
Wayne E Pratt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/778961/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stimulation of mu opioid, but not GABAergic, receptors of the lateral habenula alters free feeding in rats. Neuroscience Letters, 2022, 771, 136417.	2.1	3
2	Shifting motivational states: The effects of nucleus accumbens dopamine and opioid receptor activation on a modified effort-based choice task. Behavioural Brain Research, 2021, 399, 112999.	2.2	8
3	Selective serotonin receptor stimulation of the ventral tegmentum differentially affects appetitive motivation for sugar on a progressive ratio schedule of reinforcement. Behavioural Brain Research, 2021, 403, 113139.	2.2	1
4	Glucagon-like peptide-1 receptors modulate the binge-like feeding induced by µ-opioid receptor stimulation of the nucleus accumbens in the rat. NeuroReport, 2020, 31, 1283-1288.	1.2	9
5	d-Fenfluramine and lorcaserin inhibit the binge-like feeding induced by μ-opioid receptor stimulation of the nucleus accumbens in the rat. Neuroscience Letters, 2018, 687, 43-48.	2.1	11
6	Contrasting effects of 5-HT3 receptor stimulation of the nucleus accumbens or ventral tegmentum on food intake in the rat. Behavioural Brain Research, 2017, 323, 15-23.	2.2	14
7	A systematic investigation of the differential roles for ventral tegmentum serotonin 1- and 2-type receptors on food intake in the rat. Brain Research, 2016, 1648, 54-68.	2.2	18
8	Lorcaserin and CP-809101 reduce motor impulsivity and reinstatement of food seeking behavior in male rats: Implications for understanding the anti-obesity property of 5-HT2C receptor agonists. Psychopharmacology, 2016, 233, 2841-2856.	3.1	35
9	Inactivation of the Nucleus Accumbens Core or Medial Shell Attenuates Reinstatement of Sugar-Seeking Behavior following Sugar Priming or Exposure to Food-Associated Cues. PLoS ONE, 2014, 9, e99301.	2.5	13
10	Overlapping striatal sites mediate scopolamine-induced feeding suppression and mu-opioid-mediated hyperphagia in the rat. Psychopharmacology, 2014, 231, 919-928.	3.1	10
11	The effects of nucleus accumbens μ-opioid and adenosine 2A receptor stimulation and blockade on instrumental learning. Behavioural Brain Research, 2014, 274, 84-94.	2.2	10
12	Serotonin 1A, 1B, and 7 receptors of the rat medial nucleus accumbens differentially regulate feeding, water intake, and locomotor activity. Pharmacology Biochemistry and Behavior, 2013, 112, 96-103.	2.9	37
13	The contribution of brain reward circuits to the obesity epidemic. Neuroscience and Biobehavioral Reviews, 2013, 37, 2047-2058.	6.1	236
14	Principles of motivation revealed by the diverse functions of neuropharmacological and neuroanatomical substrates underlying feeding behavior. Neuroscience and Biobehavioral Reviews, 2013, 37, 1985-1998.	6.1	42
15	Systemic treatment with d-fenfluramine, but not sibutramine, blocks cue-induced reinstatement of food-seeking behavior in the rat. Neuroscience Letters, 2013, 556, 232-237.	2.1	4
16	The contribution of brain reward circuits to the obesity epidemic. , 2013, 37, 2047-2047.		1
17	Selective serotonin receptor stimulation of the medial nucleus accumbens differentially affects appetitive motivation for food on a progressive ratio schedule of reinforcement. Neuroscience Letters, 2012, 511, 84-88.	2.1	26
18	An examination of the effects of subthalamic nucleus inhibition or μ-opioid receptor stimulation on food-directed motivation in the non-deprived rat. Behavioural Brain Research, 2012, 230, 365-373.	2.2	15

WAYNE E PRATT

#	Article	IF	CITATIONS
19	Nucleus accumbens dopamine and mu-opioid receptors modulate the reinstatement of food-seeking behavior by food-associated cues. Behavioural Brain Research, 2011, 219, 265-272.	2.2	33
20	CB1 receptors modulate the intake of a sweetened-fat diet in response to mu-opioid receptor stimulation of the nucleus accumbens. Pharmacology Biochemistry and Behavior, 2010, 97, 144-151.	2.9	26
21	Contrasting effects of systemic and central sibutramine administration on the intake of a palatable diet in the rat. Neuroscience Letters, 2010, 484, 30-34.	2.1	9
22	Selective serotonin receptor stimulation of the medial nucleus accumbens causes differential effects on food intake and locomotion Behavioral Neuroscience, 2009, 123, 1046-1057.	1.2	38
23	Nucleus accumbens acetylcholine and food intake: Decreased muscarinic tone reduces feeding but not food-seeking. Behavioural Brain Research, 2009, 198, 252-257.	2.2	34
24	Muscarinic receptor antagonism of the nucleus accumbens core causes avoidance to flavor and spatial cues Behavioral Neuroscience, 2007, 121, 1215-1223.	1.2	25
25	Pharmacological characterization of high-fat feeding induced by opioid stimulation of the ventral striatum. Physiology and Behavior, 2006, 89, 226-234.	2.1	71
26	Striatal muscarinic receptor antagonism reduces 24â€h food intake in association with decreased preproenkephalin gene expression. European Journal of Neuroscience, 2005, 22, 3229-3240.	2.6	41
27	A proposed hypothalamic-thalamic-striatal axis for the integration of energy balance, arousal, and food reward. Journal of Comparative Neurology, 2005, 493, 72-85.	1.6	305
28	Corticostriatal-hypothalamic circuitry and food motivation: Integration of energy, action and reward. Physiology and Behavior, 2005, 86, 773-795.	2.1	682
29	Nucleus Accumbens Acetylcholine Regulates Appetitive Learning and Motivation for Food via Activation of Muscarinic Receptors Behavioral Neuroscience, 2004, 118, 730-739.	1.2	84
30	Glutamate-Mediated Plasticity in Corticostriatal Networks. Annals of the New York Academy of Sciences, 2003, 1003, 159-168.	3.8	61
31	The Behavioral Implementation of Hippocampal Processing. , 2002, , 197-216.		4
32	Neurons in rat medial prefrontal cortex show anticipatory rate changes to predictable differential rewards in a spatial memory task. Behavioural Brain Research, 2001, 123, 165-183.	2.2	159
33	A Neural Systems Analysis of Adaptive Navigation. Molecular Neurobiology, 2000, 21, 057-082.	4.0	64
34	Function of the nucleus accumbens within the context of the larger striatal system. Cognitive, Affective and Behavioral Neuroscience, 1999, 27, 214-224.	1.3	21
35	Characteristics of basolateral amygdala neuronal firing on a spatial memory task involving differential reward Behavioral Neuroscience, 1998, 112, 554-570.	1.2	81