Nicola Zamboni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7789372/publications.pdf

Version: 2024-02-01

28190 19690 15,312 127 55 117 citations h-index g-index papers 138 138 138 23183 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The RNA binding protein human antigen R is a gatekeeper of liver homeostasis. Hepatology, 2022, 75, $881-897$.	3.6	14
2	Dynamic tracing of sugar metabolism reveals the mechanisms of action of synthetic sugar analogs. Glycobiology, 2022, 32, 239-250.	1.3	15
3	Multiomic profiling of the liver across diets and age in a diverse mouse population. Cell Systems, 2022, 13, 43-57.e6.	2.9	24
4	Genome-wide RNAi screen identifies novel players in human 60S subunit biogenesis including key enzymes of polyamine metabolism. Nucleic Acids Research, 2022, 50, 2872-2888.	6.5	11
5	MSNovelist: de novo structure generation from mass spectra. Nature Methods, 2022, 19, 865-870.	9.0	49
6	ADAMTS18+ villus tip telocytes maintain a polarized VEGFA signaling domain and fenestrations in nutrient-absorbing intestinal blood vessels. Nature Communications, 2022, 13, .	5.8	20
7	Dynamic 3D proteomes reveal protein functional alterations at high resolution in situ. Cell, 2021, 184, 545-559.e22.	13.5	82
8	Vegan diet in young children remodels metabolism and challenges the statuses of essential nutrients. EMBO Molecular Medicine, 2021, 13, e13492.	3.3	43
9	Identification of HIF-dependent alternative splicing in gastrointestinal cancers and characterization of a long, coding isoform of SLC35A3. Genomics, 2021, 113, 515-529.	1.3	4
10	Targeting glioma-initiating cells via the tyrosine metabolic pathway. Journal of Neurosurgery, 2021, 134, 721-732.	0.9	23
11	Paraburkholderia phymatum Homocitrate Synthase NifV Plays a Key Role for Nitrogenase Activity during Symbiosis with Papilionoids and in Free-Living Growth Conditions. Cells, 2021, 10, 952.	1.8	9
12	Bradyrhizobium diazoefficiens Requires Chemical Chaperones To Cope with Osmotic Stress during Soybean Infection. MBio, 2021, 12, .	1.8	8
13	Molecular pathways behind acquired obesity: Adipose tissue and skeletal muscle multiomics in monozygotic twin pairs discordant for BMI. Cell Reports Medicine, 2021, 2, 100226.	3.3	31
14	Bifunctional Malic/Malolactic Enzyme Provides a Novel Mechanism for NADPH-Balancing in Bacillus subtilis. MBio, 2021, 12, .	1.8	6
15	Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices. Nature Methods, 2021, 18, 747-756.	9.0	403
16	Metabolomics and Dual RNA-Sequencing on Root Nodules Revealed New Cellular Functions Controlled by Paraburkholderia phymatum NifA. Metabolites, 2021, 11, 455.	1.3	3
17	FOXC2 controls adult lymphatic endothelial specialization, function, and gut lymphatic barrier preventing multiorgan failure. Science Advances, 2021, 7, .	4.7	43
18	Commensal Clostridiales strains mediate effective anti-cancer immune response against solid tumors. Cell Host and Microbe, 2021, 29, 1573-1588.e7.	5.1	71

#	Article	IF	Citations
19	SLAW: A Scalable and Self-Optimizing Processing Workflow for Untargeted LC-MS. Analytical Chemistry, 2021, 93, 15024-15032.	3.2	21
20	Dietary excess regulates absorption and surface of gut epithelium through intestinal PPAR \hat{l}_{\pm} . Nature Communications, 2021, 12, 7031.	5.8	32
21	Mitochondrial–cell cycle cross-talk drives endoreplication in heart disease. Science Translational Medicine, 2021, 13, eabi7964.	5.8	12
22	The coenzyme thiamine diphosphate displays a daily rhythm in the Arabidopsis nucleus. Communications Biology, 2020, 3, 209.	2.0	21
23	Astrocyte glutathione maintains endothelial barrier stability. Redox Biology, 2020, 34, 101576.	3.9	38
24	Genome-Scale CRISPR Screening in Human Intestinal Organoids Identifies Drivers of TGF- \hat{l}^2 Resistance. Cell Stem Cell, 2020, 26, 431-440.e8.	5.2	103
25	Involvement of circulating factors in the transmission of paternal experiences through the germline. EMBO Journal, 2020, 39, e104579.	3.5	28
26	Mitochondrial spongiotic brain disease: astrocytic stress and harmful rapamycin and ketosis effect. Life Science Alliance, 2020, 3, e202000797.	1.3	12
27	SPHN/PHRT: Forming a Swiss-Wide Infrastructure for Data-Driven Sepsis Research. Studies in Health Technology and Informatics, 2020, 270, 1163-1167.	0.2	3
28	A Fatty Acid Oxidation-dependent Metabolic Shift Regulates the Adaptation of <i>BRAF</i> mutated Melanoma to MAPK Inhibitors. Clinical Cancer Research, 2019, 25, 6852-6867.	3.2	74
29	The RNA-Binding Protein PUM2 Impairs Mitochondrial Dynamics and Mitophagy During Aging. Molecular Cell, 2019, 73, 775-787.e10.	4.5	100
30	Metabolomics Identifies a Biomarker Revealing In Vivo Loss of Functional \hat{I}^2 -Cell Mass Before Diabetes Onset. Diabetes, 2019, 68, 2272-2286.	0.3	28
31	Yin Yang 1 sustains biosynthetic demands during brain development in a stage-specific manner. Nature Communications, 2019, 10, 2192.	5.8	28
32	Metabolomics reveals tepotinibâ€related mitochondrial dysfunction in <scp>MET</scp> â€activating mutationsâ€driven models. FEBS Journal, 2019, 286, 2692-2710.	2.2	2
33	Yin Yang 1 Orchestrates a Metabolic Program Required for Both Neural Crest Development and Melanoma Formation. Cell Stem Cell, 2019, 24, 637-653.e9.	5.2	44
34	Lipid signalling drives proteolytic rewiring of mitochondria by YME1L. Nature, 2019, 575, 361-365.	13.7	116
35	Inhibition of Mevalonate Pathway Prevents Adipocyte Browning in Mice and Men by Affecting Protein Prenylation. Cell Metabolism, 2019, 29, 901-916.e8.	7.2	59
36	Peroxisome Proliferator Activated Receptor Gamma Controls Mature Brown Adipocyte Inducibility through Glycerol Kinase. Cell Reports, 2018, 22, 760-773.	2.9	86

#	Article	IF	CITATIONS
37	Modulation of Myelopoiesis Progenitors Is an Integral Component of Trained Immunity. Cell, 2018, 172, 147-161.e12.	13.5	702
38	Liposome-supported peritoneal dialysis in the treatment of severe hyperammonemia: An investigation on potential interactions. Journal of Controlled Release, 2018, 278, 57-65.	4.8	16
39	CBMT-41. GLIOBLASTOMA CLONES DERIVED FROM TUMOR CORE AND EDGE DISPLAY SPATIAL METABOLIC HETEROGENEITY. Neuro-Oncology, 2018, 20, vi41-vi41.	0.6	0
40	Quantification of Cellular Folate Species by LC-MS after Stabilization by Derivatization. Analytical Chemistry, 2018, 90, 7349-7356.	3.2	12
41	The thioredoxin-1 system is essential for fueling DNA synthesis during T-cell metabolic reprogramming and proliferation. Nature Communications, 2018, 9, 1851.	5.8	77
42	Metabolomics and Transcriptomics Identify Multiple Downstream Targets of Paraburkholderia phymatum If 54 During Symbiosis with Phaseolus vulgaris. International Journal of Molecular Sciences, 2018, 19, 1049.	1.8	11
43	Non-targeted LC-MS based metabolomics analysis of the urinary steroidal profile. Analytica Chimica Acta, 2017, 964, 112-122.	2.6	38
44	6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 is essential for p53-null cancer cells. Oncogene, 2017, 36, 3287-3299.	2.6	58
45	An integrative metabolomics and transcriptomics study to identify metabolic alterations in aged skin of humans in vivo. BMC Genomics, 2017, 18, 169.	1.2	62
46	Genomewide landscape of gene–metabolome associations in <i>Escherichia coli</i> Systems Biology, 2017, 13, 907.	3.2	109
47	Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals. Journal of Cell Biology, 2017, 216, 2027-2045.	2.3	590
48	Metabotypes of breast cancer cell lines revealed by non-targeted metabolomics. Metabolic Engineering, 2017, 43, 173-186.	3.6	26
49	Nontargeted in vitro metabolomics for high-throughput identification of novel enzymes in Escherichia coli. Nature Methods, 2017, 14, 187-194.	9.0	125
50	Frontiers of high-throughput metabolomics. Current Opinion in Chemical Biology, 2017, 36, 15-23.	2.8	139
51	Integration of Metabolomics and Transcriptomics Reveals a Complex Diet of Mycobacterium tuberculosis during Early Macrophage Infection. MSystems, 2017, 2, .	1.7	112
52	A Fatty Acid Oxidation-Dependent Metabolic Shift Regulates Adult Neural Stem Cell Activity. Cell Reports, 2017, 20, 2144-2155.	2.9	247
53	2-Deoxy-D-glucose Restore Glucocorticoid Sensitivity in Acute Lymphoblastic Leukemia via Modification of N-Linked Glycosylation in an Oxygen Tension-Independent Manner. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-15.	1.9	4
54	Metabolic network segmentation: A probabilistic graphical modeling approach to identify the sites and sequential order of metabolic regulation from non-targeted metabolomics data. PLoS Computational Biology, 2017, 13, e1005577.	1.5	10

#	Article	IF	Citations
55	Metabolomic Profiling of Bradyrhizobium diazoefficiens-Induced Root Nodules Reveals Both Host Plant-Specific and Developmental Signatures. International Journal of Molecular Sciences, 2016, 17, 815.	1.8	52
56	A Genome-Scale Database and Reconstruction of Caenorhabditis elegans Metabolism. Cell Systems, 2016, 2, 312-322.	2.9	46
57	The Yeast Cyclin-Dependent Kinase Routes Carbon Fluxes to Fuel Cell Cycle Progression. Molecular Cell, 2016, 62, 532-545.	4.5	100
58	L-Arginine Modulates T Cell Metabolism and Enhances Survival and Anti-tumor Activity. Cell, 2016, 167, 829-842.e13.	13.5	1,077
59	Systems proteomics of liver mitochondria function. Science, 2016, 352, aad0189.	6.0	257
60	LRH-1-dependent programming of mitochondrial glutamine processing drives liver cancer. Genes and Development, 2016, 30, 1255-1260.	2.7	56
61	SUMOFLUX: A Generalized Method for Targeted 13C Metabolic Flux Ratio Analysis. PLoS Computational Biology, 2016, 12, e1005109.	1.5	40
62	Embryonic Lethality of Mitochondrial Pyruvate Carrier 1 Deficient Mouse Can Be Rescued by a Ketogenic Diet. PLoS Genetics, 2016, 12, e1006056.	1.5	56
63	Genome-wide RNAi Screening Identifies Protein Modules Required for 40S Subunit Synthesis in Human Cells. Cell Reports, 2015, 13, 2879-2891.	2.9	90
64	Dynamic exometabolome analysis reveals active metabolic pathways in nonâ€replicating mycobacteria. Environmental Microbiology, 2015, 17, 4802-4815.	1.8	40
65	Functional screening identifies <scp>MCT4</scp> as a key regulator of breast cancer cell metabolism and survival. Journal of Pathology, 2015, 237, 152-165.	2.1	73
66	Defining the Metabolome: Size, Flux, and Regulation. Molecular Cell, 2015, 58, 699-706.	4.5	234
67	Gut Microbiota Orchestrates Energy Homeostasis during Cold. Cell, 2015, 163, 1360-1374.	13.5	581
68	Nrf2 Activation Promotes Keratinocyte Survival during Early Skin Carcinogenesis via Metabolic Alterations. Cancer Research, 2015, 75, 4817-4829.	0.4	40
69	A genetically encoded Förster resonance energy transfer sensor for monitoring in vivo trehalose-6-phosphate dynamics. Analytical Biochemistry, 2015, 474, 1-7.	1.1	28
70	A roadmap for interpreting 13 C metabolite labeling patterns from cells. Current Opinion in Biotechnology, 2015, 34, 189-201.	3.3	513
71	HIF-driven SF3B1 induces KHK-C to enforce fructolysis and heart disease. Nature, 2015, 522, 444-449.	13.7	144
72	Acute Activation of Oxidative Pentose Phosphate Pathway as First-Line Response to Oxidative Stress in Human Skin Cells. Molecular Cell, 2015, 59, 359-371.	4.5	294

#	Article	IF	CITATIONS
73	Editorial overview: Analytical biotechnology. Current Opinion in Biotechnology, 2015, 31, iv-vi.	3.3	0
74	Rapid, randomized development of genetically encoded FRET sensors for small molecules. Analyst, The, 2015, 140, 4540-4548.	1.7	17
75	Monitoring Mitochondrial Pyruvate Carrier Activity in Real Time Using a BRET-Based Biosensor: Investigation of the Warburg Effect. Molecular Cell, 2015, 59, 491-501.	4.5	76
76	Real-time metabolome profiling of the metabolic switch between starvation and growth. Nature Methods, 2015, 12, 1091-1097.	9.0	209
77	Branched-chain amino acid catabolism is a conserved regulator of physiological ageing. Nature Communications, 2015, 6, 10043.	5.8	132
78	Biological insights through nontargeted metabolomics. Current Opinion in Biotechnology, 2015, 34, 1-8.	3.3	115
79	High-throughput discovery metabolomics. Current Opinion in Biotechnology, 2015, 31, 73-78.	3.3	203
80	Multilayered Genetic and Omics Dissection of Mitochondrial Activity in a Mouse Reference Population. Cell, 2014, 158, 1415-1430.	13.5	222
81	D-Glucosamine supplementation extends life span of nematodes and of ageing mice. Nature Communications, 2014, 5, 3563.	5 . 8	181
82	Quantification and Mass Isotopomer Profiling of \hat{l}_{\pm} -Keto Acids in Central Carbon Metabolism. Analytical Chemistry, 2014, 86, 3232-3237.	3.2	60
83	Nonâ€stationary ¹³ Câ€metabolic flux ratio analysis. Biotechnology and Bioengineering, 2013, 110, 3164-3176.	1.7	41
84	Nontargeted Profiling of Coenzyme A thioesters in biological samples by tandem mass spectrometry. Analytical Chemistry, 2013, 85, 8284-8290.	3.2	24
85	Temporal systemâ€level organization of the switch from glycolytic to gluconeogenic operation in yeast. Molecular Systems Biology, 2013, 9, 651.	3.2	138
86	The integrated response of primary metabolites to gene deletions and the environment. Molecular BioSystems, 2013, 9, 440.	2.9	19
87	Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature, 2013, 493, 226-230.	13.7	448
88	Metabolite Identification through Machine Learningâ€" Tackling CASMI Challenge Using FingerID. Metabolites, 2013, 3, 484-505.	1.3	24
89	Identification and Functional Expression of the Mitochondrial Pyruvate Carrier. Science, 2012, 337, 93-96.	6.0	588
90	Functional Metabolic Screen Identifies 6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 4 as an Important Regulator of Prostate Cancer Cell Survival. Cancer Discovery, 2012, 2, 328-343.	7.7	174

#	Article	IF	CITATIONS
91	Multidimensional Optimality of Microbial Metabolism. Science, 2012, 336, 601-604.	6.0	360
92	Metabolite identification and molecular fingerprint prediction through machine learning. Bioinformatics, 2012, 28, 2333-2341.	1.8	143
93	A high-throughput metabolomics method to predict high concentration cytotoxicity of drugs from low concentration profiles. Metabolomics, 2012, 8, 433-443.	1.4	10
94	Collisional fragmentation of central carbon metabolites in LCâ€MS/MS increases precision of ¹³ C metabolic flux analysis. Biotechnology and Bioengineering, 2012, 109, 763-771.	1.7	93
95	High-Throughput, Accurate Mass Metabolome Profiling of Cellular Extracts by Flow Injection–Time-of-Flight Mass Spectrometry. Analytical Chemistry, 2011, 83, 7074-7080.	3.2	324
96	13C metabolic flux analysis in complex systems. Current Opinion in Biotechnology, 2011, 22, 103-108.	3.3	146
97	The oxygen sensor PHD3 limits glycolysis under hypoxia via direct binding to pyruvate kinase. Cell Research, 2011, 21, 983-986.	5.7	26
98	Engineering Genetically Encoded Nanosensors for Real-Time In Vivo Measurements of Citrate Concentrations. PLoS ONE, 2011, 6, e28245.	1.1	55
99	Dynamic flux responses in riboflavin overproducing <i>Bacillus subtilis</i> to increasing glucose limitation in fedâ€batch culture. Biotechnology and Bioengineering, 2010, 105, 795-804.	1.7	29
100	Tradeoff between enzyme and metabolite efficiency maintains metabolic homeostasis upon perturbations in enzyme capacity. Molecular Systems Biology, 2010, 6, 356.	3.2	159
101	Ultrahigh Performance Liquid Chromatographyâ^'Tandem Mass Spectrometry Method for Fast and Robust Quantification of Anionic and Aromatic Metabolites. Analytical Chemistry, 2010, 82, 4403-4412.	3.2	317
102	Integrated multilaboratory systems biology reveals differences in protein metabolism between two reference yeast strains. Nature Communications, 2010, 1, 145.	5.8	100
103	Differential glucose repression in common yeast strains in response to HXK2 deletion. FEMS Yeast Research, 2010, 10, 322-332.	1.1	52
104	13C-based metabolic flux analysis. Nature Protocols, 2009, 4, 878-892.	5.5	520
105	Cross-Platform Comparison of Methods for Quantitative Metabolomics of Primary Metabolism. Analytical Chemistry, 2009, 81, 2135-2143.	3.2	290
106	Novel biological insights through metabolomics and 13C-flux analysis. Current Opinion in Microbiology, 2009, 12, 553-558.	2.3	120
107	High-Throughput Quantitative Metabolomics: Workflow for Cultivation, Quenching, and Analysis of Yeast in a Multiwell Format. Analytical Chemistry, 2009, 81, 3623-3629.	3.2	86
108	Screening of Bacillus subtilis transposon mutants with altered riboflavin production. Metabolic Engineering, 2008, 10, 216-226.	3.6	53

#	Article	IF	CITATIONS
109	From biomarkers to integrated network responses. Nature Biotechnology, 2008, 26, 1090-1092.	9.4	12
110	anNET: a tool for network-embedded thermodynamic analysis of quantitative metabolome data. BMC Bioinformatics, 2008, 9, 199.	1.2	70
111	An analytic and systematic framework for estimating metabolic flux ratios from 13C tracer experiments. BMC Bioinformatics, 2008, 9, 266.	1.2	40
112	Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. Journal of Cell Biology, 2007, 178, 93-105.	2.3	599
113	GENETICS: Getting Closer to the Whole Picture. Science, 2007, 316, 550-551.	6.0	222
114	Toward metabolome-based 13C flux analysis: a universal tool for measuring in vivo metabolic activity. Topics in Current Genetics, 2007, , 129-157.	0.7	4
115	YtsJ Has the Major Physiological Role of the Four Paralogous Malic Enzyme Isoforms in Bacillus subtilis. Journal of Bacteriology, 2006, 188, 4727-4736.	1.0	52
116	FiatFlux—a software for metabolic flux analysis from 13C-glucose experiments. BMC Bioinformatics, 2005, 6, 209.	1.2	216
117	Transient expression and flux changes during a shift from high to low riboflavin production in continuous cultures of Bacillus subtilis. Biotechnology and Bioengineering, 2005, 89, 219-232.	1.7	32
118	Fluxome Profiling in Microbes. , 2005, , 307-322.		3
118	Fluxome Profiling in Microbes., 2005,, 307-322. The Bacillus subtilis yqjl Gene Encodes the NADP+-Dependent 6-P-Gluconate Dehydrogenase in the Pentose Phosphate Pathway. Journal of Bacteriology, 2004, 186, 4528-4534.	1.0	3
	The Bacillus subtilis yqjl Gene Encodes the NADP+-Dependent 6-P-Gluconate Dehydrogenase in the	1.0	
119	The Bacillus subtilis yqjl Gene Encodes the NADP+-Dependent 6-P-Gluconate Dehydrogenase in the Pentose Phosphate Pathway. Journal of Bacteriology, 2004, 186, 4528-4534. The phosphoenolpyruvate carboxykinase also catalyzes C3 carboxylation at the interface of glycolysis		56
119	The Bacillus subtilis yqjl Gene Encodes the NADP+-Dependent 6-P-Gluconate Dehydrogenase in the Pentose Phosphate Pathway. Journal of Bacteriology, 2004, 186, 4528-4534. The phosphoenolpyruvate carboxykinase also catalyzes C3 carboxylation at the interface of glycolysis and the TCA cycle of Bacillus subtilis. Metabolic Engineering, 2004, 6, 277-284. High-throughput metabolic flux analysis based on gas chromatography–mass spectrometry derived	3.6	56 49
119 120 121	The Bacillus subtilis yqjl Gene Encodes the NADP+-Dependent 6-P-Gluconate Dehydrogenase in the Pentose Phosphate Pathway. Journal of Bacteriology, 2004, 186, 4528-4534. The phosphoenolpyruvate carboxykinase also catalyzes C3 carboxylation at the interface of glycolysis and the TCA cycle of Bacillus subtilis. Metabolic Engineering, 2004, 6, 277-284. High-throughput metabolic flux analysis based on gas chromatography–mass spectrometry derived 13C constraints. Analytical Biochemistry, 2004, 325, 308-316. Model-independent fluxome profiling from 2H and 13C experiments for metabolic variant	3.6	56 49 276
119 120 121 122	The Bacillus subtilis yqjl Gene Encodes the NADP+-Dependent 6-P-Gluconate Dehydrogenase in the Pentose Phosphate Pathway. Journal of Bacteriology, 2004, 186, 4528-4534. The phosphoenolpyruvate carboxykinase also catalyzes C3 carboxylation at the interface of glycolysis and the TCA cycle of Bacillus subtilis. Metabolic Engineering, 2004, 6, 277-284. High-throughput metabolic flux analysis based on gas chromatography–mass spectrometry derived 13C constraints. Analytical Biochemistry, 2004, 325, 308-316. Model-independent fluxome profiling from 2H and 13C experiments for metabolic variant discrimination. Genome Biology, 2004, 5, R99.	3.6 1.1 13.9	56 49 276 30
119 120 121 122	The Bacillus subtilis yqil Gene Encodes the NADP+-Dependent 6-P-Gluconate Dehydrogenase in the Pentose Phosphate Pathway. Journal of Bacteriology, 2004, 186, 4528-4534. The phosphoenolpyruvate carboxykinase also catalyzes C3 carboxylation at the interface of glycolysis and the TCA cycle of Bacillus subtilis. Metabolic Engineering, 2004, 6, 277-284. High-throughput metabolic flux analysis based on gas chromatography–mass spectrometry derived 13C constraints. Analytical Biochemistry, 2004, 325, 308-316. Model-independent fluxome profiling from 2H and 13C experiments for metabolic variant discrimination. Genome Biology, 2004, 5, R99. Knockout of the high-coupling cytochromeaa3oxidase reduces TCA cycle fluxes inBacillus subtilis. FEMS Microbiology Letters, 2003, 226, 121-126.	3.6 1.1 13.9 0.7	56 49 276 30

#	Article	IF	CITATIONS
127	Hippocampal neural stem cells rapidly change their metabolic profile during neuronal differentiation in cell culture . Matters Select, 0, , .	3.0	0