
Minsun Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7791111/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nordihydroguaiaretic Acid as a Novel Substrate and Inhibitor of Catechol O-Methyltransferase Modulates 4-Hydroxyestradiol-Induced Cyto- and Genotoxicity in MCF-7 Cells. Molecules, 2021, 26, 2060.	3.8	2
2	Metformin Decreases 2-HG Production through the MYC-PHGDH Pathway in Suppressing Breast Cancer Cell Proliferation. Metabolites, 2021, 11, 480.	2.9	6
3	Estrogen Receptor-Mediated Transcriptional Activities of Spent Coffee Grounds and Spent Coffee Grounds Compost, and Their Phenolic Acid Constituents. Journal of Agricultural and Food Chemistry, 2019, 67, 8649-8659.	5.2	8
4	Characterization of Soybean Germinated Embryo Extract as an Estrogen Receptor Subtype-Selective and Tissue-Specific Modulator. Journal of Medicinal Food, 2019, 22, 186-195.	1.5	2
5	Inhibitory and Inductive Effects of Opuntia ficus indica Extract and Its Flavonoid Constituents on Cytochrome P450s and UDP-Clucuronosyltransferases. International Journal of Molecular Sciences, 2018, 19, 3400.	4.1	7
6	Spiroketones and a Biphenyl Analog from Stems and Leaves of Larrea nitida and Their Inhibitory Activity against IL-6 Production. Molecules, 2018, 23, 302.	3.8	2
7	Hepatic Metabolism of Sakuranetin and Its Modulating Effects on Cytochrome P450s and UDP-Glucuronosyltransferases. Molecules, 2018, 23, 1542.	3.8	7
8	Characterization of Phase I and Phase II Hepatic Metabolism and Reactive Intermediates of <i>Larrea nitida</i> Cav. and Its Lignan Compounds. Phytotherapy Research, 2017, 31, 140-151.	5.8	11
9	Evaluation of the Biological Activity of Opuntia ficus indica as a Tissue- and Estrogen Receptor Subtype-Selective Modulator. Phytotherapy Research, 2016, 30, 971-980.	5.8	12
10	Enzymatic Deglycosylation of Opuntia ficus indica improves its Estrogen Receptor-Subtype Selective Transcriptional and Anti-Inflammatory Activities. Journal of Nutrition & Food Sciences, 2016, 06, .	1.0	3
11	Isoguaiacins, AryInaphthalene Types Identified as Novel Potent Estrogenic Signaling Molecules from <i>Larrea nitida</i> . Bulletin of the Korean Chemical Society, 2015, 36, 2254-2259.	1.9	1
12	Inhibition of Aerobic Glycolysis Represses Akt/mTOR/HIF-1α Axis and Restores Tamoxifen Sensitivity in Antiestrogen-Resistant Breast Cancer Cells. PLoS ONE, 2015, 10, e0132285.	2.5	103
13	Paraquat Induces Apoptosis through a Mitochondria-Dependent Pathway in RAW264.7 Cells. Biomolecules and Therapeutics, 2015, 23, 407-413.	2.4	33
14	Selective Estrogen Receptor Modulation by Larrea nitida on MCF-7 Cell Proliferation and Immature Rat Uterus. Biomolecules and Therapeutics, 2014, 22, 347-354.	2.4	16
15	Human glutathione S-transferase P1-1 functions as an estrogen receptor α signaling modulator. Biochemical and Biophysical Research Communications, 2014, 452, 840-844.	2.1	13
16	Carcinogenicity study of CKD-501, a novel dual peroxisome proliferator-activated receptors α and γ agonist, following oral administration to Sprague Dawley rats for 94–101weeks. Regulatory Toxicology and Pharmacology, 2014, 69, 207-216.	2.7	18
17	Psoralidin, a coumestan analogue, as a novel potent estrogen receptor signaling molecule isolated from Psoralea corylifolia. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1403-1406.	2.2	52
18	Tamoxifen Resistance in Breast Cancer. Biomolecules and Therapeutics, 2012, 20, 256-267.	2.4	213

MINSUN CHANG

#	Article	IF	CITATIONS
19	Dual roles of estrogen metabolism in mammary carcinogenesis. BMB Reports, 2011, 44, 423-434.	2.4	34
20	Unexpected Hormonal Activity of a Catechol Equine Estrogen Metabolite Reveals Reversible Glutathione Conjugation. Chemical Research in Toxicology, 2010, 23, 1374-1383.	3.3	9
21	Estrogenic Activity of the Equine Estrogen Metabolite, 4-Methoxyequilenin. Advances in Experimental Medicine and Biology, 2008, 617, 601-607.	1.6	3
22	Activation of Estrogen Receptor-Mediated Gene Transcription by the Equine Estrogen Metabolite, 4-Methoxyequilenin, in Human Breast Cancer Cells. Endocrinology, 2007, 148, 4793-4802.	2.8	13
23	Equine Catechol Estrogen 4-Hydroxyequilenin Is a More Potent Inhibitor of the Variant Form of Catechol-O-Methyltransferase. Chemical Research in Toxicology, 2004, 17, 512-520.	3.3	15
24	Catechol Estrogen 4-Hydroxyequilenin Is a Substrate and an Inhibitor of Catechol-O-Methyltransferase. Chemical Research in Toxicology, 2003, 16, 668-675.	3.3	25
25	Inhibition of Cellular Enzymes by Equine Catechol Estrogens in Human Breast Cancer Cells:  Specificity for Glutathione S-Transferase P1-1. Chemical Research in Toxicology, 2002, 15, 935-942.	3.3	21
26	Structural and Functional Consequences of Inactivation of Human GlutathioneS-Transferase P1-1 Mediated by the Catechol Metabolite of Equine Estrogens, 4-Hydroxyequileninâ€. Biochemistry, 2001, 40, 4811-4820.	2.5	38
27	Inhibition of Glutathione S-Transferase Activity by the Quinoid Metabolites of Equine Estrogens. Chemical Research in Toxicology, 1998, 11, 758-765.	3.3	54