
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/779010/publications.pdf Version: 2024-02-01

Διενκά Ριστιά+

#	Article	IF	CITATIONS
1	Influence of Alumina Precursor Properties on Cu-Fe Alumina Supported Catalysts for Total Toluene Oxidation as a Model Volatile Organic Air Pollutant. Catalysts, 2021, 11, 252.	1.6	6
2	Tailoring Water Adsorption Capacity of APO-Tric. Crystals, 2021, 11, 773.	1.0	0
3	Thermal Energy Storage Materials (TESMs)—What Does It Take to Make Them Fly?. Crystals, 2021, 11, 1276.	1.0	18
4	Synthesis of Mesoporous Î ³ -Alumina Support for Water Composite Sorbents for Low Temperature Sorption Heat Storage. Energies, 2021, 14, 7809.	1.6	5
5	Evaluation of ZIF-8 and ZIF-90 as Heat Storage Materials by Using Water, Methanol and Ethanol as Working Fluids. Crystals, 2021, 11, 1422.	1.0	5
6	Synergistic effect of CuO nanocrystals and Cu-oxo-Fe clusters on silica support in promotion of total catalytic oxidation of toluene as a model volatile organic air pollutant. Applied Catalysis B: Environmental, 2020, 268, 118749.	10.8	63
7	Bimetal Cu-Mn porous silica-supported catalyst for Fenton-like degradation of organic dyes in wastewater at neutral pH. Catalysis Today, 2020, 358, 270-277.	2.2	32
8	Evolution of Surface Catalytic Sites on Bimetal Silica-Based Fenton-Like Catalysts for Degradation of Dyes with Different Molecular Charges. Nanomaterials, 2020, 10, 2419.	1.9	6
9	New Composite Water Sorbents CaCl2-PHTS for Low-Temperature Sorption Heat Storage: Determination of Structural Properties. Nanomaterials, 2019, 9, 27.	1.9	16
10	New Insights into Manganese Local Environment in MnS-1 Nanocrystals. Crystal Growth and Design, 2019, 19, 3130-3138.	1.4	7
11	Titania versus zinc oxide nanoparticles on mesoporous silica supports as photocatalysts for removal of dyes from wastewater at neutral pH. Catalysis Today, 2018, 310, 32-41.	2.2	89
12	Improved performance of binder-free zeolite Y for low-temperature sorption heat storage. Journal of Materials Chemistry A, 2018, 6, 11521-11530.	5.2	33
13	Vapor-Phase Hydrogenation of Levulinic Acid to Î ³ -Valerolactone Over Bi-Functional Ni/HZSM-5 Catalyst. Frontiers in Chemistry, 2018, 6, 285.	1.8	30
14	New Water Adsorbent for Adsorption Driven Chillers. , 2018, , .		0
15	Superior Performance of Microporous Aluminophosphate with LTA Topology in Solarâ€Energy Storage and Heat Reallocation. Advanced Energy Materials, 2017, 7, 1601815.	10.2	86
16	Influence of the preparation method of sulfated zirconia nanoparticles for levulinic acid esterification. Reaction Kinetics, Mechanisms and Catalysis, 2017, 120, 55-67.	0.8	8
17	IEA SHC Task 42 / ECES Annex 29 WG A1: Engineering and Processing of PCMs, TCMs and Sorption Materials. Energy Procedia, 2016, 91, 207-217.	1.8	14
18	Synthesis of biomass derived levulinate esters on novel sulfated Zr/KIL-2 composite catalysts. Microporous and Mesoporous Materials, 2016, 235, 50-58.	2.2	12

#	Article	IF	CITATIONS
19	Dehydration of AlPO ₄ -34 studied by variable-temperature NMR, XRD and first-principles calculations. New Journal of Chemistry, 2016, 40, 4178-4186.	1.4	24
20	TiO2–SiO2 films from organic-free colloidal TiO2 anatase nanoparticles as photocatalyst for removal of volatile organic compounds from indoor air. Applied Catalysis B: Environmental, 2016, 184, 119-131.	10.8	115
21	A pH dependent delivery of mesalazine from polymer coated and drug-loaded SBA-16 systems. European Journal of Pharmaceutical Sciences, 2016, 81, 75-81.	1.9	25
22	Highly crystalline binder-free ZSM-5 granules preparation. Microporous and Mesoporous Materials, 2015, 213, 108-117.	2.2	21
23	Manganese modified zeolite silicalite-1 as polysulphide sorbent in lithium sulphur batteries. Journal of Power Sources, 2015, 274, 1239-1248.	4.0	35
24	Autoreduction of Copper on Silica and Ironâ€Functionalized Silica Nanoparticles with Interparticle Mesoporosity. ChemCatChem, 2014, 6, 271-277.	1.8	15
25	Glycerol acetylation on mesoporous KIL-2 supported sulphated zirconia catalysts. Catalysis Science and Technology, 2014, 4, 3993-4000.	2.1	40
26	Sorption Composite Materials for Solar Thermal Energy Storage. Energy Procedia, 2014, 48, 977-981.	1.8	17
27	Design of Cobalt Functionalized Silica with Interparticle Mesoporosity as a Promising Catalyst for VOCs Decomposition. Catalysis Letters, 2014, 144, 1096-1100.	1.4	9
28	Ironâ€Functionalized Silica Nanoparticles as a Highly Efficient Adsorbent and Catalyst for Toluene Oxidation in the Gas Phase. ChemCatChem, 2013, 5, 986-993.	1.8	22
29	Accurate Structural Description of the Two Nanoporous Fluorinated Aluminophosphates ULM-3(Al) and ULM-4(Al) by Solid-State NMR. Journal of Physical Chemistry C, 2012, 116, 21489-21498.	1.5	17
30	New two-component water sorbent CaCl2-FeKIL2 for solar thermal energy storage. Microporous and Mesoporous Materials, 2012, 164, 266-272.	2.2	46
31	The Performance of Smallâ€Pore Microporous Aluminophosphates in Lowâ€Temperature Solar Energy Storage: The Structure–Property Relationship. Advanced Functional Materials, 2012, 22, 1952-1957.	7.8	80
32	The influence of microwave-assisted synthesis on nanocrystalline iron silicalite-1 particles. CrystEngComm, 2011, 13, 1946-1952.	1.3	8
33	MnO _{<i>x</i>} Nanoparticles Supported on a New Mesostructured Silicate with Textural Porosity. Chemistry - A European Journal, 2010, 16, 5783-5793.	1.7	40
34	Titania-containing mesoporous silica powders: Structural properties and photocatalytic activity towards isopropanol degradation. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 216, 167-178.	2.0	45
35	Kinetic Analysis of Isothermal Crystallization of Potassium Aluminosilicate Ceramics (Leucite and) Tj ETQq1 1 (10, 838-844.	0.784314 rg 1.4	BT /Overloce 7
36	Functionalisation and Structure Characterisation of Porous Silicates and Aluminophosphates. , 2009,		3

36 , 101-126.

#	Article	IF	CITATIONS
37	Synthesis and structural investigations on aluminium-free Ti-Beta/SBA-15 composite. Microporous and Mesoporous Materials, 2009, 117, 458-465.	2.2	26
38	The influences of the way of preparation of Me-aluminosilicates (Me=Li, Na, K, Rb and Cs) on the products. Microporous and Mesoporous Materials, 2008, 112, 542-552.	2.2	4
39	Deposition of Ti-modified aluminium-free zeolite Beta on SBA-15. Studies in Surface Science and Catalysis, 2008, , 217-220.	1.5	0
40	Microwave synthesis of nanosized VS-1 and the preparation of thin film. Studies in Surface Science and Catalysis, 2008, 174, 365-368.	1.5	0
41	The Activity of Iron-Containing Zeolitic Materials for the Catalytic Oxidation in Aqueous Solutions. Materials Science Forum, 2007, 555, 213-218.	0.3	3
42	Synthesis and structural properties of titanium containing microporous/mesoporous silicate composite (Ti, Al)-Beta/MCM-48. Microporous and Mesoporous Materials, 2007, 99, 3-13.	2.2	24
43	Local environment of isolated iron in mesoporous silicate catalyst FeTUD-1. Microporous and Mesoporous Materials, 2007, 104, 289-295.	2.2	8
44	Manganese-modified hexagonal mesoporous aluminophosphate MnHMA: Synthesis and characterization. Microporous and Mesoporous Materials, 2006, 96, 386-395.	2.2	14
45	Local environment of iron in the mesoporous hexagonal aluminophosphate catalyst. Microporous and Mesoporous Materials, 2005, 87, 52-58.	2.2	8
46	31P NMR as a Tool for Studying Incorporation of Ni, Co, Fe, and Mn into Aluminophosphate Zeotypes. Journal of Physical Chemistry B, 2005, 109, 10711-10716.	1.2	39
47	Kinetic analysis of temperature-induced transformation of zeolite 4A to low-carnegieite. Materials Chemistry and Physics, 2004, 86, 390-398.	2.0	12
48	Manganese-Containing Silica-Based Microporous Molecular Sieve MnS-1: Synthesis and Characterization ChemInform, 2004, 35, no.	0.1	0
49	Investigations on iron substitution in VPI-5 and its redox behavior. Microporous and Mesoporous Materials, 2004, 76, 61-69.	2.2	8
50	Large-Pore FAPO-36: Synthesis and Characterization ChemInform, 2003, 34, no.	0.1	1
51	Manganese-Containing Silica-Based Microporous Molecular Sieve MnS-1:  Synthesis and Characterization. Chemistry of Materials, 2003, 15, 4745-4750.	3.2	33
52	Large-Pore FAPO-36:Â Synthesis and Characterization. Chemistry of Materials, 2003, 15, 3643-3649.	3.2	26
53	Interaction of Dipropylamine Template Molecules with the Framework of as-Synthesized AlPO4-31. Journal of Physical Chemistry B, 2002, 106, 63-69.	1.2	17
54	Incorporation of heteroatoms (Me=Zn, Co, Mn) into framework sites of the gallophosphate molecular sieve ULM-5. Microporous and Mesoporous Materials, 2002, 56, 257-266.	2.2	7

#	Article	IF	CITATIONS
55	Synthesis and characterization of triclinic MeAPO-34 (Me=Zn, Fe) molecular sieves. Microporous and Mesoporous Materials, 2002, 56, 303-315.	2.2	20
56	Incorporation of Mn, Co and Zn cations into large-pore aluminophosphate molecular sieves MeAPO-50. Journal of Synchrotron Radiation, 2001, 8, 590-592.	1.0	6
57	Large-pore molecular sieve MnAPO-50: synthesis, single-crystal structure analysis and thermal stability. Microporous and Mesoporous Materials, 2000, 37, 303-311.	2.2	19
58	NMR Characterization and Rietveld Refinement of the Structure of Rehydrated AlPO4-34. Journal of Physical Chemistry B, 2000, 104, 5697-5705.	1.2	99
59	Thermal investigations of some AlPO and MeAPO materials prepared in the presence of HF. Thermochimica Acta, 1997, 306, 31-36.	1.2	19
60	A CoAPO-34 derived from a triclinic precursor prepared in the presence of HF. Zeolites, 1997, 18, 115-118.	0.9	27
61	On the possibility of the preparation open framework manganese phosphate. Zeolites, 1996, 17, 304-309.	0.9	16