strontium Titanate Nanocubes Using Titanium Alkoxide and their Accumulations by Capillary Force. Key Engineering Materials, 2011, 485, 309-312.	0.4	1
262	Fabrication and Characterization of Perovskite Nanocube Ordering Structures via Capillary-Force-Assisted Self-Assembly Process. Key Engineering Materials, 2013, 566, 285-288.	0.4	1
263	Preparation of BaZrO ₃ Nanocrystals at Low Temperature. Key Engineering Materials, 0, 582, 165-168.	0.4	1
264	Enhanced piezoelectric properties of (Ba0.3Bi0.7)(Mg0.05Fe0.6Ti0.35)O3 piezoelectric ceramics with high Curie temperature. Journal of Advanced Dielectrics, 2014, 04, 1450005.	2.4	1
265	Preparation of Potassium Niobate Nanocrystals by Wet Chemical Reaction at Low Temperature. Transactions of the Materials Research Society of Japan, 2015, 40, 235-238.	0.2	1
266	Preparation and Size Control of Sodium Niobate Nanocube at Various Solvothermal Conditions. Transactions of the Materials Research Society of Japan, 2015, 40, 413-416.	0.2	1
267	Fabrication of BaTiO ₃ /BiFeO ₃ Nano-complex Ceramics by Hydrothermal Method. Transactions of the Materials Research Society of Japan, 2014, 39, 105-108.	0.2	1
268	New Development of High Performance Piezoelectric Materials by Nanodomain Engineering. Nihon Kessho Gakkaishi, 2012, 54, 81-87.	0.0	1
269	Domain Wall Engineering in Lead-free Piezoelectric Materials. Transactions of the Materials Research Society of Japan, 2008, 33, 57-60.	0.2	1
270	Fabrication of Textured Ceramics Using Mn and Nb-doped Hexagonal BaTiO ₃ by an Electrophoretic Deposition in a High Magnetic Field. Transactions of the Materials Research Society of Japan, 2014, 39, 199-202.	0.2	1

#	Article	IF	CITATIONS
271	Dielectric and Optical Properties of Perovskite-type Artificial Superlattices. Materials Research Society Symposia Proceedings, 2004, 833, 173.	0.1	0
272	Dielectric measurement using non-contact microwave single probe for dielectric materials. Journal of Electroceramics, 2006, 16, 561-564.	2.0	0
273	Microwave reflection intensity measurement for dielectric material using a single probe. Journal of the European Ceramic Society, 2006, 26, 2185-2188.	5.7	0
274	Wide Range Dielectric Spectroscopy of SrTiO <inf>3</inf> - SrZrO <inf>3</inf> Solid Solution. Applications of Ferroelectrics, IEEE International Symposium on, 2006, , .	0.0	0
275	High Frequency Dielectric Mapping Using Un-Contact Probe for Dielectric Materials. Key Engineering Materials, 2006, 320, 189-192.	0.4	0
276	Dielectric Permittivity Mapping up to 9GHz Region with Non-contact Microwave Probe for Ferroelectric Device. Materials Research Society Symposia Proceedings, 2006, 966, 1.	0.1	0
277	Domain Wall Engineering in Potassium Niobate Single Crystals and Their Piezoelectric Properties. Key Engineering Materials, 2006, 320, 147-150.	0.4	0
278	High Frequency Dielectric Permittivity Measurement of Dielectric Layer of MLCC Using Non-Contact Probe. Key Engineering Materials, 2007, 350, 243-246.	0.4	0
279	Reflection intensity measurement using non-contact microwave probe and in-plane mappings for dielectric device. Journal of the European Ceramic Society, 2007, 27, 2917-2921.	5.7	0
280	Preparation and evaluation of microwave dielectric ceramic thick films by aerosol deposition process. Journal of the Ceramic Society of Japan, 2008, 116, 406-408.	1.1	0
281	Microstructure Control of Barium Titanate - Potassium Niobate Solid Solution System Ceramics by MPB Engineering and Their Piezoelectric Properties. IOP Conference Series: Materials Science and Engineering, 2011, 18, 092058.	0.6	0
282	Microstructure Control of Barium Titanate Grain-oriented Ceramics and Their Piezoelectric Properties. IOP Conference Series: Materials Science and Engineering, 2011, 18, 092048.	0.6	0
283	Development of Electric Power Measurement for Energy Harvesting using Unimorph-type Piezoceramics. IOP Conference Series: Materials Science and Engineering, 2011, 18, 092060.	0.6	0
284	Piezoelectric enhancement of relaxor-based lead-free piezoelectric ceramics by nanodomain engineering. , 2012, , .		0
285	Preparation and Characterization of Highly-Dispersed and Highly-Crystalline Barium Titanate Nanoparticles. Key Engineering Materials, 2013, 566, 273-276.	0.4	0
286	Preparation of Potassium Niobate/Barium Titanate Nanocomposite Ceramics with a Wide Barium Titanate Particle Size Distribution and their Dielectric Properties. Key Engineering Materials, 2013, 582, 76-79.	0.4	0
287	Preparation of Barium Titanate/Strontium Titanate Nanocube Accumulation Ceramics and their Dielectric Property. Key Engineering Materials, 0, 582, 169-173.	0.4	0
288	Preparation of Barium Titanate/Strontium Titanate Accumulation Ceramics with Necking Structure of Strontium Titanate Nanocubes. Key Engineering Materials, 2013, 582, 67-70.	0.4	0

#	Article	IF	CITATIONS
289	Preparation of Grain-Oriented Ceramics with Bismuth Potassium Titanate-Barium Titanate and their Piezoelectric Properties. Key Engineering Materials, 0, 582, 80-83.	0.4	0
290	Preparation of Barium Titanate Nanoperticles with Necking Structure/Polymer Complex and their Dielectric Properties. Key Engineering Materials, 0, 582, 23-26.	0.4	0
291	Preparation of Strontium Titanate Nanocube Particles Using Complex Titanium Raw Materials and their Accumulations. Key Engineering Materials, 0, 566, 298-301.	0.4	0
292	Effect of Hydrothermal Treatment on the Piezoelectric Response of Oriented Barium Titanate Ceramics. Key Engineering Materials, 2013, 566, 45-49.	0.4	0
293	Grain Size Dependence of the Microstructure and Dielectric Properties of Potassium Niobate-Barium Titanate Ceramics. Key Engineering Materials, 0, 566, 34-37.	0.4	0
294	Preparation of Strontium Titanate-Coated Barium Titanate Accumulation Ceramics by Solvothermal Synthesis and their Dielectric Property. Key Engineering Materials, 0, 566, 293-297.	0.4	0
295	Preparation of Barium Titanate-Coated Strontium Titanate Accumulation Ceramics by Solvothermal Synthesis and their Dielectric Property. Key Engineering Materials, 0, 566, 289-292.	0.4	0
296	Preparation of Ceramics/Polymer Film Capacitor Using Barium Titanate Nanoparticles with High Dielectric Property and their Dielectric Property. Key Engineering Materials, 0, 566, 54-58.	0.4	0
297	Preparation and dielectric property of (Li _{0.12} Na _{0.88})NbO ₃ -based solid solutions. Journal of the Ceramic Society of Japan, 2013, 121, 544-549.	1.1	0
298	Synthesis of BaZrO ₃ nanocrystals by wet chemical reaction. Transactions of the Materials Research Society of Japan, 2013, 38, 45-48.	0.2	0
299	Solvothermal Synthesis of Barium Titanate Nanocubes with Narrow Size Distributions. Transactions of the Materials Research Society of Japan, 2014, 39, 129-132.	0.2	0
300	Preparation and Characterization of KNbO ₃ Nanocubes under Various Solvothermal Conditions. Transactions of the Materials Research Society of Japan, 2014, 39, 193-197.	0.2	0
301	7Li NMR study of milling effects on instability of lithium-sites in lithium substituted silver niobate. Solid State Ionics, 2014, 262, 202-205.	2.7	0
302	Fabrication of Ferroelectric Ceramics with Multi-Layered Structure by Solvothermal Solidification Method for Introduction of Internal Electric Field. Transactions of the Materials Research Society of Japan, 2015, 40, 257-260.	0.2	0
303	Preparation of Porous KNbO ₃ Ceramics by Solvothermal Solidification Method. Transactions of the Materials Research Society of Japan, 2015, 40, 305-308.	0.2	0
304	Preparation of DC-bias-free (Ba, Sr)TiO ₃ -Bi(Mg, Ti)O ₃ -NaNbO ₃ Ceramics with Reduced Temperature Dependent Dielectric Properties. Transactions of the Materials Research Society of Japan, 2015, 40, 409-412.	0.2	0
305	Large Electric-field-induced Strain in Pseudo-cubic BaTiO ₃ -Bi(Mg _{0.5} Ti _{0.5})O _{3< Ceramics. Transactions of the Materials Research Society of Japan, 2015, 40, 295-299.}	/su b >-E	BiFe@ <sub8< td=""></sub8<>
306	Structural Study of Ferroelectrics under Applied Electric Field. Nihon Kessho Gakkaishi, 2016, 58, 167-173.	0.0	0

#	Article	IF	CITATIONS
307	Chewing-induced Increase of Brain Blood Flow in Mandibular Prognathism Was Less Compared to Normal Occlusion. The Japanese Journal of Jaw Deformities, 2021, 31, 172-180.	0.1	0
308	Preparation of Bismuthï¼Based Perovskites with Non-integer A and B Site Valence and Their Properties. Transactions of the Materials Research Society of Japan, 2013, 38, 49-52.	0.2	0
309	Piezoelectric and Dielectric Enhancement of New Nano-structured Ceramics with Heteroepitaxial Interfaces. Additional Conferences (Device Packaging HiTEC HiTEN & CICMT), 2013, 2013, 000001-000004.	0.2	Ο
310	Dielectric and Piezoelectric Properties of Barium Titanate – Potassium Niobate Nano-structured Ceramics with Artificial MPB Structure. Transactions of the Materials Research Society of Japan, 2014, 39, 113-115.	0.2	0
311	Solvothermal Synthesis of Potassium Niobate/Barium Titanate Nanocomplex Ceramics with Three-Dimensionally Connected Structure-Gradient Region. Transactions of the Materials Research Society of Japan, 2014, 39, 173-176.	0.2	0
312	Thickness Dependence of Microstructure and Hall Effect in Tin Oxide Gas Sensor Films. Electrochemistry, 1996, 64, 153-155.	0.3	0
313	Preparation of Extremely Porous Tin Oxide Films Using Gas-Evaporation Method. Electrochemistry, 1996, 64, 1311-1313.	0.3	0